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We study the ground state of a system of spinless electrons interacting through a screened Coulomb
potential in a lattice ring. By using analytical arguments, we show that, when the effective interaction
compares with the kinetic energy, the system forms a Wigner crystal undergoing a first-order quantum
phase transition. This transition is a condensation in the space of the states and belongs to the class of
quantum phase transitions discussed in [M. Ostilli and C. Presilla, J. Phys. A 54, 055005 (2021).]. The
transition takes place at a critical value rsc of the usual dimensionless parameter rs (radius of the volume
available to each electron divided by effective Bohr radius) for which we are able to provide rigorous lower
and upper bounds. For large screening length these bounds can be expressed in a closed analytical form.
Demanding Monte Carlo simulations allow to estimate rsc ≃ 2.3� 0.2 at lattice filling 3=10 and screening
length 10 lattice constants. This value is well within the rigorous bounds 0.7 ≤ rsc ≤ 4.3. Finally, we show
that if screening is removed after the thermodynamic limit has been taken, rsc tends to zero. In contrast, in a
bare unscreened Coulomb potential, Wigner crystallization always takes place as a smooth crossover, not as
a quantum phase transition.
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The Wigner crystal (WC) [1], namely, the periodic
arrangement of electrons that minimizes the Coulomb
interaction energy in the presence of band motion effects
[2], has been investigated in several long-range repulsive
potential models [3–6]. Two dimensional [7–12] and one-
dimensional [13,14] electron gases at zero temperature
have been extensively studied from a theoretical point of
view. A recent experiment succeeded in imaging an
electronic WC in one-dimensional nanotubes [15].
The occurrence of a WC is often argued by comparing

the typical kinetic and Coulomb energies involved.
Roughly speaking, the kinetic energy can be evaluated
as ℏ2=ð2m�r2Þ, where m� is the effective electron mass and
r the radius of the volume available to each electron,
whereas the Coulomb energy can be taken as e2=r, where e
is the electron charge. These two energies have the same
value when rs ≡ r=aB, aB being the effective Bohr radius,
is equal to the “critical value” rsc ¼ 2. Then one concludes
that for rs > rsc a WC must show up.
The above argument can be, however, misleading.

Consider the case of the unscreened Coulomb potential
in a d-dimensional space with a fixed value of rs. For a gas
of Np electrons, the energy per particle of the bare d-
dimensional Coulomb potential scales as Np

d−1 for d > 1,
and as lnNp for d ¼ 1 [16]. On the other hand, at any
dimension d, the kinetic energy per particle is independent
of Np, so that the potential energy overwhelms the kinetic

one for Np large enough. In other words: in the thermo-
dynamic limit (TD-lim), rsc → 0þ and no quantum phase
transition (QPT) takes place, the system being trivially a
WC for any rs > 0; for finite Np, instead, the transition
from free electron motion to WC obtained by increasing rs
is just a smooth crossover, not a QPT.
Screening is, therefore, an essential ingredient [2]: the

ground-state (GS) energy per particle of the screened
potential scales linearly with Np and can fairly compete
with the kinetic term. It is only in this case that we can hope
to observe a QPT in the TD-lim by varying rs.
We are not aware of any conclusive study on the phase

transition nature of the Wigner crystallization, except for
the work of Brascamp and Lieb on the 1d plasma in a
neutralizing background [17]. Here, we study the ground
state of a system of spinless electrons interacting through a
screened 3d Coulomb potential in a lattice ring. By using
analytical arguments, we demonstrate that, for any finite
screening length, the Wigner crystallization is a QPT taking
place at a finite critical value rsc of the parameter rs. For rsc
we provide rigorous upper and lower bounds, which can be
cast in an analytical form in the limit of large screening
length. The QPT that we find is of first order (according to
Ehrenfest classification) and falls within the class of
condensations in the space of states introduced in [18].
Demanding Monte Carlo (MC) simulations based on an
advanced bias-free code [19] allow to estimate a value of
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rsc, which is well within the rigorous bounds. Finally, we
show that, removing the screening after the TD-lim has
been taken, we have rsc → 0þ, confirming that a nonzero
minimal screening is necessary to have a realistic physical
picture.
We briefly recall the mechanism of first-order QPT of

[18]. To be specific, let us consider a lattice model with N
sites and Np particles described by a Hamiltonian

