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Periodically time-modulated bistable systems: Nonstationary statistical properties
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The relaxation properties of a one-dimensional overdamped system modulated by an external
periodic force are studied analytically by means of a perturbation approach. The validity of the ap-
proximations introduced is discussed in detail. The nonstationary nature of the process is illustrat-
ed by evaluating explicitly the autocorrelation function for the relaxation in a bistable potential.
The predictions thus obtained are shown to compare favorably with the results of analogue simula-
tion for the case of a quartic double-well potential. The stochastic resonance mechanism is proven
to set in only when the periodic perturbation breaks the symmetry of the bistable potential.

I. INTRODUCTION

The interest for the study of bistable systems forced by
a time-dependent perturbation' has been stimulated by
the prediction that the output signal from a stochastic
bistable system may be modulated in time by applying an
external periodic forcing term. The interplay of in-
trinsic noise and periodic driving mechanism may result
in a sharp enhancement of the signal power spectrum
within a narrow range about the forcing frequency. This
phenomenon was explained by Benzi et al. ' by relating
the forcing frequency with the switch rate (Kramer's
rate) of the unperturbed system between the stable states.
To distinguish their finding from the well-known dynami-
cal resonance, Benzi et al. introduced the notion of sto-
chastic resonance (SR).

The existence of this effect has been confirmed by both
numerical ' and analogue simulation. Its importance
for application to a variety of physical systems driven by
periodic forces is clearly illustrated by Roy and co-
workers ' who detected for the first time SR behaviors
in a real physical system. Theoretical work, instead, fo-
cused on the dynamical mechanism underlying the SR in
the attempt at reproducing the outcome of either the ex-
periment or the simulation. ""

Recently Jung and Ha, nggi' pointed out another im-
portant feature of stochastic systems driven by periodic
forces. The systems are described by a nonstationary
process, the relaxation dynamics of which is not strongly
mixing. ' This implies that important preparation effects
may be detected under appropriate conditions.

The present paper is mainly aimed at discussing the
nonstationary properties of stochastic relaxation in an
overdamped bistable symmetric potential forced by a
sinusoidal external force. In Sec. II we introduce a per-
turbation approach which is expected to describe the sys-
tem fairly closely in the limit when the perturbation in-
tensity is small compared to the noise intensity. Contrary
to previous work based on the adiabatic approximation,
our predictions apply also for the case of high forcing fre-
quency, provided that the activation energy is large with
respect to the noise intensity. The signal autocorrelation
function is shown to depend on the preparation of the

II. A PERTURBATION APPROACH

In this section we introduce a perturbation approach to
the problem described by the nonlinear Langevin equa-
tion

x = —V'(x, t ) +g( t), (2.1)

where the prime and overdot denote x and t derivation,
respectively. g(t) is a zero-mean-valued Gaussian noise
with autocorrelation function (ACF)

(g(t)g(0)) =2D&(t) . (2.2)

The drift term in (2.1) can be separated into a determinis-
tic force and a time-dependent perturbation according to
the decomposition

V(x, t)= V(x)+P(x, t) . (2.3)

Let us assume for simplicity that the potential V(x) is
bistable and symmetric and that the perturbation P(x, t)
is a sinusoidal function of t:

P(x, t)= —Ah(x)cos(At+8) . (2.4)

Here, A is the forcing frequency, h (x) characterizes the
nature of the coupling between the modulation and the
process x (t), and A is the perturbation parameter. The
probability distribution function p(x, t) of the process
(2.1) obeys the Fokker-Planck equation (FPE)

cl
p(x, t) = V'(x, t)+D p(x, t),a

Bt
'

Bx Bx
(2.5)

with boundary conditions lim~„~ p(x, t) =0.

