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We investigate the time evolution of an open quantum system described by a Lindblad master equation
with dissipation acting only on a part of the degrees of freedom H0 of the system, and targeting a unique
dark state in H0. We show that, in the Zeno limit of large dissipation, the density matrix of the system traced
over the dissipative subspace H0, evolves according to another Lindblad dynamics, with renormalized effective
Hamiltonian and weak effective dissipation. This behavior is explicitly checked in the case of Heisenberg spin
chains with one or both boundary spins strongly coupled to a magnetic reservoir. Moreover, the populations
of the eigenstates of the renormalized effective Hamiltonian evolve in time according to a classical Markov
dynamics. As a direct application of this result, we propose a computationally efficient exact method to evaluate
the nonequilibrium steady state of a general system in the limit of strong dissipation.
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I. INTRODUCTION

A quantum system interacting with an environment is,
under a Markov assumption, well described by a Lindblad
master equation (LME) [1,2]. It follows that the reduced
density matrix (RDM) of the system undergoes a coherent
and dissipative evolution [3,4]. If the coherent and dissipative
parts of LME do not depend on time, then, after a transient,
the system reaches a (unique) nonequilibrium steady state
(NESS), which is independent of the initial conditions. Even if
the NESS is trivial, the relaxation dynamics may not be: spe-
cially if a large dissipation-free subspace exists, the NESS can
be approached through a complicated multistage evolution.

If the dissipation time scales are short in comparison with
the coherent evolution times, then the so-called quantum Zeno
regime occurs. Quantum Zeno effect [5,6] predicts an inhibi-
tion of quantum transitions in a quantum system subjected to
frequent measurements. It has been observed experimentally,
in various setups [7–11]. Applications of Zeno effect include
dissipation-protected realization of quantum gates [12], en-
gineering of nontrivial quantum states, and implementation
of universal quantum computations [13–16] creating quantum
simulators [17], localization of a single atom in a lattice [18],
realization of exotic effective dynamics [19,20], development
of theoretical tools for a real-time observation of quantum
many-body dynamics [21].

It is well recognized that the evolution of a system near
the Zeno limit is not frozen but can proceed via Raman-like
processes involving virtual levels, which couple states within
a given Zeno subspace [22,23], while the occupation of the
virtual levels remains negligible.

In more detail, one can distinguish three stages of relax-
ation, occurring at different time scales. On the shortest time
scale, only the degrees of freedom directly affected by the

dissipation relax to their stationary values. On the second,
intermediate time scale, an effective coherent evolution takes
place, governed by a dissipation-projected Hamiltonian [24].
Finally, on the longest time scale, all system characteristics
relax to their stationary values.

In this paper, we focus on the third stage of evolution and
derive an effective dynamics of the system in the decoherence-
free subspace. It happens that, in the assumed Zeno regime,
and under the nondegeneracy assumption for the local ker-
nel of the dissipator (2), this dynamics is also of Lindblad
type. As an application, we demonstrate that the spectrum of
the reduced density matrix, which does not change on the
intermediate time scale, on the longest time scale evolves
according to a classical Markov process, with generator F

computable from the LME entries.

II. MAIN RESULTS

Consider an open quantum system, with finite Hilbert
space H, under strong dissipation acting only on a subspace
H0 of the degrees of freedom, described by the Lindblad
master equation,

∂ρ(τ )

∂τ
= − i

h̄
[H, ρ(τ )] + �D[ρ(τ )]. (1)

Let the dissipation-free subspace be H1, H = H0 ⊗ H1, and
denote by trH0 and trH1 the trace over H0 and H1, having
dimensions d0 and d1, respectively. We assume the Lindblad
dissipator D to target a unique state ψ0 ∈ H0, namely,

(trH1 D)ψ0 = 0. (2)

The aim of this paper is to show that, in the Zeno limit, when
the effective dissipation strength � is much stronger than the
unitary part of the evolution, the solution of the problem (1)
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for all times τ > O(1) has the approximate form

ρ(τ ) = ψ0 ⊗ R(τ ),

where R(τ ) = trH0 ρ(τ ) evolves according to another LME

∂R(τ )

∂τ
= − i

h̄
[H̃ , R(τ )] + 1

�
D̃[R(τ )]. (3)

More precisely, we demonstrate that

‖ρ(τ ) − ψ0 ⊗ R(τ )‖ = O

(
1

�

)
, (4)

for � → ∞ and for all times τ � 1/�. The choice of the
norm ‖ · ‖ is rather arbitrary. Note that the LMEs (1) and (3),
besides being defined in terms of different Hamiltonians and
dissipators, have dissipation strength � and 1/�, respectively.