H ¼ K þ gV; ð1Þ

where K and V are Hermitian noncommuting operators,
and g a free dimensionless parameter, which, without loss
of generality, can be taken to be non-negative. Regardless
of the details of K and V, we represent H in the eigenbasis
of V and it is natural to call V the potential operator, and K
the hopping operator. To exclude trivial behaviors, we
suppose that the eigenvalues of K and V scale linearly with
the number of particles Np. Since in the two opposite limits
g → 0 and g → ∞, the GS of the system tends to the GS of
K and V, respectively, we wonder if, in the TD-lim, this
transition occurs as a QPT taking place at some critical
value gc.
A quite general kind of QPT is the condensation in the

space of states. We decompose the Hilbert space F of the
system as the direct sum of two mutually orthogonal
subspaces, denoted condensed and normal, namely,
F ¼ F cond ⊕ Fnorm. The definition of these subspaces is as
follows. We write F ¼ spanfjnigMn¼1, where fjnig (later on
called configurations) is a complete orthonormal set of
eigenstates of V, i.e., we have Vjni ¼ Vnjni,
n ¼ 1;…;M, where we assume ordered, possibly degener-
ate, potential values V1 ≤ V2 ≤ … ≤ VM. Given an integer
Mcond < M, we then define F cond ¼ spanfjnigMcond

n¼1 and
Fnorm ¼ spanfjnigMn¼Mcondþ1 ¼ F⊥

cond. This definition essen-
tially relies on the choice of the dimensionMcond, which, in
view of the ordering of the potential values, marks the
maximum potential value included in the condensed sub-
space

maxVcond ¼ maxfVn∶jni ∈ F condg ¼ VMcond
: ð2Þ

Consider the GS energies of the system, the condensed, and
normal subspaces:

E ¼ inf
jui∈F

hujHjui=hujui; ð3Þ

Econd ¼ inf
jui∈F cond

hujHjui=hujui; ð4Þ

Enorm ¼ inf
jui∈Fnorm

hujHjui=hujui: ð5Þ

We are interested in the situations whereMcond=M ≪ 1 and,
as a consequence, Mnorm=M ≡ ðM −McondÞ=M ≃ 1. This

justifies the names condensed andnormal assigned to the two
subspaces and suggests the following dichotomy argument:
since F ≃ Fnorm, we have E ≃ Enorm—unless—it is energeti-
cally more convenient to “freeze” into the infinitely smaller
subspace F cond, where we get E ≃ Econd.
The above heuristic argument can be cast in rigorous

terms as follows. The TD-lim is defined as the limit N,
Np → ∞ with Np=N ¼ ϱ constant. Consider the rescaled
energies:

ϵðgÞ ¼ TD- lim EðN;Np; gÞ=Np; ð6Þ

ϵcondðgÞ ¼ TD- lim EcondðN;Np; gÞ=Np; ð7Þ

ϵnormðgÞ ¼ TD- lim EnormðN;Np; gÞ=Np; ð8Þ

which are finite in view of the assumed scaling properties of
K and V (dependence on ϱ is left understood). In [18] we
have proved the following general theorem:

if TD- lim Mcond=M ¼ 0; ð9aÞ

then ϵ ¼ minfϵcond; ϵnormg: ð9bÞ

This theorem establishes the possibility of a QPT between a
normal phase characterized by the energy per particle ϵnorm,
obtained by removing from F the infinitely smaller sub-
space F cond, and a condensed phase characterized by the
energy per particle ϵcond, obtained by restricting the action
of H onto F cond. The situation is particularly simple for
systems characterized by a single parameter as in the case
of Eq. (1). If Eq. (9a) holds and, moreover, the functions
ϵnormðgÞ and ϵcondðgÞ are such that the equation

ϵnormðgÞ ¼ ϵcondðgÞ ð10Þ
admits a unique finite solution g ¼ gc, Eq. (9b) provides

ϵðgÞ ¼
�
ϵnormðgÞ; g < gc;

ϵcondðgÞ; g > gc:
ð11Þ

Equations (10) and (11) imply the existence of a first-
order QPT at the critical point gc. In fact, although
in general ϵcondðgÞ and ϵnormðgÞ are separately analytic in
g ¼ gc, on observing that ϵcondðgÞ and ϵnormðgÞ are different
functions, we conclude that, while ϵðgÞ is continuous at
g ¼ gc, its first derivative undergoes the discontinu-
ity jϵ0condðgcÞ − ϵ0normðgcÞj > 0.
Whereas Eq. (9a) can be checked easily, the existence of

a finite solution to Eq. (10) can be difficult to prove. A
practical approach can be as follows. For N, Np finite with
Np=N ¼ ϱ constant, we evaluate gcrossðN;NpÞ as the value
of the parameter g, if any, solution of the equation