system at the initial time, thus proving the nonmixing na-
ture of the process. In Sec. III we specialize the results of
Sec. II for the case where the periodic modulation is cou-
pled additively. A SR behavior is obtained in good agree-
ment with the analog simulation. In Sec. IV we discuss
an example of multiplicative modulation similar to that
introduced by Moss et al. ' No SR is induced by a
period perturbation which preserves the symmetry of the
potential. Our conclusions are drawn in Sec. V.
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The relevant statistical properties are entirely de-
scribed by the above FPE. Indeed, all we need to deter-
mine is the probability density p(x, t) and the conditional
probability p(x', t';x, t), which, in turn, can be expressed
in terms of the eigenfunctions and eigenvalues of the un-
perturbed problem. ' Alternatively, we can proceed as
follows. Let us define

H '= [P'(x, t) +2P'(x, t) V'(x) —2P(x, t)

2D—P "(x,t)] . (2.11b)

Let us assume that the solution to the eigenvalue prob-
lem associated with ¹

%(x, t)=e '"'" p(x, t) . (2.6)
y„(x)=E„cp„(x) (2.12)

On substituting p(x, t) with V(x, t), Eq. (2.5) can be
rewritten as is known. %'(x, t) can be expanded on the complete

orthonormal set of eigenfunctions [p„}:
—0'(—x, t) = D —P(x, t)+ V'(x, t) ——'V"(x, t)a a'

4D 4(x, t)=g ck(t)yi, (x)e
k

(2.13)

2D
V(x, t) 0'(x, t) .

(2.7)

The initial state %(x,O) is given assigning the values of
the coefficients cz =—ck(0) with the only condition of nor-
malization

The starting FPE, (2.5), may be mapped into the
Schrodinger equation (SE) corresponding to the Hamil-
tonian'

f dx p(xO)=gck fdx e '"' '
qk (x)=1 . (2.14)

with

D+—W(x, t),
Bx

(2.8)

W(x, t)= V'(x, t)' ——,
' V"(x, t) — V(x, t) .

4D ' ' ' 2D
(2.9)

Making use of definitions (2.3) and (2.4) we separate 8
into an unperturbed operator, A' and a perturbation

) 1.e.)

From now on the x integrations are meant to be taken
over any compact domain of the x axis where the process
x (t) has been localized. One should keep in mind that by
construction Eo =0 and yo (x) coincide with the sta-
tionary probability distribution of the unperturbed prob-
lem (2.5) with P =0 [see Eq. (2.6)].

The conditional probability p (x', t';x, t) can be mapped
into the relevant propagation kernel for %(x, t),

K(x' t'x t)=e '"' ' p(x' t'x t)e

8=II'+8 ',
with

= —D + V'(x ) ——V"(x )
o d 1, 2 1

4D 2

(2.10)

(2.1 la)

(2.15)

K(x', t'x, t) can be expanded in powers of A' ' according
to a well-known formula due to Feynrnan'

K(x', t', x, t)=K (x', t', x, t) f dt, f dx—, K (x', t', x, , t, )P '(x„t, )K (x„t,;x, t)

1+f dt, fdx, f dt2 fdx2K (x', t', x»t&)A' '(x»t, )K (x, , t»x2, t2)8'(x2, t2)K (x2 t2, x, t)+

(2. 16)

The unperturbed kernel K (x', t';x, t) can also be expand-
ed on the basis [g„),i.e.,

K(x', t', X, t)=K (x', t';x, t)+ K'(x', t', x, t)

I

K (x', t';x, t)=gy„(x')pk (x)e
k

(2.17)
+O(A ), (2.18)

A K (x', t';x, t)+ K (x', t', x, t)
4D

Substituting (2.17) in (2.16) and collecting only the terms
up to the second order in the parameter A yield the fol-
lowing approximation to the propagation kernel:

where K'(x ', t', x, t) with i = 1,2, 3 are expressible analyti-
cally in terms of [y„ I and [E„ I. We report the details
of our calculations in the Appendix.
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A. Calculation of the probability density p(x, t)

p(x, o) =Nod ckpp (x)gk (x)
k

(2.19)

