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Dissipative generation of pure steady states and a gambler’s ruin problem
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We consider an open quantum system, with dissipation applied only to a part of its degrees of freedom,
evolving via a quantum Markov dynamics. We demonstrate that, in the Zeno regime of large dissipation, the
relaxation of the quantum system towards a pure quantum state is linked to the evolution of a classical Markov
process towards a single absorbing state. The rates of the associated classical Markov process are determined
by the original quantum dynamics. Extension of this correspondence to absorbing states with internal structure
allows us to establish a general criterion for having a Zeno-limit nonequilibrium stationary state of arbitrary
finite rank. An application of this criterion is illustrated in the case of an open XXZ spin-1/2 chain dissipatively
coupled at its edges to baths with fixed and different polarizations. For this system, we find exact nonequilibrium
steady-state solutions of ranks 1 and 2.
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I. INTRODUCTION

The dynamics of a classical Markov process with an ab-
sorbing state, e.g., a so-called gambler’s ruin problem [1],
stops once the absorbing state is reached, i.e., the gambler
has no more coins left. All the other states in which the
gambler has a finite number of coins, provided that a bank
has an infinite money reserve, are transitory states. Reaching
an absorbing state marks the end of the time evolution.

One of our aims is to point out that, surprisingly, the
Markovian nonunitary evolution of an open quantum system
affected by dissipation towards a pure quantum state can be
linked to a classical Markov process with an absorbing state.
This link is meaningful and nontrivial if the dissipation acts
only on a part of the degrees of freedom of the quantum
system and provided that the dissipation is strong, i.e., in the
so-called quantum Zeno regime [2–4].

Markovian dynamics of an open quantum system is de-
scribed by a Lindblad master equation (LME), and part of
the degrees of freedom corresponding to the eigenstates of
the system Hamiltonian evolve via a classical Markov pro-
cess (MP), the so-called Pauli master equation [5]. This MP,
however, does not provide substantial information about the
nonequilibrium stationary state (NESS) of the system, since
the eigenstates of the system Hamiltonian do not coincide,
generically, with those of the NESS. The situation becomes
different in the Zeno regime, which is governed via an ef-
fective Hamiltonian [6,7], commuting with the Zeno NESS
[6]. The quantum Zeno regime is a widely used experimen-
tal tool nowadays [8–13], and has applications ranging from

engineering dissipative quantum gates [14] and topological
states [15] to quantum simulators [16] and universal quantum
computations [17–21].

It has been shown in [22] that the Lindblad temporal evo-
lution of the reduced density matrix in the Zeno limit can be
described, at the final stage of relaxation, in terms of an auxil-
iary classical Markov process, with rates obtainable from the
original quantum system. In this auxiliary Markov process,
the state probabilities are the populations of the eigenstates of
the dissipation-projected Hamiltonian of the quantum system
(see later), and converge ultimately to the NESS eigenvalues.
Now, suppose that the auxiliary Markov process has an ab-
sorbing state, i.e., all populations except one vanish in time. Its
quantum counterpart, the quantum density matrix, will relax,
in time, to a NESS with only one eigenstate being populated,
i.e., to a pure quantum state. Conversely, the convergence of a
quantum NESS towards a pure state (a rather exceptional sce-
nario, given that a generic quantum state is mixed) implies that
the corresponding auxiliary Markov process has an absorbing
state. Exploring further the above analogy is fruitful since
we can use the well-developed theory of classical Markov
processes with absorbing states [23] for investigating open
quantum systems. As a first step, we establish a criterion for a
Zeno NESS (assumed unique) to have an arbitrary rank r. Our
criterion contains a classical part, inherited from the theory
of Markov processes with absorbing states, and an intrinsic
quantum part. The criterion is formulated in terms of the spec-
tral problem of the dissipation-projected Hamiltonian, which
is drastically simpler than the original Liouvillian problem.
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We start by outlining our setup and revisiting the connec-
tion between the Zeno-limit dynamics of the reduced density
matrix and the associated classical MPs. After pointing out a
link between a pure NESS (NESS of rank 1) and a MP with an
absorbing state, we extend the analogy to a NESS of arbitrary
rank, and formulate our criterion. The criterion is then applied
to the paradigmatic one-dimensional XXZ spin model with
dissipative boundary driving. For this system we find exact
Zeno-limit NESS solutions with rank r = 1 and 2.

II. FINITE RANK NESS AND ITS CONNECTION
TO A MARKOV PROCESS

We consider an open quantum system with Hilbert space H
of finite dimension d and a dissipation acting only on a part of
its degrees of freedom, namely, the subspace H0 of dimension
d0. We assume that the global Hilbert space can be partitioned
as a tensor product of H0 and H1, H = H0 ⊗ H1, where H1 is
the remaining part of the Hilbert space not directly coupled to
the dissipation. The time evolution of the system is described
via the LME [5,24]:

∂ρ

∂t
= − i

h̄
[H, ρ] + �D[ρ]. (1)

Here the Hamiltonian H describes the unitary part of the
dynamics, and D is a Lindbladian dissipator describing the
interaction with the environment via Lindblad operators Lk :

D[ρ] =
∑

k

DLk [ρ]

=
∑

k

(
LkρL†

k − 1

2
L†

k Lkρ − 1

2
ρL†

k Lk

)
. (2)

We assume that the effective dissipation strength � is much
stronger than the unitary part of the evolution, and that the
dissipator D alone targets a unique steady state with the den-
sity matrix ψ0 in H0, namely, Dψ0 = 0.