EnormðN;Np; gÞ ¼ EcondðN;Np; gÞ: ð12Þ
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Assuming a smooth limiting behavior, we expect

gc ¼ TD- lim gcrossðN;NpÞ: ð13Þ

Even if this limit cannot be exactly evaluated, as in the case
of numerical simulations, Eq. (13) can be used to provide
strict upper and lower bounds to gc as shown ahead.
To recapitulate, if we find a partition F ¼ F cond ⊕ Fnorm

such that Eq. (9a) and Eq. (10) are satisfied, then a first-
order QPT of the type introduced in [18] occurs at g ¼ gc.
In general, such a partition is not unique. In fact, for
Eq. (10) to admit a solution with condition (9a) satisfied,
F cond can invariantly be chosen provided that it is not too
small and not too large in such a way that neither of the two
restrictions of H, to F cond and to Fnorm, have a QPT. In this
case, ϵcond and ϵnorm are both analytic functions of g at
g ¼ gc, whereas ϵ is not. Note that, for finite sizes, different
partitions of F lead, in general, to different values of both
EcondðgÞ and EnormðgÞ. Only in the TD-lim different
invariant partitions of F lead to the same values of
ϵcondðgÞ for g > gc and ϵnormðgÞ for g < gc, namely, ϵðgÞ,
as indicated by Eq. (11). We will exploit this invariance to
get rigorous bounds to gc.
We apply the above general strategy to a system of Np

electrons interacting in a ring of N sites. As usual, for
simplicity and saving computational efforts, we consider
spinless particles. The electronic Hamiltonian He cast in
the dimensionless form (1) by He=t ¼ H ¼ K þ gV,
t ¼ ℏ2=ð2m�a2Þ being the hopping coefficient with m�
the effective electron mass and a the lattice constant [14], is
given by

K ¼ −
XN
i¼1

ðc†i ciþ1 þ c†iþ1ciÞ; ð14Þ

V ¼
XN
i¼1

XN
j¼iþ1

vi;jc
†
i cic

†
jcj; ð15Þ

where the fermionic annihilation operators obey the peri-
odic condition ciþN ¼ ci. We consider a screened Coulomb
interaction [2]

vi;j ¼
1

di;j
e−adi;j=R; ð16Þ

R being the screening length and di;j ¼ minðj − i;
N þ i − jÞ, j > i, the dimensionless distance between sites
i and j in the ring. Screening takes into account the many-
body effects not explicitly considered in H and allows for
the interaction energy to scale linearly with the number of
particles Np, as physically expected. The value of R
depends on the microscopic details of the system consid-
ered. However, whereas the minimum of V has a loga-
rithmic dependence on R, see later, the associated GS has a

universal structure [2] under conditions on vi;j [3,4,6] that
are fulfilled by Eq. (16) for any R. With the above choice
for the potential, the dimensionless coupling g in Eq. (1)
takes the form of the following Seitz radius [20]

g ¼ 2a=aB; aB ¼ ℏ2=ðm�e2Þ: ð17Þ

Now we determine a partition F ¼ F cond ⊕ Fnorm which
satisfies the conditions (9a) and (10). We recall that,
according to Eq. (2), a partition is defined by specifying
the maximum potential value allowed in F cond.
As we show in [21], in the TD-lim the distribution of the

potential values (15) divided by Np tends to a Dirac delta
centered at V=Np, namely, the mean classical value of the
potential per particle. This implies that, whenever
maxVcond=Np < V=Np, we have Mcond=M → 0 in the
TD-lim, i.e., Eq. (9a) is satisfied.
To comply with Eq. (10), consider that E, Econd, and

Enorm, are monotonously increasing functions of g convex
upward [21] and suppose that the critical point is unique. It
follows that gc is finite if and only if (i) ϵnormð0Þ < ϵcondð0Þ
and (ii) limg→∞ϵcondðgÞ=g < limg→∞ϵnormðgÞ=g.
Condition (i) is equivalent to saying that in the TD-lim

min Knorm=Np < min Kcond=Np. Here and in the follow-
ing, we use a notation as in Eq. (2), for example, min Kcond
is the smallest eigenvalue of the operator K restricted to the
condensed subspace, and so on. It’s easy to prove [21] that,
if Eq. (9a) is satisfied, the TD-lim of min Knorm=min K is
1, therefore, condition (i) is satisfied if in the TD-lim
max Vcond=Np < V=Np, i.e., max Vcond ≤ V − δV, with
δV > 0 being an arbitrary OðNpÞ term.
Condition (ii) is equivalent to saying that in the TD-lim

min Vcond=Np ¼ min V=Np < min Vnorm=Np. Since in
the TD-lim we have min Vnorm=Np ¼ max Vcond=Np, the
condition amounts to require max Vcond=Np > min V=Np,
i.e., max Vcond ≥ min V þ δV, δV > 0 being an arbitrary
OðNpÞ term.
In conclusion, the existence of any one of the partitions