[condition (2.14) implies coNp=1] ~ At a generic time
t )0 the probability density is given by

We are now in the position to determine the time evo-
lution of the probability density p(x, t) L. et us assume
that the periodic perturbation P(x, t) is switched on at
ta =0+ with the unperturbed system arbitrarily dis-
turbed

B. Calculation of the autocorrelation function C (~)

Due to the nonstationary nature of the process (2.1)
and (2.2) the definition of the x ( t ) ACF might present
some ambiguity. The definition we propose is summa-
rized in the following scheme: The periodic modulation
is switched on at time tp=0+ with a certain phase 0,
(2.4), the unperturbed system being at equilibrium with
distribution p(x)=q&o (x) (i.e., co=No and ck=0 for
k&0). The perturbed system is made propagate in the
presence of the perturbation up to the time t; the two-
time correlation of the process x (t) is then defined as

p(x, t) = f dy p (x, t;y, o)p(y, 0) . (2.20) &x(t+ r) x(t)& = f dy f dz zyp(z, t+r;y, t}p(y, t).

(2.22)
Due to the transformation (2.6), Eq. (2.20) can be rewrit-
ten as

p(x, t)= f dy e ' '" E(x, t;y, o)%(y, o) .

On expanding the exponential function of the integral
(2.21) in powers of the parameter A and making use of
the expansion (2.18) for the propagation kernel, we arrive
at the analytical expression for p(x, t), (A14), reported in
the Appendix. A few properties of that involved expres-
sion are remarkable.

(i) p(x, t) exhibits a transient behavior described by the
—E„ f

terms containing e " with n )0. In order to simplify
our discussion we have assumed that the spectrum I E„]
is discrete and that E, «E2, E„being ordered accord-
ing to their magnitude. This amounts to requiring that
V(x) diverges for lxl~ ~ at least as lxl with a) 1, and
that the potential barrier between the two minima, 6 V, is
large compared with the noise intensity D.

(ii) If we take the limit t~ ~ we immediately recog-
nize that p„(x,t)=lim, p(x, t) oscillates in time with
frequency v&=0/2m, as it should be. More importantly,
p(x, t) retains information of the initial state preparation
p(x, t) even at asymptotically large times [as shown by the
dependence of p„(x,t) on the coefficients ck with k )0
and on the phase 8 of the modulation].

(iii) For the purpose of comparison with the results of
analogue simulation one must average p (x, t) over one
forcing period T„=2m/Q and, as the quantity thus ob-
tained still depends on 0, over a uniform distribution of
the phase of the perturbation (2.4). The averaged asymp-
totic expression for the signal distribution p (x) is re-
ported in Eq. (A18) of the Appendix.

XE(y, t;x,o)+(x,o) . (2.23)

After some lengthy and tedious algebraic manipulations
we obtained a perturbation expansion of (2.23) accurate
up to the second order in A. Owing to our preparation
procedure, the result for & x ( t +r )x ( t ) & exhibits tran-
sient terms which can be eliminated by making t tend to
infinity. Of course lim, &x (t +r)x(t) & is stil a
periodic function of t. It should be remembered here that
the process under study is nonstationary. The depen-
dence on the initial time can be eliminated by averaging
the initial state over one forcing period Tz. The result
thus obtained is denoted by C(r). C(r) depends on the
phase 0. We report in the Appendix our evaluation of
C(r) after the average over the angle 0 has been taken.

Expression (A19) for C(r) simplifies when (i) we

neglect the exponentially vanishing terms corresponding
to the eigenvalues E„with n 2, in agreement with the
assumption that E, «Ez, (ii) we make use of the fact
that the perturbed potential V(x } is a symmetric function
of x and the parity of the eigenfunctions y„(x), (2.12),
coincides with the parity of the relevant index n; (iii) we

neglect all of the remaining matrix elements containing
eigenfunctions with index n ) 1. For convenience we dis-
tinguish two cases.