In the limit of large � and time t � 1/�, the Lindblad
dynamics is effectively limited to the decoherence-free sub-
space, namely, ρ(t ) ≈ ψ0 ⊗ R(t ). In fact, it has been shown
in [22] that, if the dissipator is diagonalizable with spec-
trum Dψn = ξnψn (n labeling different right eigenstates of
D), then, for t � 1/�, ‖ρ(t ) − ψ0 ⊗ R(t )‖ = O(1/�), where
R(t ) is determined by the renormalized master equation:

∂R

∂t
= − i

h̄
[H̃ , R] + 1

�
D̃[R(t )], (3)

where H̃ and D̃ describe effective unitary and dissipative tem-
poral evolution within the dissipation-free subspace, and can
be calculated from H and D of the original LME (1) with the
help of the Dyson expansion with respect to the 1/� parameter
[22]. In general (see [22]), H̃ , apart from the zeroth-order term
lim�→∞ H̃ = hD, can have a O(1/�) correction. In the follow-
ing we set h̄ = 1. The dissipation projected Hamiltonian hD is
given by [22,25]

hD = trH0 [(ψ0 ⊗ IH1 )H], (4)

i.e., hD corresponds to a projection of the original Hamiltonian
H on the decoherence-free subspace governed by the kernel
ψ0 of the dissipator D.

For simplicity, we assume H̃ = hD, and expand the steady-
state solution of Eq. (3) R∞(�) in powers of 1/�:

R∞ =
∞∑

m=0

�−mR(m)
∞ . (5)

The series is convergent for sufficiently large �.
We are mainly interested in the final nonequilibrium steady

state described by the density matrix ψ0 ⊗ R(0)
∞ , where R(0)

∞ =
lim�→∞ limt→∞ R(t ).

We insert the ansatz (5) in Eq. (3) for the steady state
and compare the orders of 1/�k . The first two orders
k = 0, 1 yield [

hD, R(0)
∞

] = 0, (6)

−i
[
hD, R(1)

∞
] + D̃

[
R(0)

∞
] = 0. (7)

Note that further orders 1/�k with k > 1 cannot be trusted
since Eq. (3) itself was obtained up to terms of order 1/�.

Denote by |α〉 a common eigenbasis of hD and R(0)
∞ which is

always possible to find since both are Hermitian and commute
(6). We write R(0)

∞ in this basis as

R(0)
∞ =

d1−1∑
α=0

ν∞
α |α〉〈α|, (8)

where d1 is the dimension of the subspace H1. Let us now
rewrite Eq. (7) as a set of scalar equations using the basis |α〉,
namely,

Qαα′ ≡ 〈α|D̃[
R(0)

∞
] − i

[
hD, R(1)

∞
]|α′〉 = 0,

α′ = 0, . . . , d1 − 1. (9)

We postpone an analysis of the complete set Qαα′ = 0 and
first look at diagonal subset Qαα = 0, for all α. Assuming
the effective dissipator D̃ to be of the canonical form D̃· =∑

k γk (L̃k · L̃†
k − 1

2 {·, L̃†
k L̃k}), we obtain, after some algebra, a

closed set of equations for ν∞
α :

d1−1∑
β �=α

wβαν∞
β − ν∞

α

d1−1∑
β �=α

wαβ = 0, (10)

wβα = 1

�

∑
k

γk|〈α|L̃k|β〉|2. (11)

We recognize in (10) a steady master equation of a Markov
process with transition rates wαβ between the states α

and β. The factor 1
�

in Eq. (11) signals that the re-
laxation towards the steady state slows down with an
increased dissipation strength (see [6,22]). The Perron-
Frobenius theorem guarantees the existence of a solution
of Eq. (10) with non-negative entries ν∞

α , which, accord-
ing to (8), have the physical meaning of the eigenvalues of
the reduced density matrix in the Zeno limit R(0)

∞ , obeying the
normalization condition

∑
α ν∞

α = 1.
In the following we establish a criterion for a Zeno NESS

R(0)
∞ to have a reduced rank r < d1. We start with the case of

a pure NESS corresponding to r = 1, when R(0)
∞ = |0〉〈0|, and

generalize it afterwards. We remark that this case was already
considered in [26], but now we revisit it using the stochastic
interpretation.
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III. PURE NESS

A NESS of the form R(0)
∞ = |0〉〈0| implies the existence of

a unique steady-state solution of the Markov equation (10).
This means that for all β = 0, . . . , d1 − 1 the solution fulfills
ν∞

β = δ0,β . In the stochastic Markov picture, a unique Markov
process steady state of the form ν∞

β = δ0,β can arise if and
only if the state α = 0 is an absorbing state of the Markov
process. This means that the system cannot escape from state
zero, namely,

w0α = 0, for any α > 0, (12)

while all the other states of the Markov process α > 0 are
transient. Thus, we establish a link between a pure NESS and
an auxiliary classical Markov process with an absorbing state.