Using 1/� � 1 as a small parameter, we obtain the above
result by writing the Dyson series for the Liouvillian dynamics
associated to the LME (1). We start rescaling the time �τ = t

in the original LME. In the limit of strong dissipation � � 1,
we obtain an equation with a perturbative term,

∂ρ

∂t
= D[ρ] − i

�
[H, ρ] = (L0 + K )ρ = Lρ, (5)

where L = L0 + K and the linear operators L0 and K =
−(i/�)[H, ·] denote the dissipator and the commutator, re-
spectively. The formal solution of Eq. (5) is

ρ(t ) = eLt ρ(0) = E (t )ρ(0), (6)

where the propagator E (t ) satisfies

E (t ) = eL0t

(
1 +

∫ t

0
dt1e

−L0t1KE (t1)

)
. (7)

Iterating Eq. (7) we get the Dyson expansion. Up to the second
order we obtain

E (t ) = eL0t

(
1 +

∫ t

0
dt1e

−L0t1KeL0t1

+
∫ t

0
dt1e

−L0t1KeL0t1

∫ t1

0
dt2e

−L0t2KeL0t2 + . . .

)
. (8)

Introduce the spectral projection P0 onto the kernel of the
dissipator L0, namely, P0 = limt→∞ exp(L0t ). Define also its
complement Q0 = IH − P0, where IH is the identity operator
in the space H. Obviously, P0Q0 = 0. If 1/� is small, the
dissipative part of the Lindbladian constrains the system to
a decoherence-free subspace. In fact, the leakage outside of
decoherence-free subspace (defined as the subspace belonging
to the dissipator Kernel) can be rigorously proven to be
negligible, see Ref. [24]. Therefore, we shall only consider
an evolution inside the decoherence-free subspace, which is
given by the propagator P0E (t )P0. Performing the calcula-
tions as indicated in Appendix, we obtain

P0E (t )P0 = P0 + tP0KP0 + t2

2!
(P0KP0)2

− tP0KQ0SKP0 + . . . , (9)

where . . . is the contribution from the remaining orders of the
Dyson expansion, and S is the pseudoinverse of the dissipator,

L0S = SL0 = Q0. (10)

Note that the first three terms in Eq. (9) can be exponentiated,
as P0 exp(tP0KP0). They all describe a unitary dynamics
within the decoherence-free subspace, as is seen by applying
the propagator P0KP0 on a state ρ = ψ0 ⊗ R,

P0KP0ρ = − i

�
P0[H,ψ0 ⊗ R]

= − i

�
ψ0 ⊗ trH0 (H (ψ0 ⊗ R) − (ψ0 ⊗ R)H )

= − i

�
ψ0 ⊗ [hD,R], (11)

where hD is the dissipation-projected Hamiltonian

hD = trH0 [(ψ0 ⊗ IH1 )H ]. (12)

Since the operator K is proportional to the small parameter
1/�, we conclude that the terms tP0KP0 and t2

2! (P0KP0)2

give a contribution O(1) to the propagator for times t ∼
O(�), while the last term −tP0KQ0SKP0 contributes O(1)
changes to the propagator for t ∼ O(�2). The physical in-
terpretation of Eq. (9) is thus as follows. One observes three
different processes, taking place at different time scales τ =
t/�: (i) at short times τ ∼ 1/�, the system is projected
onto the decoherence-free subspace; (ii) at intermediate times
τ ∼ 1, the evolution inside the decoherence-free subspace is
unitary P0KP0 ∼ −iψ0 ⊗ [hD, ·]; (iii) at large times τ ∼ �

the term tP0KQ0SKP0 sets in. Note that the slowest part of
the evolution, taking place at the longest time scale, cannot
by any means be ignored since it is the only part containing
a relaxation towards the NESS. In fact, the unitary evolution
alone governed by the effective Hamiltonian (12), does not
lead to any relaxation.