F ¼ F cond ⊕ Fnorm obtained choosing min V þOðNpÞ ≤
max Vcond ≤ V −OðNpÞ allows us to say that, provided
the screening length R is finite, both Eqs. (9a) and (10) are
satisfied. It follows that the Hamiltonian H ¼ K þ gV of
Eqs. (14)–(17) undergoes a Wigner crystallization in the
form of a first-order QPTof the type introduced in [18], i.e.,
as a condensation in the space of states. About the critical
parameter gc, at this level we just know that it is finite. The
following of the Letter is devoted to the construction of
upper and lower bounds of gc and, in order to do so, we
shall exploit the invariance of the TD-lim (13) under
different partitions of F .
For finite N and Np, since Econd and Enorm are monoto-

nously increasing functions of g convex upward, we have

g−cross ≤ gcross ≤ gþcross; ð18Þ
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where gþcross is the intersection point of two curves which
are, respectively, a majorant of Econd and a minorant of
Enorm, whereas g−cross is the intersection point of two curves
which are, respectively, a minorant of Econd and a majorant
of Enorm. Indicating with g�c the TD-lims of g�cross, we then
have g−c ≤ gc ≤ gþc . The more accurate are the approxima-
tions to Econd and Enorm, the tighter are the bounds g�c .
However, we also want to choose these approximations to
Econd and Enorm sufficiently simple to allow for an ana-
lytical evaluation of the TD-lim of g�cross.
Let us examine the following inequalities:

EcondðgÞ ≤ gmin Vcond; ð19Þ

EnormðgÞ ≥ min Knorm þ g min Vnorm; ð20Þ

and

EcondðgÞ ≥ min Kcond þ g min Vcond; ð21Þ

EnormðgÞ ≤ min Knorm þ g max Vnorm: ð22Þ

Equations (20), (21), and (22) are Weyl’s inequalities [26]
for the lowest eigenvalue of H ¼ K þ gV restricted to the
condensed and normal subspaces. Equation (19) follows
from Econd ≤ hujHjui=hujui, ∀ jui ∈ F cond, choosing
jui ¼ jni, where jni is any GS of V, and observing that
hnjKjni ¼ 0. From the first and second pair of inequalities
we obtain, respectively,

gþcross ¼
−min Knorm

min Vnorm −min Vcond
; ð23Þ

g−cross ¼
min Kcond −min Knorm

max Vnorm −min Vcond
: ð24Þ

Consider Eq. (23). We have min Vcond ¼ min V relying
only on the filling ϱ and the screening length R, the other
quantities depend also on the choice of the condensed space.
Wechoose F cond in order tomake gþcross as small as possible.A
way is to make the denominator, therefore min Vnorm,
as large as possible. We assume min Vnorm=Np ¼
max Vcond=Np → V=Np. In the numerator of (23) we use
min Knorm=K0 → 1 [21], where K0 is the GS energy of K,
namely,

K0 ≡min K ¼ −2 sinðπNp=NÞ= sinðπ=NÞ: ð25Þ

We thus obtain

gþc ¼ −K0=Np

V=Np −min V=Np
: ð26Þ

Consider Eq. (24). We have already discussed min Vcond,
as for max Vnorm ¼ max V, it is the potential

corresponding to the configurations in which the Np

electrons are as tighter as possible, i.e., they occupy Np

consecutive lattice sites. Thus the denominator of Eq. (24)
only depends on the filling ϱ and the screening length R.
Now we choose F cond as small as possible, namely,
max Vcond → min Vcond. As before, min Knorm=K0 → 1.
We can also put min Kcond=Np → 0 as the number of
allowed hoppings in F cond is, with this choice of max Vcond,
at most Oð1Þ. Therefore

g−c ¼ −K0=Np

max V=Np −min V=Np
: ð27Þ

Equations (26) and (27) provide rigorous bounds to gc.
From Table I, it follows that, at filling ϱ ¼ 3=10 and
screening length R ¼ 10a, a QPT takes place, in terms of
the parameter rs [20], at a critical value rsc ¼ gc=4ϱ in the
range 0.7 ≤ rsc ≤ 4.5.
In principle, gc could be estimated numerically by

Eqs. (12)–(13), allowing also for a direct evidence of the
invariance of the choice of F cond. In fact, for different values
of max Vcond in the range allowed, we should observe
different gcrossðN;NpÞ converging to the same gc in the TD-
lim. However, due to the growing speed of the Hilbert
space, this program appears hopeless by standard numerical
methods unless one uses ad hoc MC simulations.
We wrote a highly parallelized version, see [21] for

details, of the bias-free MC algorithm derived from an exact
probabilistic representation of the quantum evolution oper-
ator [19,28], and run it in a computer farm with thousands
of nodes. This allowed us to reach the remarkable size
Np ¼ 417, N ¼ 1390 with a computation time of several
days per point, a point being the evaluation of EcondðgÞ or
EnormðgÞ for a single value of g and for a chosen system
size. The resulting values of gcrossðN;NpÞ, at constant
filling ϱ ¼ Np=N ¼ 3=10 and screening length R ¼ 10a,
are shown in Fig. 1 as a function of Np for different choices
of max Vcond. Despite the very slow convergence of
gcrossðN;NpÞ to gc, note that the plot is shown in a log-
log scale, all data sets appear to converge to a common gc
whose value is within the rigorous bounds given before. To
estimate gc, we fit the simple curve Aþ B=Np to the data
obtained for large values of Np, separately for each
max Vcond. The found values of A suggest convergence
to gc ¼ 2.76� 0.24 (i.e., rsc ¼ 2.3� 0.2). The first-order
nature of the QPT is made evident in the inset of Fig. 1,