IV. NESS OF AN ARBITRARY REDUCED RANK r

Analogously, we interpret a Zeno NESS of rank r smaller
than the full rank, r < d1,

R(0)
∞ =

r−1∑
z=0

ν∞
z |z〉〈z|, (13)

as a consequence of the existence of a closed subset of states
in the auxiliary classical Markov process with rates wαβ sat-
isfying closed set condition wzα = 0, for all z < r and α � r.
At this point, however, one should not forget that our original
problem is an intrinsic quantum problem, not describable by
just a set of eigenvalues ν∞

z . In particular, we have up to now
neglected the conditions arising from off-diagonal values of
Qα,α′ . What is the full set of conditions which guarantee the
Zeno NESS to have a reduced rank? We postulate that an
answer to this question is given by the following criterion.

A. Criterion

Let |α〉 be an eigenbasis of the dissipation-projected
Hamiltonian hD, λα being the respective eigenvalues, and let
D̃· = ∑

k γk (L̃k · L̃†
k − 1

2 {·, L̃†
k L̃k}) be the Lindbladian of the

effective dynamics. A state ρ∞ = ψ0 ⊗ ∑r−1
z=0 ν∞

z |z〉〈z| is a
NESS state of Eq. (1) in the Zeno limit, if and only if the
following three conditions are satisfied.

(A) States z = 0, 1, . . . , r − 1 form a closed ergodic set in
the associated Markov process, defined via the transition rates
wαβ = ∑

k γk|〈β|L̃k|α〉|2/�.
(B) All the other states r, r + 1, . . . , d1 − 1 are transient.
(C) For any state |α〉 such that λα = λz, where α belongs

to the transient set and z belongs to the closed set, we have
〈z| ∑k γkL̃†

k L̃k|α〉 = 0.
Before proceeding to justify the criterion, we note that con-

ditions A and B are rooted in the associated classical Markov
process, while condition C has an intrinsically quantum ori-
gin. Let us note that for the Zeno-limit NESS to be a pure
state (r = 1) necessary and sufficient conditions were verified
by an alternative method in [26]. The conditions given in [26]
are equivalent to our conditions A, B, and C for r = 1 which
prove the criterion for r = 1.

B. Proof of the necessity of the criterion

In brief, conditions A and B, together with the stochasticity
property of the transition matrix, provide the existence of a

unique steady-state solution of the associated Markov process,
with ν0, ν1, . . . , νr−1 nonzero and νk = 0, for k � r.

To see this, consider the full set of scalar equations in
(9). Noticing that 〈α|[hD, R(1)

∞ ]|α〉 = 0 and using Eq. (13), we
find that the equations Qαα = 0 for α � r are trivially satis-
fied. The equations Qzz = 0, with z = 0, 1, . . . , r − 1, yield a
steady-state master equation (10) for steady-state probabilities
ν∞

z inside the closed set.
Condition C enters the criterion only if the Hamiltonian hD

has a special degeneracy, namely, λα = λz, where z belongs to
the closed set and α belongs to the transient one.

The off-diagonal conditions in Eq. (9), namely, Qzα = 0,
with z � r − 1 and α � r, yield, after some algebra,

−i(λz − λα )〈z|R(1)
∞ |α〉 = ν∞

z

2
〈z|

∑
k

γkL̃†
k L̃k|α〉. (14)

In deriving Eq. (14) we used the properties for α �
r R(0)

∞ |α〉 = 0 and 〈z|L̃†
n|α〉 = 0. The latter follows from the

closed set property A, namely, wzα = ∑
n γn|〈α|L̃n|z〉|2 = 0.

Note that by virtue of our assumption (13) we have ν∞
z �= 0;

thus, if λz = λα , the right-hand side of Eq. (14) must vanish,
yielding condition C of the criterion. In conclusion, conditions
A, B, and C are indeed necessary for the NESS in the Zeno
limit to have rank r. �

C. Argument for sufficiency of the criterion

Whereas the necessity of the conditions in the criterion
is proven, the question of sufficiency appears more delicate.
For the pure state case, r = 1, sufficiency of our criterion
has been rigorously proved in [26]. For higher ranks r > 1
we do not have a rigorous argument so far. Instead, here we
checked our criterion for r = 2 numerically for a specific
model, dissipatively driven spin chains.

D. Reformulation of conditions A and B

In the following we show how to check conditions A and
B given the rates wαβ .

Condition A is equivalent to

wzα = 0, for all z � r − 1 and α � r, (15)

complemented with the requirement of ergodicity: each state
within the closed set is reachable from any other state in the
closed set in a finite number of steps.