To derive the evolution equation from the Dyson ex-
pansion, assume the system to start in the dissipation-free
subspace, i.e., ρ(0) = P0ρ(0). This is equivalent to assum-
ing the factorized initial state ρ(0) = ψ0 ⊗ R(0). The time
evolution inside the decoherence-free subspace is given by
P0E (t )P0[ψ0 ⊗ R(0)] = ψ0 ⊗ R(t ). We obtain the evolu-
tion equation in differential form considering limt→0[ρ(t ) −
ρ(0)]/t = ∂ρ/∂t . Using the Dyson expansion, tracing over
H0, and rescaling the time t/� = τ , we obtain

∂R

∂τ
= −i[hD,R(τ )] + 1

�
W (13)

W = −�2 trH0 (P0KQ0SKP0ρ). (14)

Equation (13) is valid for time scales beyond the shortest
one, i.e., τ � 1/�. The total error of the effective descrip-
tion (13) of the evolution ρ(0) → ρ(τ ) ≈ ψ0 ⊗ R(τ ) for
large � results from two contributions: a leakage outside the
dissipation-free subspace and higher-order dissipation terms,
both contributions being generically of order 1/�, see also
Fig. 1.

To evaluate W from Eq. (14), we make two assumptions:
(i) the kernel of L0 is one dimensional, i.e., the eigenvalue 0
of the dissipator is nondegenerate,

L0ψ0 = 0; (15)
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FIG. 1. Asymptotic error (Euclidean norm) limτ→∞ ‖ψ0 ⊗
R(τ ) − ρ(τ )‖ as a function of the dissipation strength � for the
XYZ Heisenberg spin chain with dissipation acting on the first
and last spins. Here, R(τ ) is the solution of Eq. (13) whereas
ρ(τ ) is the solution of Eq. (1). Parameters: N = 4, Jx = J0, Jy =
2.2J0, Jz = 0.77J0 for all data points. Triangles: θL = ϕL = θR =
ϕR = 0, μL = 0.9, μR = 0.7. Squares: θL = π/3, ϕL = π/4, θR =
3π/7, ϕR = 4π/15, μL = 0.9, μR = 0.7. Circles: θL = π/3, ϕL =
π/4, θR = 3π/7, ϕR = 4π/15, μL = 0.5, μR = −0.3. The straight
lines with slope 1/� are guides to the eye.

(ii) L0 is diagonalizable, i.e., a basis ψk (not necessarily
orthogonal) exists,

L0ψk = ξkψk. (16)

Note that ψ
†
k are also eigenvectors of the dissipator, with

eigenvalues ξ ∗
k , namely, L0ψ

†
k = ξ ∗

k ψ
†
k . We also introduce a

complementary basis ϕk , trace orthonormal to the basis ψj ,

tr(ϕkψj ) = δk,j . (17)

Hereafter, we work in the representation in which ψk, ϕk are
square matrices.

First, we note that the action of P0 on the arbitrary element
X ∈ H is

P0X = ψ0 ⊗ trH0 X. (18)

In fact, due to the definition of P0 we have

P0X = lim
t→∞ eL0tX = lim

t→∞ eL0t
∑

k

ψk ⊗ xk

=
∑

k

lim
t→∞ eξktψk ⊗ xk = ψ0 ⊗ x0, (19)

since the real part of all ξk for k > 0 is strictly negative. In
the decomposition X = ∑

k ψk ⊗ xk , the element x0 can be
found using the trace-orthonormal basis ϕk as x0 = trH0 (ϕ0 ⊗
IH1 )X. The element ϕ0 of this basis, satisfying tr(ϕ0ψk ) =
δk,0, can always be chosen as the unit matrix, ϕ0 = IH0 , since
all the eigenfunctions of the dissipator with nonzero eigenval-
ues are traceless, and tr ψ0 = 1. Substituting x0 = trH0 X in
Eq. (19), we obtain Eq. (18).