(1) The case of odd coupling h (x). In this case we

have

On employing Eqs. (2.6) and (2.21) we cast (2.22) in the
form of a triple integral

& x(t +7 }x(t) &

= f dx f dy f dzzye "'+' K(z, t+r;y, t)

A „g, AC(~)= Zo — Z", e "+ [Z2cos(Qr)+Z3

sin(Algal

)], (2.24)

z"=
1

where A, :—E ) and

z,"=&olxl»',
3A. —0

2 2 (&Ol v'h' Dh 'I l &'+II'&Olh—
l

1 &')&olxl »'

+»(x&01v'h' —Dh "li &+n'&olhll &)&olxhlo&&olxll &
—

—,'&olxh ll &&olxli &,

(2.25a)

(2.25b}
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2A.2z,"=. . .(&olv'h' —ah "Il&'+n'&olhl1 &')&olxll&'+, , &olv'h' a—h "Il &&olxhlo&&olxll&,

z,"=, »(&olv'h' —ah "Il&'+n'&olhl 1 &')&olxll&' —, , &olhl»&olxhlo&&olxll& .

(2.25c)

(2) The case of even coupling h (x). In this case we have

C(~)= Zpw
— Zgi e ""+ Zfcos(n~)+Zfsin(nI~I) e

8D 8D

where

ZN%
= &OIxI1)',

zy= [&olv'h' —ah" Io&& ll v'h' —ah "Il &
—&olv'h' —ah "Io&'—& llv'h' —ah "ll &'1

0

(2.26)

(2.27a)

+n'(&OlhlO& & 1lhl 1 &
—&OlhlO&' —

& 1lhl 1 &')]&Olxl 1 &'+ & llhl 1 & & Olxhl 1 & & Olxl 1 &
—

—,
' &Olxh'l l & &Olxl 1 &,

(2.27b)

z $
= [ ( 1

I

v'h ' ah "
I
1—& ( & o

I

v'h ' ah "
I
o—) —

& 1
I

v'h ' ah "
I »—)

1

Q

+n'& llhl »(&olhlO) —
& llhl 1 &)](Olxl 1 )'+(& 1lhl » —&OlhlO&) &Olxhl 1 &&Olxll &,

z&= —[& llhl1 &(&OI v'h' —ah "Io& —&1I v'h' —ah "Il &)—&II V'h' —ah "Il &(&olhlo& —
& llhll &)]&olxl1 &'

1

(2.27c)

+—(&1I v'h' —ah" I» —«I v'h' —ah "lo&)«lxhl1 & &olxl» .0 (2.27d)

The bracket ( m
If I

n ) replaces

f dx y (x)f(x)p„(x) for any function f (x).
On comparing (2.24) and (2.26) it is apparent that C(~)

may exhibit an oscillating behavior for asymptotically
large w only when h (x) is nor an even function of x. The
presence of oscillatory terms with frequency v& in the ex-
pression (2.24) for C(w) has been observed experimentally
by revealing a deltalike spike at the forcing frequency in
the power spectrum of the signal x (r). '

Finally, it should be noticed that our definition of sig-
nal ACF differs from that adopted in Ref. 13, where no
sudden switch from the unperturbed stationary state to
the nonstationary state p (x, t) at time to=0+ is intro-
duced.