In order to check condition B, write the transition matrix
F (the matrix with elements Fβα = wαβ for β �= α, Fαα =
−∑

β �=α Fβα) satisfying the closed set conditions (15) in the
canonical form [23]

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X00 . . . X0,r−1 R0,r . . . R0,d1−1
...

...
...

...
...

...
Xr−1,0 . . . Xr−1,r−1 Rr−1,r . . . Rr−1,d1−1

0 . . . 0 Krr . . . Kr,d1−1
...

...
...

...
...

...
0 . . . 0 Kd1−1,r . . . Kd1−1,d1−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
X R
0 K

)
, (16)
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where Xii = −∑
j �=i X ji and Kii = −∑

j �=i K ji − ∑
j R ji.

The steady-state equation
∑d−1

β=0 Fαβν∞
β = 0 has an obvi-

ous closed set solution, namely, ν∞ = (ν∞
0 , ν∞

1 , . . . , ν∞
r−1, 0,

0, . . . , 0), where the nonzero components ν∞
z satisfy∑r−1

z′=0 Xzz′ν∞
z′ = 0. This solution is unique if and only if all the

other states are transient, which is equivalent to the absence of
zero eigenvalues in the spectrum of K, i.e.,

det K �= 0. (17)

Indeed, assume det K �= 0 and split the equations∑d1−1
β=0 Fαβν∞

β = 0 in two sets:

r−1∑
z′=0

Xzz′ν∞
z′ +

d1−1∑
α=r

Rzαν∞
α = 0, z = 0, 1, . . . , r − 1,

(18)
d1−1∑
β=r

Kαβν∞
β = 0, α = r, r + 1, . . . , d1 − 1. (19)

By the assumption (17), Eq. (19) has only the trivial so-
lution ν∞

β = 0, for all β > 0. Thus the closed set solution
is the only solution of Eqs. (18) and (19). Conversely, if
det K = 0, then a nontrivial solution of Eq. (19) exists, and,
due to the Perron-Frobenius theorem it has non-negative real
entries. This corresponds to the existence of another closed
set of states within the “transient” set of states α = r, r +
1, . . . , d1 − 1 and, therefore, to a violation of the transient
hypothesis. Consistency of Eq. (18) is guaranteed by the de-
composition theorem for finite Markov chains [23].

V. EXAMPLE OF A DISSIPATIVELY DRIVEN
ONE-DIMENSIONAL XXZ SPIN CHAIN

In the following, our findings are illustrated with exam-
ples based on dissipatively driven one-dimensional XXZ spin
chains.

Consider a chain with N sites occupied by spins s = 1/2
and described by the anisotropic Hamiltonian

H =
N−1∑
n=1

σn · (J σn+1), (20)

where σn = (σ x
n , σ

y
n , σ z

n ) is the vector of the Pauli matrices
at site n and J = diag(Jx, Jy, Jz ) is the anisotropy tensor of
the exchange interaction. We choose a dissipation acting at
the boundary sites 1 and N , and targeting two arbitrary single
qubit states:

ρL,R = μL,Rn(θL,R, ϕL,R)σ1,N , (21)

n(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ ), (22)

where μL,RnL,R with nL,R ≡ n(θL,R, ϕL,R) are the target
polarizations. Here, L(R) refers to the leftmost (righ-
most) site of the chain. Specifically, introducing n′

L,R =
n( π

2 − θL,R, ϕL,R + π ) and n′′
L,R = n( π

2 , ϕL,R + π
2 ), the above

dissipation is realized by applying two Lindblad operators at

both sites 1, N of the chain:

LL
1,2 = (2

√
2)−1

√
1 ± μL(n′

L ∓ in′′
L )σ1,

LR
1,2 = (2

√
2)−1

√
1 ± μR(n′

R ∓ in′′
R)σN .

A realization of the Lindblad dynamics (1) for the present
class of models can, for example, be obtained via a protocol of
repeated interactions: the edge spins of the lattice are brought
into interaction with two “bath” qubits, the latter qubits being
kept in fixed, mixed, or pure states ρL and ρR from (21); the
interaction has strength γB and repeats periodically at time in-
tervals τ each time with a bath qubit in the fixed state. Within
this protocol, the time evolution from time t to time t + τ is
described by the map

ρt+τ = tr0,N+1(e−iHτ ρL ⊗ ρt ⊗ ρReiHτ ),

where sites 0, N + 1 denote the qubits from the left and right
baths, respectively, and H = H + γB(U0,1 + UN,N+1) is the
Hamiltonian of the original system plus the system-bath in-
teractions U0,1 and UN,N+1. The LME dynamics (1) follows
from the above discrete map in the limit τ → 0, γ 2

B τ → �

(see [27]).
In [22] we have demonstrated that in the Zeno limit the

effective dynamics of the spin model is described by a LME
of type (3) for R(t ) = tr1,N ρ(t ), with H̃ = hD and D̃ = D̃L +
D̃R given by

hD =
M−1∑
j=1

σ j · (J σ j+1) + μL(JnL ) · σ1 + μR(JnR) · σM,

D̃L = 2(1 + μL )Dg1L + 2(1 − μL )Dg†
1L

+ 1

2

(
1 − μ2

L

)
Dg3L ,

D̃R = 2(1 + μR)Dg1R + 2(1 − μR)Dg†
1R

+ 1

2

(
1 − μ2

R

)
Dg3R .