It is convenient to define the Hamiltonian decomposition

H =
∑

n

ϕn ⊗ gn =
∑

n

ϕ†
n ⊗ g†

n, (20)

gk = trH0 [(ψk ⊗ IH1 )H ]. (21)

We have, step by step,

P0ρ(0) = ρ(0),

(�K )P0ρ(0) = −i[H, ρ(0)]

= −i
∑
m,n

[Cmnψ
†
m ⊗ (gnR) − H.c.],

Q0S(�K )P0ρ(0) = −i
∑

m>0,n

1

ξ ∗
m

[Cmnψ
†
m ⊗ (gnR) − H.c.],

where

Cmn = tr(ϕ†
mϕnψ0). (22)

Since ϕ0 = IH0 , the coefficients Cmn satisfy

C0n = Cn0 = δ0,n. (23)

In the last step, using Eqs. (17) and (18), we arrive at

W =
∑

m>0,n>0

(
Cmn

−ξ ∗
m

(−g†
mgnR + gnRg†

m) + H.c.

)
. (24)

Note that the term n = 0 does not appear in the sum (24) be-
cause of Eq. (23). Using the substitution −Cmn/ξ

∗
m = Ymn =

Amn/2 + iBmn with Amn = Ymn + Y ∗
nm positive matrix and

Bmn = (Ymn − Y ∗
nm)/(2i) Hermitian matrix, and changing the

order of summation in the H.c. term in (24), we can put W in
the general Lindbladian form,

W = −i[H̃a, R] + D̃R, (25)

H̃a =
∑

m>0,n>0

Bmng
†
mgn, (26)

D̃R =
∑

m>0,n>0

Amn

(
gnRg†

m − 1

2
g†

mgnR − 1

2
Rg†

mgn

)
. (27)

According to Eq. (13), from the above expression of W we
conclude that the effective time evolution of the system in the
dissipation-free subspace has the standard Lindblad form of
Eq. (3), with H̃ = hD + H̃a/� and the dissipator D̃/� with
D̃ given by Eq. (27). Note that the stronger is the dissipation
� in the original system, the weaker is the effective dissipation
(of order 1/�) in the effective dynamics [25].

III. HEISENBERG SPIN CHAIN WITH THE FIRST SPIN IN
A TARGET STATE

To illustrate our findings, we consider a system of inter-
acting spins, with one spin strongly dissipatively coupled to
an environment, which targets an arbitrary mixed state ψ0 of
that spin. In the Lindblad formalism, this is achieved via the
application of two Lindblad operators [26],

L1 =
√

1 + μ

2
|0⊥〉〈0|, L2 =

√
1 − μ

2
|0〉〈0⊥|, (28)

where |0〉 is an arbitrary normalized state in H0 ≡
C2, 〈0⊥|0〉 = 0 and μ real parameter with 0 � μ � 1. The
resulting dissipator L0 = DL1 + DL2 , where

DLX = LXL† − 1

2
(L†LX + XL†L), (29)
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targets the arbitrary mixed state of a single spin

ψ0 = 1 + μ

2
|0〉〈0| + 1 − μ

2
|0⊥〉〈0⊥|. (30)

In fact, ψ0 is an eigenvector of the dissipator L0 with eigen-
value ξ0 = 0, namely, L0ψ0 = 0. The other eigenvectors and
the corresponding eigenvalues of L0 are

ψ1 = |0〉〈0⊥|, ξ1 = −1

2
, (31)

ψ2 = |0⊥〉〈0|, ξ2 = −1

2
, (32)

ψ3 = |0〉〈0| − |0⊥〉〈0⊥|, ξ3 = −1. (33)

The trace-orthonormal basis ϕk satisfying tr(ϕkψm) = δk,m is
given by

ϕ0 = IC2 , (34)

ϕ1 = |0⊥〉〈0|, (35)

ϕ2 = |0〉〈0⊥|, (36)

ϕ3 = 1 − μ

2
|0〉〈0| − 1 + μ

2
|0⊥〉〈0⊥|. (37)