» (&ol v'I l &'+n'&oIxI1)')&oIxI»'

+, , (x(OI v I 1 )+n'(oIxI1) )k+0

212
Z,"=. ..(&Ol V'l l &'+n'&Olxl 1 )') &Olxl 1 &'

+
A, +0

Z,"=. ..(&Ol V'll &'+n'&Olxl1 &')&Olxl 1 &'

, (oIx'Io) &oIxI1&',

(3.2c)

(3.2d)

p(x, t)= —A c xs(not+0), (3.1)

i.e. , h (x ) =x. We rewrite the coefficients Z," of Eq.
(2.25) in a more explicit form as follows:

z," =&olxl»', (3.2a)

III. THE CASK OF ODD CGUPI. ING

We address now the case of odd coupling (2.24) with
special reference to the additive modulation

where (OIx IO) represents the second moment of the sta-
tionary distribution p(x) of the unperturbed system. The
calculation of the integrals (OIx I 1 ), (OIxI1), and
(OI V'I

1 ), instead, requires that we determine first the
eigenfunction y, (x). This might be done with good ac-
curacy by means of some computational code like the
matrix-continued-fraction algorithm developed by Risken
and co-workers. '

An accurate approximate analytical expression for
y, (x) can be obtained by means of supersymmetric
quantum-mechanical techniques. ' In Sec. II we have
mapped the FPE into a SE corresponding to the Hamil-
tonian H. The unperturbed system is then described by
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the Hamiltonian

A o = D— + V'(x) ——V"(x),d 1, 2 1

dx'
(3.3)

The calculation of the integrals contained in (3.2) is
now straightforward. For comparison with the results of
analogue simulation we specialize our computation for
the case of a quartic double-well potential:

with discrete eigenvalues t E„j and eigenfunctions ty„j.
and its supersymmetric partner

0 d 1 t 2 1 Pt8+= D — + V'(x) + —,
' V"(x) (3.4)

exhibit an interesting pro erty: the eigenvalue problems
associated with 8 + and are related by the equalities
following:

E„=E„+,, n )0 (3.5)

(x) — )iz Ay —)(x)' n )0
(E —

)
) /2

(3.6)

where t E„+ j and I y„+ j are the eigenvalues and the nor-
malized eigenfunctions of 8 + and

1
A = —&D + —V'(x),

dx 2v'D (3.7)

The ground state of ¹ is determined by Eo =0 and the
eigenfunction

with

e
—V(x)lzD1

N 0
(3.&)

N2 d
—v(x)/D

0

Keung et al. ' noticed that the function

V o+( —x)=mo'«)= — I dy[Vo (y)]' (x-o)a q)o (x) x

(3.9)

where
r 2

a=2 J dx f dy[yo (y)]
pro (x)

2 2 2

V(x)=
8 2

~m
(3.13)

AC(~)-
z (Zz+Z3 )cos(Q~+P), (3.14)

In Fig. 1 we display the amplitude C,„(D) for the oscil-
lating component of the normalized ACF (2.24),
C(~)/C(0), for three values of the forcing frequency vn.
As a remarkable feature of our approach we predict that
the oscillating behavior of C(~) tends to disappear both
at large and small D. This makes quite a difference with
the adiabatic approximation previously introduced in the
literature. ' '" We discuss this point in a companion pa-
per' with reference to the phenomenon of SR.

In Fig. 1, we also reported the results of analog simula-
tion for the same values of all the parameters involved.
For details about the setup of our simulator we refer the
reader to the following paper. ' In order to appreciate
the closeness of our predictions one should keep in mind
that due to experimental limitations' we cannot produce
accurate analogue determinations of C,„(D) for
Ax /D (0.4. It is apparent from Eq. (2.24) that the
second-order truncation would get more reliable for
smaller values of Ax /D. The comparison between
theoretical and analogue results is therefore quite satis-
factory.

It should be remarked that the built-in averaging pro-
cedure of our wave-form analyzer (for details see Appen-
dix of Ref. 20) does not allow one to appreciate the mag-
nitude of most effects due to the nonstationary nature of
the process under study. In particular, at the present
state of our investigation, we cannot contrast our
definition of signal ACF with that proposed in Ref. 13.