Here the operators act in H1, the Hilbert space of the in-
ner spins 2, 3, . . . , N − 1. We renumerate the inner spins as
1, . . . , M = N − 2. The operators Dg are Lindblad dissipators
of standard form defined in terms of the effective Lind-
blad operators g1L = (Jn′

L ) · σ1 − i(Jn′′
L ) · σ1, g3L = 2(JnL ) ·

σ1, g1R = (Jn′
R) · σM − i(Jn′′

R) · σM , and g3R = 2(JnR) · σM .

VI. PURE STATE r = 1

As a first example of application of our finite rank Zeno
NESS criterion, we consider a NESS being a pure spin-helix
state (SHS) ρ∞ = |ξ 〉〈ξ |, where

|ξ 〉 =
N⊗

k=1

(
cos

(
θ
2

)
e− i

2 ϕ(k−1)

sin
(

θ
2

)
e

i
2 ϕ(k−1)

)
. (23)

This state describes a frozen wavelike spin structure, formed
by a rotation of a local spin around the z axis along the
chain, with constant azimuthal angle difference ϕ between
neighboring spins. Indeed, the expectation value of the local
spin at site k is

〈ξ |σk|ξ 〉 = (sin θ cos[ϕ(k − 1)], sin θ sin[ϕ(k − 1)], cos θ ).

We rewrite the factorized NESS (23) in the form
evidencing left and right dissipation target states, namely,
ρ∞ = ψL

0 ⊗ |0〉〈0| ⊗ ψR
0 . This corresponds to choosing
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μL = μR = 1, θL = θR = θ , ϕL = 0, ϕR = ϕ(N − 1) in
Eq. (21), and

|0〉 =
M⊗

k=1

(
cos

(
θ
2

)
e− i

2 ϕk

sin
(

θ
2

)
e

i
2 ϕk

)
. (24)

For the given values of μL and μR the original Lindbladian
dissipator has two nonzero Lindblad operators LL

1 and LR
1 ,

and the target boundary states are pure (target mixed bound-
ary states would typically lead to a full rank Zeno NESS).
The corresponding effective Lindblad operators L̃1 = g1L and
L̃2 = g1R. The associated effective dissipator is

D̃ = 4Dg1L + 4Dg1R . (25)

In [28,29] it has been shown that Eq. (23) is the exact
Zeno-limit NESS of the boundary driven XXZ spin chain with
anisotropy Jx = Jy = Jz/�, provided � = cos ϕ, targeted sin-
gle spin states ψL,R

0 fit the SHS (23), and (23) does not contain
collinear spins.

We now turn to discuss the connection to the Markov pro-
cess. The stochastic transition matrix of the auxiliary Markov
process is defined via the rates wαβ given by Eq. (11), where
|α〉 and |β〉 are the eigenvectors of hD. We thus find

wαβ = 4

�
(|〈β|g1L|α〉|2 + |〈β|g1R|α〉|2). (26)

One can check that (24) is an eigenstate of hD [with eigen-
value λ0 = (N − 1)J cos ϕ] and of g1R, g1L with eigenvalues
±κ , κ = iJ sin θ sin ϕ. Using the orthogonality of the eigen-
basis of hD, we get 〈α|g1L|0〉 = 〈α|g1R|0〉 = 0 for all α > 0,
leading [see Eq. (26)] to the absorbing state condition (12).
The relaxation of the global reduced density matrix towards a
pure NESS thus corresponds, in the language of the auxiliary
Markov process, to a convergence of the classical Markov
process towards an absorbing state. Furthermore, it has been
proven in [26] via a different method that in the Zeno limit the
NESS converges to the pure state |ξ 〉〈ξ | if and only if Eq. (17)
and condition C are satisfied, in accordance with the criterion
for r = 1.

VII. NESS OF RANK r = 2

Here we apply our criterion to find a Zeno-limit NESS
of rank 2, in the same model. We can set the parameters in
such a way that condition A for r = 2 is satisfied, namely,
there exists a closed set of two states in the associated Markov
process. Choose the first and the last spin of the chain to be
dissipatively projected into parallel or antiparallel states, ϕR −
ϕL = nπ , while keeping θL = θR = θ , and set � = cos ϕ =
cos[2mπ/(N − 1)] for parallel orientation and � = cos ϕ =
cos[(π + 2mπ )/(N − 1)] for antiparallel orientation. Then,
two eigenstates of the dissipation-projected Hamiltonian can
be found, namely, the state |0+〉 given by Eq. (24) and the state
|0−〉 obtained from |0+〉 by changing the sign of the helicity,
ϕ → −ϕ. Both eigenstates |0±〉 have the same eigenvalue
λ0 = (N − 1)J cos ϕ.