Given the explicit form of ϕk, ψk , we readily compute
the coefficients Cmn from Eq. (22). The only nonzero
coefficients Cmn are the diagonal ones: C00 = 1, C11 =
(1 + μ)/2, C22 = (1 − μ)/2, C33 = (1 − μ2)/4. Substitut-
ing them into Eq. (24) and using Eq. (25), we obtain H̃a = 0
and

D̃ = 2(1 + μ)Dg1 + 2(1 − μ)D
g
†
1
+ 1

2
(1 − μ2)Dg3 . (38)

The operators gk , given by Eq. (21), can be evaluated after-
ward the Hamiltonian H of the system is specified.

For definiteness, we consider the coherent part of the
dynamics to be given by an open anisotropic XYZ Heisenberg
spin chain, with Hamiltonian

H =
N−1∑
n=1

�σn · (J �σn+1), (39)

where �σn = (σx
n , σ

y
n , σ z

n ) and J = diag(Jx, Jy, Jz) is the
anisotropy tensor of the exchange interaction. We parametrize
the state |0〉 via spherical coordinates θ, ϕ,

|0〉 =
(

cos(θ/2)e−iϕ/2

sin(θ/2)eiϕ/2

)
. (40)

Introducing a standard unit vector in polar coordinates,

�n(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),

and other two unit vectors defined as �n′ =
�n( π

2 − θ, ϕ + π ), �n′′ = �n( π
2 , ϕ + π

2 ), in such a way that
the triplet �n, �n′, �n′′ forms an orthonormal basis in the
three-dimensional space, we find

g1 = (J �n′) · �σ1 − i(J �n′′) · �σ1, (41)

g3 = 2(J �n) · �σ1. (42)

Note that, after tracing over the spin space of the first site
as indicated in (21), in the above expressions we renumerate
the N − 1 sites not directly affected by the dissipation as
1, 2, . . . , M = N − 1. With this convention, the dissipation-
projected Hamiltonian is still an anisotropic XYZ Heisenberg
Hamiltonian as H but with M sites and a boundary field

hD =
M−1∑
j=1

�σj · (J �σj+1) + (J �n) · �σ1. (43)

The Hamiltonian (43) and the dissipator defined by Eq. (38)
determine the effective LME, which governs the time evolu-
tion of the reduced density matrix R(τ ) in the Zeno limit.

IV. HEISENBERG SPIN CHAIN WITH THE FIRST AND
THE LAST SPINS IN A TARGET STATE

Previous results straightforwardly extend to more general
setups. As an example, consider the same spin chain discussed
above with dissipation acting only at the boundary spins 1
and N . Within this setup, and by tuning of the Hamiltonian
parameters, one can generate, in the Zeno limit, a bulk NESS
ranging from a maximally mixed state [27] to a pure spin-
helix state carrying ballistic current of magnetization [28,29].
Here we assume the dissipation to target generic spin-1/2
mixed states, ψL

0 and ψR
0 , at the sites 1 and N , respectively,

ψL
0 = 1 + μL

2
|0L〉〈0L| + 1 − μL

2
|0⊥

L 〉〈0⊥
L |, (44)

ψR
0 = 1 + μR

2
|0R〉〈0R| + 1 − μR

2
|0⊥

R 〉〈0⊥
R |. (45)

As discussed above, this is realized by applying two Lindblad
operators, of the form (28), at each end of the chain with
parameters μL and μR , respectively.

Overall the dissipation targets a state, which is the product
of the states targeted at the left and right boundaries, ψ0 =
ψL

0 ⊗ ψR
0 . The eigenvalues of the full dissipator are the sum

of the eigenvalues of the left and right boundary dissipa-
tors separately, ξmL

+ ξmR
, and the respective eigenvectors

are ψmL,mR
= ψL

mL
⊗ ψR

mL
, where the individual ψL,R

m have
the form (33). The Hamiltonian decomposition in terms of
the trace-orthonormal basis for the left and right dissipators,
ϕL

nL
, ϕR

nR
, now reads

H =
∑
nL,nR

ϕL
nL

⊗ gnL,nR
⊗ ϕR

nR
, (46)

gnL,nR
= tr1,N

[(
ψL

nL
⊗ I 2N−1)