TABLE I. TD-lim of the energies entering Eqs. (26) and (27)
and resulting bounds g�c obtained at filling ϱ ¼ Np=N ¼ 3=10
and screening length R ¼ 10a [27].

min V=Np V=Np maxV=Np K0=Np gþc g−c

0.3846 0.7056 2.3518 −1.7168 5.4 0.84
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where we report d(EðN;Np; gÞ=Np)=dg versus g for
different values of Np. By increasing Np, we observe a
developing discontinuity around the above estimate of gc.
As a further signal of consistency, the derivatives of the GS
energy tend to intersect toward a common point g close to
gc [29].
Finally, we consider the limit R ≫ a in which screening

becomes negligible. In this limit we are able to express
the characteristic potential values, namely, min V=Np,
max V=Np, and V=Np in a closed analytical form [21].
We stress that these expressions are derived by first taking
the TD-lim and then picking the leading term for R ≫ a.
By plugging these expressions together with K0=Np≃
−2 sinðπϱÞ=ðπϱÞ, obtained from Eq. (25) for R ≫ a, into
Eqs. (26) and (27), we find [20]

sinðπϱÞ=ð2πϱ2Þ
lnðR=aÞ − ϱ lnðϱR=aÞ ≤ rsc ≤

sinðπϱÞ=ð2πϱ2Þ
−ϱ lnðϱÞ : ð28Þ

Equation (28) allows us to estimate the dependence of rsc
on ϱ in the range a=R < ϱ ≤ 1, which, in virtue of the
condition R ≫ a, as a matter of fact coincides with the
whole filling range.
In the limit R=a → ∞, the lower bound of Eq. (28)

vanishes whereas the upper bound remains finite. This is
compatible with, but does not prove that rsc → 0 in the
limit of infinitely large screening length. However,

from Weyl’s inequality min Vðgþmin K=min VÞ ≤
min H ≤ min Vðgþmax K=min VÞ and using the
R ≫ a expressions of K0 and min V, we find

lim
R=a→∞

TD- lim
EðgÞ
Np

¼
�þ∞; g > 0;

−2 sinðπϱÞ
πϱ ; g ¼ 0.

ð29Þ

We conclude that, if the TD-lim is taken first, the Wigner
crystallization is always realized as a first-order QPT of the
type [18] but the critical parameter rsc → 0þ in the limit in
which the potential becomes unscreened, R=a → ∞.
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Wigner Crystallization of Electrons in a One-Dimensional Lattice:

A Condensation in the Space of States

Massimo Ostilli and Carlo Presilla

Ground states of K and V

For a ring of N sites, the dimensionless hopping Hamiltonian is

K = −
N∑
i=1

(
c†i ci+1 + c†i+1ci

)
. (S1)

with ci+N = ci. The GS of K, |K0〉, is the product state of the Np single-particle states with the lowest single-particle energies
among εn = −2 cos(2πn/N), n = 0, . . . , N − 1. For Np odd the corresponding GS energy is

K0 = minK = −2 sin(πNp/N)/ sin(π/N). (S2)

In the same ring, the dimensionless interaction potential reads

V =

N∑
i=1

N∑
j=i+1

vi,jc
†
i cic

†
jcj =

N∑
i=1

N∑
j=i+1

vi,jninj , (S3)

with

vi,j =
1

di,j
e−adi,j/R, (S4)

where di,j is the dimensionless distance between sites i and j in the ring

di,j = min(j − i,N + i− j), j > i. (S5)

At filling % = p/q, with p and q coprimes, there are q degenerate classical WCs, i.e., q configurations (n1, n2, . . . , nN ), with
ni = 0, 1 and

∑N
i=1 ni = Np, which realize the minimum value of the potential (S3). For p = 1 these are configurations

with equidistant fermions [1], while for p > 1 we have a dimer structure [2, 6]. For instance, at filling % = 3/10, we have
minV = Vk(d3d3d4), which is the potential of the 10 nonequivalent configurations obtained by repeating k = Np/3 = N/10
times the sequence d3d3d4, where d3 and d4 are the so called 3-dimers (◦, ◦, •) and 4-dimers (◦, ◦, ◦, •), namely, lattice segments
of 3 or 4 sites in which only the last one is occupied.

Characteristic values of the screened Coulomb energy

The Wigner Crystallization cannot be clearly understood without an analysis of the distribution of the values of the classical
potential. An example of this distribution is given in Fig. S1.