The states |0±〉 are in general not orthogonal, 〈0−|0+〉 = η,
where η can be real or imaginary, η∗ = ±η, depending on

the parameters. The overlap η can be expressed via a q-
Pochhammer symbol:

η(θ, ϕ, N ) =
N−2∏
k=1

[cos(kϕ) − i cos(θ ) sin(kϕ)]

= e−i M(M+1)
2 ϕ cos2M

(
θ

2

)(
− tan2 θ

2
; e2iϕ

)
M

.

(27)

Out of the states |0±〉, we build the orthonormal combi-
nations |0〉 = 1/η+[|0+〉 + (η/|η|)|0−〉], |1〉 = 1/η−[|0+〉 −
(η/|η|)|0−〉], where η± = √

2 ± 2|η|. Using the fact that |0+〉
is an eigenstate of g1R and g1L with eigenvalue κ and −κ ,
respectively, we find

g1R|0〉 = −g1L|0〉 = a0|1〉, a0 = κη−/η+, (28)

g1R|1〉 = −g1L|1〉 = a1|0〉, a1 = κη+/η−. (29)

It follows that the rates of the associated effective Markov
process are

w0α = w1α = 0, α � 2, (30)

w01 = 8

�
|a0|2, (31)

w10 = 8

�
|a1|2. (32)

Equation (30) corresponds to the closed set conditions (15)
for the states with labels z = 0, 1, while w10w0,1 �= 0 provides
the ergodicity of the closed set. Moreover, the system Fν∞ =
0, equivalent to ν∞

0 w01 = ν∞
1 w10, is solved by ν∞

0 /ν∞
1 =

w10/w01 = (1 + |η|)2/(1 − |η|)2 and ν∞
2 = ν∞

3 = · · · = 0.
The explicit form of the rank 2 state that appears in the

Zeno limit is

ρ∞ = ψL
0 ⊗

(
(1 + |η|)2

2 + 2|η|2 |0〉〈0| + (1 − |η|)2

2 + 2|η|2 |1〉〈1|
)

⊗ ψR
0 ,

(33)

with ψL,R
0 = ρL,R. The topological aspects of the state (33)

are discussed in [30]. Let us note that for θ = π/2 and all
cases in which this state is the NESS (see below) the overlap
η simplifies to

η =
{

22−N , if ϕR − ϕL = 0 and N even,

−(i/2)N−2, if ϕR − ϕL = ±π and N even.
(34)

Finally, we need to check conditions B and C. Unlike
condition A, we check them numerically, diagonalizing hD.
The results for NESS ranks obtained for chains with size
3 � N � 13 are summarized in Table I. First, we notice that
the NESS has rank r = 2 if and only if conditions A–C are
satisfied, numerically supporting the validity of our criterion.

In addition, analyzing Table I we notice that a NESS with
rank r = 2 occurs if and only if

ϕ = (πm)/(N − 1) (35)

and N − 1 is not a multiple of m. (36)

This pattern has a simple geometrical interpretation, namely,
the states (23), which define (33), do not contain any pairs of
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TABLE I. Table of ranks for parallel and antiparallel boundary
spins computed from the stochastic matrix Fαβ for different system
sizes N . Note that only ϕ < π are considered because of the NESS
symmetry ϕ → −ϕ. We also show the degeneracy of the eigenvalue
λ0 = (N − 1)J� of hD. The last three columns check conditions A,
B, and C of the criterion for rank 2 states. Symbols �, ✗, N/A, and
“−” indicate, respectively, that the corresponding property is satis-
fied, violated, nonapplicable, and noncheckable. Property C should
only be checked in case of extra degeneracy of λ0 > 2. For N � 13
the NESS rank (whenever it is larger than 2) cannot be determined
reliably because of numerical precision-related issues [31].

N ϕ NESS rank Full rank deg(λ0) A B C

3 π

2 2 2 2 � N/A N/A

4 π

3 , 2π

3 2 4 2 � � N/A

5 π

2 8 8 4 � ✗ �
π

4 , 3π

4 2 2 � � N/A

6 π

5 , ..., 4π

5 2 16 2 � � N/A

7 π

2 32 32 8 � ✗ �
π

3 , 2π

3 22 4 � � ✗
π

6 , ..., 5π

6 2 2 � � N/A

8 π

7 , ..., 6π

7 2 64 2 � � N/A

9 π

2 128 128 16 � ✗ �
π

4 , 3π

4 72 4 � ✗ �
π

8 , 3π

8 , 5π

8 , 7π

8 2 2 � � N/A

10 π

3 , 2π

3 170 256 8 � � ✗
π

9 , 2π

9 , 4π

9 , 5π

9 , 7π

9 , 8π

9 2 2 � � N/A

11 π

2 512 512 32 � ✗ �
π

5 , 2π

5 254 4 � � ✗
π

10 , 3π

10 , 7π

10 , 9π

10 2 2 � � N/A

12 π

11 , . . . , 10π

11 2 1024 2 � � N/A

13 π

2 2048 2048 − − − −
π

3 , 2π

3 − 16 � � ✗
π

4 , 3π

4 − 8 � ✗ �
π

6 , 5π

6 − 4 � ✗ �
π

12 , 5π

12 , 7π

12 , 11π

12 2 2 � � N/A

collinear spins, except for the two boundary spins, which are
parallel by construction. E.g., for N = 9 a rank 2 state only
appears in the Zeno limit when � = cos[(2πm)/8] with m =

1, 3, 5, 7. If N − 1 is a prime number, (36) is satisfied for all
� = cos[(2πm)/(N − 1)] m = 1, 2, . . . , N − 2.