H
(
I 2N−1 ⊗ ψR

nR

)]
. (47)

We can therefore apply the general formula (24), with ξm →
ξmL

+ ξmR
and gn → gnL,nR

. Note that, due to the locality of
the interactions, gnL,nR

= 0 if nLnR �= 0. After some algebra,
and using Eq. (23), we obtain that Eq. (24) splits into the sum
of two contributions, associated to the left and right ends of
the chain,

W = D̃LR + D̃RR, (48)

where, according to (38),

D̃L = 2(1 + μL)Dg10 + 2(1 − μL)D
g
†
10

+ 1
2

(
1 − μ2

L

)
Dg30 ,

D̃R = 2(1 + μR )Dg01 + 2(1 − μR )D
g
†
01

+ 1
2

(
1 − μ2

R

)
Dg03 .
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FIG. 2. Populations of the eigenstates of hD, 〈α| trH0 ρ(τ )|α〉
(dashed lines) and solutions να (τ ) of the classical Markov equation
(50) (solid lines) as a function of time τ for the XYZ Heisenberg
spin chain with dissipation acting on the first and last spins. We
set � = 50J0/h̄ and all the other parameters are as in Fig. 1, case
of squares. The initial condition is ρ(0) = ψL

0 ⊗ R(0) ⊗ ψR
0 , where

R(0) is a diagonal matrix with entries 0.01, 0.4, 0.1, 0.49 in the
hD basis. The straight dotted lines indicate the exact eigenvalues
of trH0 ρ(τ ) for τ → ∞ in Zeno limit, computed from the Markov
process with the rates (51).

Also in the present case, W does not have coherent contribu-
tions of the kind (26).

The operators gk0, g0k , as well as the dissipation-projected
Hamiltonian hD , can be evaluated exactly as in the previous
case of a single spin directly affected by the dissipation. The
result is expressed in terms of the parameters μL,μR and
of the polar coordinates θL, ϕL and θR, ϕR , which define the
states |0L〉 and |0R〉. In particular, the Hamiltonian hD is again
a XYZ Hamiltonian with M = N − 2 spins, namely, those
not directly affected by the dissipation, with two boundary
terms relative to the spins 1 and M . Explicit formulas will be
given elsewhere. In Figs. 1, 2, and 3 we illustrate the behavior
of the resulting effective LME in comparison with the exact
dynamics of the system.

FIG. 3. Comparison of the LME and LME effective dynamics:
eigenvalues of trH0 ρ(τ ) (dashed lines) and of R(τ ) (solid lines) as a
function of time τ . Same parameters and same straight dotted lines
as in Fig. 2. Note the similarity with Fig. 2 except for the avoided
level crossings.

V. EVALUATION OF THE NESS IN THE ZENO LIMIT

As a direct application of our findings, we can compute
the NESS in the Zeno limit, bypassing the solution of the
LME. Denote R∞ = lim�→∞,τ→∞ R(τ ). From the LME (3)
we have

[R∞, hD] = 0.

If the spectrum of the dissipation projected Hamiltonian hD

is nondegenerate, then hD and R∞ share the same set of
eigenvectors |α〉. It follows that

R∞ =
∑

α

ν∞
α |α〉〈α|. (49)

Deriving from (3) an evolution equation for the popula-
tions of the eigenstates of hD, να (τ ) = 〈α|R(τ )|α〉, assuming
that the effective dissipator has the canonical form D̃· =∑

k Ak (L̃k · L̃
†
k − 1

2 {·, L̃†
kL̃k}) starting from the state R(τ ) =∑

α να (τ )|α〉〈α|, we obtain in the Zeno limit

∂να (τ )

∂τ
=

∑
β �=α

wβανβ − να

∑
β �=α

wαβ, (50)

wβα = 1

�

∑
k

Ak

∣∣〈α|L̃k|β〉∣∣2
. (51)