Finally, a peculiar feature of our preparation scheme
(Sec. II A) is the prediction of a negative time dephasing
of the oscillating component of the signal x(t). In fact,
the oscillating behavior of C(~), (2.24), at large 7. can be
represented in the following form:

is an eigenfunction of the operator

H + =8 + —4Dpo (0)5(x), (3.10}
where

with zero eigenvalue. On treating the second term on the
right-hand side of Eq. (3.10) as a perturbation, one ob-
tains the first-order approximation for E0,

DE0 (3.11)

while at the zeroth order for the corresponding eigen-
function go+(x}=go (x). The equality (3.6) leads to our
estimate for g&, (x):

q&, (x }= [28(x}—1]yo (x}, (3.12)

where 0(x) denotes the step function. The approxima-
tions (3.11) and (3.12) are expected to be very accurate for
small D values.

P =arctan
z"

3

Z"
.2

(3.15)

For the relatively simple system discussed in the present
section, P could be appreciable only for very small values
of D, where the amplitude of C(~), (3.14), is vanishingly
small ~ On the other hand, for values of D which maxim-
ize the signal modulation, namely, C,„(D), P is expect-
edly too small to observe experimentally. All that can be
readily seen on comparing (2.25c) with (2.25d). Zz and
Z3 are given, respectively, as the sum and the difference
of two quantities of the same order of magnitude and,
furthermore, Z3 /Z 2 is roughly proportional to the
forcing-frequency to escape-rate ratio, 0/A. . No
significant evidence for the existence of any signal de-
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(c}

(b}
turbation formalism inspired to quantum mechanics.
The mechanism underlying SR is indeed a resonant one
as clearly shown by the dependence of the oscillating tail
of the signal ACF on the noise intensity. The modulation
of the output signal induced by the external periodic per-
turbation is enhanced for forcing frequencies equal or
close to the relevant escape rate in the driving potential.
Finally, we have pointed out that SR is always related to
the presence of a periodic perturbation mechanism which
breaks the symmetry of the unperturbed system
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FIG. 2. C(co) for diferent values of the noise intensity: (a)
D/6 V =0.5, (b) D/5 V =0.04, (c) D/b, V =0.03, (d)
D/AV =0.02. The potential is as in Fig. 1. The parameters of
the perturbation are kept constant: Ax /6 V =0.5 and vz =30
Hz.

APPENDIX

The perturbation 8 ' comprises both linear and quad-
ratic terms in A, i.e.,

relaxation rate A, . This behavior, too, is apparent from
the spectra displayed in Fig. 2.

The peak at co =0 is precisely the spike revealed by the
authors of Ref. 15. It is clear from the discussion above,
however, that this peak cannot be described by a 5 func-
tion and that its intensity blows up with vanishing D.
Therefore no SR mechanism is induced by a periodic
modulation that does not break the symmetry of the bist-
able potential.

H'= — H,'+ H',
2D 4D

with

H', = [h '(x ) V'(x )
—Dh "(x}]cos(Qt +0)

+Ah (x)sin(Qt +0),

H z=h'(x) cos (Qt +0) .

(A2)

V. CONCLUSIONS

We studied the stochastic relaxation in a bistable sym-
metric potential modulated periodically with time and
subject to additive Gaussian noise. We have illustrated
the nonstationary nature of such a process by calculating
explicitly the signal distribution and ACF within a per-

The corrections to the free propagation kernel up to the
second order in A, (2.18), follow immediately,

I

K'(x', t', x, t)= gy (x')e f' „(t',t)y„(x)e
m, n

i =1,2, 3 (A4)

where

I I

f'„(t', t)= f dt, e " '(m ~H I(t~)~n ) =e " F'„(t')—e " F'„(t),

f „(t',t)= f dt, e " '(m~H z(t, )~n) =e " F „(t')—e " F „(t),

f „(t',t)=g f dt&e ~ '(m ~H I(t& )~p )f '„(t, , t)

(A5)

(A6)

I 1

=e " F „(t')—e " F „(t)+g[e " F' (t)F'„(t)—e F'„(t')e " F'„(t)] .