VIII. CONCLUSIONS

We have established a link between a quantum dissipative
NESS with reduced rank and an auxiliary classical Markov
process with absorbing states (closed sets). This link paves
the way for studies of quantum master equations using the
well-developed theory of classical Markov processes. In the
present paper, using this link, we suggested a criterion for a
NESS in the Zeno limit to have a reduced rank. The criterion
is illustrated with an example in which rank 1 (pure NESS)
and rank 2 NESS solutions appear in dissipatively bound-
ary driven XXZ spin chains. Noteworthy, our criterion has a
“classical Markov process” part (properties A and B) and an
intrinsic quantum part (property C), which has no classical
analog, being related to a degeneracy of a special eigen-
value in the spectrum of the associated dissipation-projected
Hamiltonian. Deep understanding of the quantum part of the
criterion remains a challenge for the future. From the applica-
tive viewpoint, our criterion allows dissipative targeting of
pure states or simple mixtures of few quantum states, a task
of fundamental importance in the initialization of quantum
simulators [32] (see also [33] for an up-to-date review of
recent and ongoing experiments).

ACKNOWLEDGMENTS

V.P. thanks the Department of Physics of Sapienza Univer-
sity of Rome for hospitality and financial support. Financial
support from the Deutsche Forschungsgemeinschaft (DFG)
through DFG Projects No. KL 645/20-1 and KO 4771/3-1,
DFG Project No. 277625399 - TRR 185 (B4) and DFG Project
No. 277146847 - CRC 1238 (C05) and under DFG Germany’s
Excellence Strategy - Cluster of Excellence Matter and Light
for Quantum Computing (ML4Q) Project No. EXC 2004/1 -
390534769 and from the European Research Council (ERC)
under the Horizon 2020 research and innovation programme,
ERC Grant No. 648166 (Phonton) and ERC Grant No. 694544
(OMNES), and from interdisciplinary University of Cologne
Forum “Classical and quantum dynamics of interacting parti-
cle systems” is gratefully acknowledged. We thank G. Schütz
for critical remarks on the paper.

[1] A. D. E. de Moivre, The Doctrine of Chances or, A Method
for Calculating the Probabilities of Events in Play (Pearson,
London, 1718).

[2] B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in quan-
tum theory, J. Math. Phys. 18, 756 (1977).

[3] C. Presilla, R. Onofrio, and U. Tambini, Measurement quantum
mechanics and experiments on quantum Zeno effect, Ann. Phys.
(NY) 248, 95 (1996).

[4] K. Koshino and A. Shimizu, Quantum Zeno effect by general
measurements, Phys. Rep. 412, 191 (2005).

[5] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University, London, 2002).

[6] P. Zanardi and L. Campos Venuti, Coherent Quantum Dynam-
ics in Steady-State Manifolds of Strongly Dissipative Systems,
Phys. Rev. Lett. 113, 240406 (2014).

[7] J. Marshall, L. Campos Venuti, and P. Zanardi, Modular
quantum-information processing by dissipation, Phys. Rev. A
94, 052339 (2016).

[8] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J.
Wineland, Quantum Zeno effect, Phys. Rev. A 41, 2295
(1990).

[9] P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A.
Kasevich, Interaction-Free Measurement, Phys. Rev. Lett. 74,
4763 (1995).

032205-6

https://doi.org/10.1063/1.523304
https://doi.org/10.1006/aphy.1996.0052
https://doi.org/10.1016/j.physrep.2005.03.001
https://doi.org/10.1103/PhysRevLett.113.240406
https://doi.org/10.1103/PhysRevA.94.052339
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1103/PhysRevLett.74.4763


DISSIPATIVE GENERATION OF PURE STEADY STATES … PHYSICAL REVIEW A 102, 032205 (2020)

[10] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche,
J.-M. Raimond, M. Brune, and S. Gleyzes, Confined quantum
Zeno dynamics of a watched atomic arrow, Nat. Phys. 10, 715
(2014).

[11] F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S.
Cataliotti, F. Caruso, and A. Smerzi, Experimental realization
of quantum zeno dynamics, Nat. Commun. 5, 3194 (2014).

[12] Y. S. Patil, S. Chakram, and M. Vengalattore, Measurement-
Induced Localization of an Ultracold Lattice Gas, Phys. Rev.
Lett. 115, 140402 (2015).

[13] E. W. Streed, J. Mun, M. Boyd, G. K. Campbell, P. Medley, W.
Ketterle, and D. E. Pritchard, Continuous and Pulsed Quantum
Zeno Effect, Phys. Rev. Lett. 97, 260402 (2006).