In the following, we evaluate the TD-lim necessary for the implementation of the equations of the Letter: minV/Np,
maxV/Np, the classical mean value V /Np, and the gap (see Eqs. (31)-(34) of the Letter). As we shall see, compact for-
mulas can be provided in the important limit of large screening length, R � a. We shall also demonstrate why the distribution
of V/Np tends to a Dirac delta distribution centered on the mean value.

Minimum of V

Let us evaluate the minima minV , i.e., the value of V evaluated in any of its q GSs (we recall that the filling is % = p/q with
p and q coprimes). The GS of V takes the following expression

minV =

Np−1∑
j=1

v1,r(j) +

Np−1∑
j=r(1)

vr(1),r(j) + . . . , (S6)
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Figure S1. Distribution of V/Np from Eq. (S4) with screening length R = 10a and filling % = 3/10 obtained by random sampling up to
226 configurations for different values of Np. The vertical line at V /Np indicates the Dirac delta distribution obtained in the TD-lim. Inset:
maximum value of the distribution as a function of Np.

r(j) = 1 + [N/Np]j + [(N/Np − [N/Np])j], (S7)

where [·] stands for integer part and r(j) represents the position of the (j+1)th particle [3]. WhenN/Np is an integer (i.e., when
p = 1), we have r(j) = 1 + N/Npj and in the ring, where the distance is defined as in (S5), the above expression simplifies
neatly in

minV =
Np
2

Np−1∑
j=1

v1,r(j). (S8)

When instead N/Np is not an integer, the approximation r(j) ' 1 + N/Npj will produce in general not integer values above
and below the corresponding exact values of r(j). For large values of N and Np with Np/N fixed, these above and below
approximations will tend to be somehow distributed around the exact values of r(j). In such a limit we can hence still use Eq.
(S8) as an approximation and, from the explicit expression of the vi,j we get (we suppose Np odd as in the Letter)

minV ' Np
(Np−1)/2∑

j=1

e−d1,r(j)a/R

d1,r(j)
, (S9)

Note that in the above summation we have only di,j = j − i. In the following, we shall apply the same approximation to all
the other terms, i.e., we will take r(j) ' 1 + jN/Np (which amounts to d1,r(j) ' jN/Np) thoroughly. By using the variable
x = Naj/NpR, we get (now we take Np − 1 ' Np)

minV ' Np
a

R

Na/2R∑
x=Na/NpR

e−x

x
, (S10)

and

TD-lim
minV

Np
' a

R

∞∑
x=a/%R

e−x

x
, (S11)

which in turn gives

lim
R/a�1

TD-lim
minV

Np
' %

∫ ∞
a/%R

dx
e−x

x
. (S12)
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The above integral can be split as a part over the interval [1,∞] and a part over the interval [a/%R, 1]. The former is a finite
dimensionless constant I1, whereas the latter gives∫ 1

a/%R

dx
e−x

x
= ln(%R/a) + I2. (S13)

where I2 is another finite constant. In conclusion, we have

lim
R/a�1

TD-lim
minV

Np
' % ln(%R/a) +O(1). (S14)

In general, in the limit R/a → ∞ the term O(1) is a small correction that depends on % and is exactly zero for densities such
that N/Np is an integer. See Fig. S2.

Maximum of V

Let us calculate maxV , i.e., the maximum value of V evaluated in any of the N ways that exist to put the Np particles in Np
consecutive sites. We have

maxV = v1,2+v1,3 + v1,4 + . . .+ v1,Np
+

v2,3 + v2,4 + . . .+ v2,Np
+

+ . . .+

+ vNp−1,Np
, (S15)

which, by using v1,2 = v2,3, etc., gives

maxV =

Np−1∑
n=1

(Np − n)v1,n+1. (S16)

We can now proceed as in the previous case arriving at

lim
R/a�1

TD-lim
maxV

Np
' [ln(R/a) +O(1)]− lim

R/a�1
TD-limR

e−a/R

Np
, (S17)

or

lim
R/a�1

TD-lim
maxV

Np
' ln(R/a) +O(1). (S18)

Also in this case, in the limit R/a → ∞ the term O(1) is a small correction that depends on % and is exactly zero for densities
such that N/Np is an integer. See Fig. S2.

Classical mean value and distribution of the normalized values V/Np

The classical mean value of V is defined as the average over all configurations. If we indicate by · these averages, from Eq.
(S3) we have

V =

∑
n〈n|V |n〉
M

=

N∑
i=1

N∑
j=i+1

vi,jninj . (S19)

In Eq. (S19) one is tempted to neglect correlations and to replace ninj with ni · nj = %2. In this way we get

V

Np
' %2

Np

N∑
i=1

N∑
j=i+1

vi,j . (S20)
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It turns out that this approximation becomes exact in the thermodynamic limit, however, the reason for that is quite not trivial.
By analyzing the distribution of the classical V/Np values in the thermodynamic limit, we can simultaneously understand why
Eq. (S20) becomes exact and why the distribution tends to a Dirac delta distribution centered at V /Np.