We recognize Eq. (50) as the classical master equation of a
Markov process with transition rates wαβ . This is a manifes-
tation of the well-known fact that a part of the degrees of
freedom of the LME evolves in time via a classical Markov
process [3,30]. Perron-Frobenius theorem guarantees an exis-
tence of a time-independent steady-state solution of Eq. (50),
with non-negative entries ν∞

α . After normalization
∑

α ν∞
α =

1, the coefficients ν∞
α acquire the double meaning of eigenval-

ues of the reduced NESS (49), and steady-state probabilities
in the associated classical Markov process, see Fig. 2 for an
illustration. Note that by diagonalizing hD one gets both the
eigenvectors |α〉 of R∞ and the transition rates wαβ (and,
therefore, the eigenvalues ν∞

α ). Thus, the problem of finding
the NESS, which generically requires the diagonalization of
the full Lindbladian, represented by a non-Hermitian matrix of
size d2 × d2, reduces, in the Zeno limit, to the diagonalization
of the Hermitian matrix hD , of size d1 × d1 with d1 < d. In
the example discussed in the Sec. IV, we have d = 2N and
d1 = d/4.

VI. CONCLUSIONS

One might be concerned that, since our results hold in
the Zeno limit, an impractically strong dissipation must be
provided. However, one-dimensional quantum many-body
systems with dissipation acting on a few degrees of freedom
are well suited for an effective Zeno description whenever
their size is sufficiently large. To see this fact, consider a
one-dimensional system of size N with local interactions and
dissipation acting near the edges. Let � be the finite strength
of the dissipation. A perturbation spreads with finite speed
(see, e.g. Lieb-Robinson bound [31]), so that the relaxation
time of the system toward the global steady state increases at
least linearly with the system size, τbulk ∼ Nh̄/J0, see, e.g.,
Ref. [32], while the relaxation of the edges takes a time of
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the order τdiss ∼ 1/�. Here, J0 is a factor which fixes the
energy scale associated to the Hamiltonian of the system. For
arbitrary � and sufficiently large N , that is

h̄�

J0
� 1

N
, (52)

the system enters an effective Zeno regime τdiss � τbulk,
so the NESS of the system should be well approximated by
the NESS computed in the Zeno limit � → ∞. For a few
cases for which exact results are known, validity of the (52)
can be demonstrated, see, e.g., Refs. [26,33]. However, if the
Zeno NESS is protected by extra symmetries, singular NESS
behavior can happen.
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APPENDIX: PROOF OF EQ. (9)

Here, we compute the Dyson series up to the second order
of the perturbation K . The calculation follows in part Ref. [24]
and uses a similar notation.

The time evolution of the state ρ = ψ0 ⊗ R is be defined
via a Dyson series for E (t )P0. Up to the second order of the
Dyson series, we have

E (t )P0 = eL0t

(
1 +

∫ t

0
dt1e

−L0t1KeL0t1 +
∫ t

0
dt1e

−L0t1KeL0t1

×
∫ t1

0
dt2e

−L0t2KeL0t2 + . . .

)
P0

= P0 + eL0t

∫ t

0
dt1e

−L0t1KeL0t1P0

+ eL0t

∫ t

0
dt1e

−L0t1KeL0t1

∫ t1

0
dt2e

−L0t2KeL0t2P0.

(A1)

In passing from the first to the second line we have used the
obvious relation

eL0tP0 = P0e
L0t = P0. (A2)

Let us focus on the second term of Eq. (A1) and insert the
identity decomposition I = Q0 + P0:

eL0t

∫ t

0
dt1e

−L0t1KeL0t1P0

= eL0t

∫ t

0
dt1e

−L0t1 (P0 + Q0)KeL0t1P0

= tP0KP0 + eL0t

∫ t

0
dt1e

−L0t1Q0KP0. (A3)

In the second term of Eq. (A3), we split the integral

eL0t

∫ t

0
dt1e

−L0t1Q0KP0

= eL0t

(∫ −∞

0
dt1 · · · +

∫ t

−∞
dt1 . . .