(A7)

F' „(t) are purely oscillating functions,

F'„(t)=G „cos(At+0)+G'„si (Atn+0),

1 (E —E„)cos[2(Qt +0)]+26 sin[2( At +0) ]F „(t)=—,'(m h' n ) +
(E E„)—(E E„)+40—

(AS)

(A9)
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(E E—„)cos[2(Q+ 8)]+2Q sin[2( Qt +8) ]F'„(t)= ,'G—'„+—,'g (&m(h'V' —Dh "Ip)G~„—&mlhln )Qg~„) (E E—„)+4Q

(E E„—)sin[2(Qt +8)]—2Q cos[2(Qt+8)]
+(&mlh V —Dh "lp &G,'„+&mlhln»g, '„)

(E E„—) +4Q

with

(A10)

& m h'V' Dh "—
~n )t(E E„)——& m~h~n )Q

(E E„)—+Q

& m
~
h

' V' Dh "
~

—n )Q+ & m
~
h

~
n ) Q( E E„—)

(E —E„)+Q,

& m
~
h

' V' Dh "
~p ) G—„+& m

~
h

~p )Q G '„

(A 1 1)

(A 12)

(A13)

We employed an analogous procedure to calculate p(x, t), perturbatively. On substituting (A4) —(A13) into (2.21) we ob
tain

p(x, t)=p'(x, t)+ p'(x, t)+ p'(x, t)+O(a'),
2D

where

(A 14)

—E,.p'(x, t) =e 'I"'"Dyc, q, (x)e (A15)

p'(x, t)=e " h (x)cos(Qt+8)gc;y, (x)e ' +pc, tp, (x)[e ' F.,.'. (t) —e ' —F"..(O)]
f,j

(A16)

p (x, t) =e '"
—,'h (x) cos (Qt +8)gc, y, (x)e

+h (x)cos(Qt +8)gc y, (x)[e ~ F, (t) —e '
F~l.(O)]

—Dgcjg; (x)[e ' F; (t) e' F,, (0—)]

+gcjy; (x) e ' F)(t)—e ' F, (0)

" Fk(t)F,', (0)+e ' +Fk(0)Fkj(o)
k k

(A17)

p(x t) for t asymptotically large oscillates in time with frequency vn ——Q/2~. Averaging over t and 8 we obtain

2

P (x) e eogo (x)+ —,'h(x) e y (x)+h(x)c gy, . (x)g,.
8D

+go (x)gc, (go, g~, +Go,. g, )+cog~ (x)g3O —+
—

(x).yc g3
17J

(A18)

With analogous manipulations we can obtain a second-order expression for the ACF (2.23). Our results after averag-
ing over t and 0 reads
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T

&«)=g&Olxlt &'e ' '+, —,'g&Olxh'lt &&Olxlt &e
' '+g&Olxhlt &&olxlj&e

I l i,J

—g&0lxhli &&Olxlj&e ' [G, cos(Q~) —G.sin(Qlil)]

+g&Olxhli &&ilxlj&e ' [Gj()cos(Q~) —GJ'osin(Ql~l)]

+g&olxlt &&Olxlj&(e ' —e ' )G;.

+g&Olxlt &&tlxlj&e
' 'G,'o —g&Olxlt &'e

—g &Olxlt & &Olxl j &e
i,j,k

X [(Gk Gkoj+ Gk Gz~ )cos(Q. v) —(Gk Gkj
—Gk Gkj. )sin(Q I el )]

+ y &Olxlt &&olxlj &e
'

(G;kGkj+GikGkj)
i,j,k

+y&ol l &" (G,'„G,', +G,'„G„',)
i, k

+ g &Olxli & & jlxlk &e
i,j,k

x[(G Gko+G Gko)cos(Q&) (G Gko G G. ko)sin(Qlwl)]

—g &olxlt && jlxlk &e
' '(G;, Gko+G;,'Gk, )

i,j,k

(A19)
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