In general, minV is q-fold degenerate, whereas maxV is N -fold degenerate, and as we consider more and more intermediate
values of V , the degeneracy grows exponentially fast with the system size. This can be better understood in terms of entropy. Let
us first consider the case % = 1/q and let us split the N sites into N/q = Np segments each made up of q sites. Let us enumerate
these segments from j = 1 to Np. In each segment, we can accommodate a number of particles mj between 0 and q provided
that the constrain

∑
jmj = Np is satisfied. There are many possible ways to realize a given sequence of segments {mj} and the

corresponding potential V might be different for each one of such realizations. We are interested in counting the total number of
configurations N ({mj}) associated to a given sequence of segments {mj}, independently of the different values of V . Taking
into account that the particles are indistinguishable and double occupancy of a site is forbidden, the number of configurations
N ({mj}) associated to a given sequence of segments {mj} is

N ({mj}) = δ

∑
j

mj −Np

∏
j

(
q

mj

)
, (S21)

ForN large, by a small variation of the sequence of segments we can have a large variation ofN ({mj}). In fact, not surprisingly,
it is easy to check that, ln(N ({mj})), i.e., the canonical entropy, is exponentially peaked around its maximum which is attained
by the uniform segment distribution, {mj = 1}. The important point here is that, at {mj = 1}, V still depends on the
particular realization of the uniform segment distribution and we are precisely interested in evaluating the mean value of these
values of V because in correspondence of the uniform segment distribution {mj = 1} there are concentrated the most frequent
values of V (in fact, as the entropy shows, exponentially more frequent than the other values). For these values we have
V ∈ [minV,maxV |{mj=1}], where minV , as we already know, is obtained by putting, for example, all the particles in the
rightmost position of the segments, and maxV |{mj=1} is obtained by putting, for example, the particle of the i-th segment on
the leftmost position of the segment when i is odd, and on the rightmost position when i is even. Notice that, for % < 1/2
(as thoroughly supposed in our work,) maxV |{mj=1} is strictly lower than maxV (it is easy in particular to evaluate it in the
limit of large screening length, where we get maxV |{mj=1}/Np ' 2% ln(R/a), to be compared with maxV/Np ' ln(R/a)
from Eq. (S18)). Notice also that minV , which is q-fold degenerate, and maxV |{mj=1}, which is 2q-fold degenerate, are
just two extremal values of the uniform segment distribution {mj = 1} but they are not typical. The typical values of V in
the range [minV,maxV |{mj=1}] are more complicated and must have exponential degeneracies (or, more in general, nearly
degeneracies).

We have so far shown that, in the TD-lim, the distribution of V/Np tends to a Dirac delta distribution centered on its mean
value which in turn must coincide with the mean value restricted to the uniform segment distribution, {mj = 1}. It is this latter
fact that allows us to evaluate the mean of V/Np in a simple way: since in each segment we have exactly one particle, we are
no more concerned with correlations so that the replacement ninj with ni · nj = %2, as in Eq. (S20), is actually exact in the
TD-lim. In other words, we can approximate the Np segments as uniformly occupied by a continuous distribution of charge of
density % = 1/q. In particular, in the limit of large screening length Eq. (S20) provides

lim
R/a�1

TD-lim
V

Np
' % ln(R/a) + O(1). (S22)

The above result has been derived for simplicity in the case % = 1/q, however, the same arguments can be equally repeated in
the general case of % = p/q and the result is still Eqs. (S20) and (S22). See Fig. S2.

Gap of V

The gap is defined as the difference between the first excited value of V and its minimum. If 1/% is integer (i.e., p = 1), the
former can be obtained by shifting one single particle in the GS of V by one hop toward a first neighbor vacant position. By
using the definitions (S5) and (S7), we have

gap(V ) =

Np −1∑
j=1

v2,r(j) −
Np−1∑
j=1

v1,r(j) =

(Np−1)/2∑
j=1

v2,r(j) +

Np−1∑
j=(Np+1)/2

v2,r(j) − 2

(Np−1)/2∑
j=1

v1,r(j).
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Figure S2. The exact minimum, maximum, and classical mean value of the potential V per particle compared with the leading terms of Eqs.
(S14), (S18), and (S22), respectively, as a function of the screening length R/a for filling % = 3/10 and % = 1/3. The integer k = 1, 2, . . .
determines the size of the system: we have Np = 3k and N = 10k for filling 3/10 and Np = k and N = 3k for filling 1/3. Provided
the system size is sufficiently large (TD-lim almost reached), when 1/% is an integer, the difference between the exact values and the leading
terms is always O(1/(R/a)) (here we show only the curve relative to minV ). When 1/% is not an integer, the curve corresponding to minV
tends to a small O(1) term. All curves show a drop for R/a sufficiently large, meaning that the TD-lim cannot be considered reached at the
used k values for the shown values of R/a.