)

= eL0t

∫ −∞

0
dt1e

−L0t1Q0KP0

−
∫ −∞

t

dt1e
L0(t−t1 )Q0KP0, (A4)

and, after the substitutions t1 → −t̃1, dt1 → −dt̃1, we obtain

eL0t

∫ t

0
dt1e

−L0t1Q0KP0

= −eL0t

∫ ∞

0
dt̃1e

L0 t̃1Q0KP0

+
∫ ∞

−t

d t̃1e
L0(t+t̃1 )Q0KP0. (A5)

Next, we make the change of variable t + t̃1 → u, dt̃1 → du

in the second integral of Eq. (A5) and obtain

eL0t

∫ t

0
dt1e

−L0t1Q0KP0

= −eL0t

∫ ∞

0
dt̃1e

L0 t̃1Q0KP0 +
∫ ∞

0
dueL0uQ0KP0.

(A6)

Renaming t̃1, u → t , we can write

eL0t

∫ t

0
dt1e

−L0t1Q0KP0 = (eL0t − I )SKP0, (A7)

where

S = −
∫ ∞

0
dteL0tQ0 (A8)

is the pseudoinverse of the dissipator, namely,

L0S = SL0 = Q0. (A9)

The operator S is bounded, since the eigenvalues of L0 (apart
from the nondegenerate 0 eigenvalue which is excluded by
the multiplication with Q0) are nonzero and finite. Combining
Eqs. (A3) and (A7), we conclude

E (t )P0 = P0 + tP0KP0 + (eL0t − I )SKP0 + . . . (A10)

(. . . denoting contributions from second and higher orders),
which retrieves the result reported in Ref. [1]. Equation (A10)
shows, in particular, that the leaking outside the dissipation-
free subspace for times t > 1/� is of order 1/�, namely,

‖ρ(t ) − ψ0 ⊗ trH0 ρ(t )‖ = O(�−1). (A11)

The evolution inside the decoherence-free subspace is
given by P0E (t )P0. Making use of Eq. (A2), up to the second-
order Dyson term we thus obtain

P0E (t )P0 = P0 + tP0KP0 + P0e
L0t

×
∫ t

0
dt1e

−L0t1KeL0t1

∫ t1

0
dt2e

−L0t2KeL0t2P0.

(A12)

052110-6



EFFECTIVE QUANTUM ZENO DYNAMICS IN … PHYSICAL REVIEW A 98, 052110 (2018)

Now we estimate the O(K2) contribution to P0E (t )P0:

P0e
L0t

∫ t

0
dt1e

−L0t1KeL0t1

∫ t1

0
dt2e

−L0t2KeL0t2P0

= P0

∫ t

0
dt1

∫ t1

0
dt2KeL0t1−L0t2KP0

= P0

∫ t

0
dt1

∫ t1

0
dt2KeL0t1−L0t2 (P0 + Q0)KP0

= t2

2
(P0KP0)2 + P0K

∫ t

0
dt1e

L0t1

∫ t1

0
dt2e

−L0t2Q0KP0

= t2

2
(P0KP0)2 + P0K

∫ t

0
dt1(eL0t − I )SKP0

= t2

2
(P0KP0)2 − tP0K (P0 + Q0)SKP0

+P0K

∫ t

0
dt1e

L0tSKP0. (A13)

Let us concentrate on the last term of the above expression.
Inserting the identity decomposition I = Q0 + P0 and using

Eq. (A2), we have

P0K

∫ t

0
dt1e

L0tSKP0

= P0K

∫ t

0
dt1e

L0t (P0 + Q0)SKP0

= tP0KP0SKP0 + P0K

∫ t

0
dt1e

L0tQ0SKP0. (A14)

Gathering all terms of order K2, we conclude

P0e
L0t

∫ t

0
dt1e

−L0t1KeL0t1

∫ t1

0
dt2e

−L0t2KeL0t2P0

= t2

2
(P0KP0)2 − tP0KQ0SKP0

+P0K

∫ t

0
dt1e

L0tQ0SKP0. (A15)

In the last term of Eq. (A15), the integral over time converges,
thus this term is of order ‖K2‖ = O(1/�2) and can be ne-
glected. Bringing together Eqs. (A12) and (A15), we obtain
Eq. (9).
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