[14] A. Beige, D. Braun, B. Tregenna, and P. L. Knight, Quantum
Computing Using Dissipation to Remain in a Decoherence-Free
Subspace, Phys. Rev. Lett. 85, 1762 (2000).

[15] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A.
Imamgolu, P. Zoller, and S. Diehl, Topology by dissipation,
New J. Phys. 15, 085001 (2013).

[16] K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M.
Dalmonte, and P. Zoller, Constrained Dynamics via the Zeno
Effect in Quantum Simulation: Implementing Non-Abelian Lat-
tice Gauge Theories with Cold Atoms, Phys. Rev. Lett. 112,
120406 (2014).

[17] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Quantum com-
putation and quantum-state engineering driven by dissipation,
Nat. Phys. 5, 633 (2009).

[18] W. Yi, S. Diehl, A. J. Daley, and P. Zoller, Driven-dissipative
many-body pairing states for cold fermionic atoms in an optical
lattice, New J. Phys. 14, 055002 (2012).

[19] T. J. Elliott, W. Kozlowski, S. F. Caballero-Benitez, and I. B.
Mekhov, Multipartite Entangled Spatial Modes of Ultracold
Atoms Generated and Controlled by Quantum Measurement,
Phys. Rev. Lett. 114, 113604 (2015).

[20] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker
Denschlag, A. J. Daley, A. Kantian, H. P. Büchler, and P. Zoller,
Repulsively bound atom pairs in an optical lattice, Nature
(London) 441, 853 (2006).

[21] P. Zanardi, J. Marshall, and L. Campos Venuti, Dissipative
universal Lindbladian simulation, Phys. Rev. A 93, 022312
(2016).

[22] V. Popkov, S. Essink, C. Presilla, and G. M. Schütz, Effective
quantum Zeno dynamics in dissipative quantum systems, Phys.
Rev. A 98, 052110 (2018).

[23] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable
Markov Chains: With a chapter of Markov Random Fields
by David Griffeath, Graduate Texts in Mathematics (Springer,
New York, 2012).

[24] G. Schaller, Open Quantum Systems Far From Equilibrium
(Springer-Verlag, Heidelberg, 2014).

[25] P. Zanardi and L. Campos Venuti, Geometry, robustness, and
emerging unitarity in dissipation-projected dynamics, Phys.
Rev. A 91, 052324 (2015).

[26] V. Popkov, C. Presilla, and J. Schmidt, Targeting pure quantum
states by strong noncommutative dissipation, Phys. Rev. A 95,
052131 (2017).

[27] G. T. Landi, E. Novais, M. J. de Oliveira, and D. Karevski,
Flux rectification in the quantum XXZ chain, Phys. Rev. E 90,
042142 (2014).

[28] V. Popkov, J. Schmidt, and C. Presilla, Spin-helix states in the
XXZ spin chain with strong boundary dissipation, J. Phys. A 50,
435302 (2017).

[29] V. Popkov and C. Presilla, Obtaining pure steady states in
nonequilibrium quantum systems with strong dissipative cou-
plings, Phys. Rev. A 93, 022111 (2016).

[30] S. Essink, S. Wolff, G. M. Schütz, C. Kollath, and V. Popkov,
Transition between dissipatively stabilized helical states,
Phys. Rev. Research 2, 022007(R) (2020).

[31] S. Essink, master’s thesis, Universität Bonn, 2018.
[32] M. Raghunandan, F. Wolf, C. Ospelkaus, P. O. Schmidt, and

H. Weimer, Initialization of quantum simulators by sympathetic
cooling, Sci. Adv. 6, eaaw9268 (2020).

[33] F. Tacchino, A. Chiesa, S. Carretta, and D. Gerace, Quan-
tum computers as universal quantum simulators: State-of-
the-art and perspectives, Adv. Quantum Technol. 3, 1900052
(2020).

032205-7

https://doi.org/10.1038/nphys3076
https://doi.org/10.1038/ncomms4194
https://doi.org/10.1103/PhysRevLett.115.140402
https://doi.org/10.1103/PhysRevLett.97.260402
https://doi.org/10.1103/PhysRevLett.85.1762
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1103/PhysRevLett.112.120406
https://doi.org/10.1038/nphys1342
https://doi.org/10.1088/1367-2630/14/5/055002
https://doi.org/10.1103/PhysRevLett.114.113604
https://doi.org/10.1038/nature04918
https://doi.org/10.1103/PhysRevA.93.022312
https://doi.org/10.1103/PhysRevA.98.052110
https://doi.org/10.1103/PhysRevA.91.052324
https://doi.org/10.1103/PhysRevA.95.052131
https://doi.org/10.1103/PhysRevE.90.042142
https://doi.org/10.1088/1751-8121/aa86cb
https://doi.org/10.1103/PhysRevA.93.022111
https://doi.org/10.1103/PhysRevResearch.2.022007
https://doi.org/10.1126/sciadv.aaw9268
https://doi.org/10.1002/qute.201900052