On defining the variables x = (jN/Np)a/R, x1 = (jN/Np − 1)a/R, and x2 = [N − (jN/Np − 1)]a/R, we obtain

gap(V ) =
a

R

[
max x1∑

x1=min x1

e−x1

x1
+

max x2∑
x2=min x2

e−x2

x2
− 2

max x∑
x=min x

e−x

x

]
, (S23)

where

minx =
1

%

a

R
, maxx =

Np − 1

2%

a

R
,

minx1 =
1− %
%

a

R
, maxx1 =

Np − 1− 2%

2%

a

R
,

minx2 =
2

%

a

R
, maxx2 =

Np + 1

2%

a

R
.

In the limit of large screening length we get

lim
R/a�1

TD-lim gap(V ) ' %
∫ ∞

1−%
%

a
R

dx1
e−x1

x1
+ %

∫ ∞
2
%

a
R

dx2
e−x2

x2
− 2%

∫ ∞
1
%

a
R

dx
e−x

x
, (S24)

which gives

lim
R/a�1

TD-lim gap(V ) ' −% ln[2(1− %)]. (S25)

Whereas for the cases 1/% integer the above formula turns out to be almost exact (e.g., for % = 1/3, Eq. (S25) gives % ln[2(1−
%)] = 0.0958, while the exact value of the gap is 0.0986), when 1/% is not an integer, it provides only a rough approximation
since, for such cases, the first excited state of V cannot be obtained by simply shifting one single particle in the GS of V . In
particular, for % = 3/10 Eq. (S25) gives a value about 50 times larger than the actual value. In general, the first excited state of
V corresponds to a not trivial modification of its GS.
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Monte Carlo simulations

For finite size systems we can evaluate several properties of the GS by means of Monte Carlo simulations, other numerical
methods being excluded due to the huge size of the Hilbert space. In the following, we discuss data obtained by an unbiased
Monte Carlo code [4] based on an exact probabilistic representation of the quantum evolution operator [5]. Note that we always
simulate systems with an odd number of fermions in order to avoid any sign problem [6]. The code has been parallelized using
openMP.

The relevant code parameters [4] that we used in our simulations are: 214 stochastic trajectories (independent Poisson pro-
cesses), 212 reconfigurations and a time 3/Np between consecutive reconfigurations (corresponding to about 10 jumps of the
Poisson processes). For the largest simulated system with 417 particles in a lattice of 450 sites, this required a computation time
of about 200 hours per single g point for each subspace. Since the crossing between Econd(g) and Enorm(g) can be obtained by
simulating both these two GS energies in, at least, 2 g points, we obtain a computation time for gcross of about 800 hours. The
absence of bias effects is checked by evaluating E at g = 0 and comparing the result with K0, the GS energy of K, for which
we have the explicit formula (S2). The total computation time at this size is, in conclusion, about 1000 hours.

In Fig. S3 we show the behavior of the energies per particle, Econd/Np, Enorm/Np and E/Np, as a function of g in the case
Np = 15, N = 50 and with the choice maxVcond = 0.4Np. It is evident that E interpolates between Enorm at g small and
Econd at g large. The functions Econd(g) and Enorm(g) intersect at gcross ' 8.3. Note that, whereas the values of Econd, Enorm

and gcross depend on the choice of the condensed subspace, univocal thermodynamic limits εcond, εnorm and gc are obtained for
any allowed Fcond.

Figure 2 of the Letter is obtained by using also a suitable importance sampling which turns out to be effective at large values of
g. Concerning the Inset of Fig. 2, where we evaluate d(E(N,Np, g)/Np)/dg, we have made use of the Savitsky-Golay filter [7]
applied to the MC data in order to smooth the otherwise too noisy signal (by first applying the filter to the MC data and then
evaluating the derivative, or by directly applying the filter to evaluate the derivative produce similar results; the Inset shows the
latter).

Perturbation theory

We have not made use of any finite perturbation theory. The following represents only a complementary study that could be
used for consistency.

For g small, we can approximate the energy E of the GS of H by using the first order perturbation theory. We have E =
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K0 + g 〈V 〉, where 〈V 〉 = 〈K0|V |K0〉 is

〈V 〉 =

N∑
i=1

N∑
j=i+1

e−adi,j/R

di,j

(
Np
N

)2

×

[
1−

(
sin(πNp(j − i)/N)

Np sin(π(j − i)/N)

)2
]
. (S26)

In terms of limiting rescaled energies we thus conclude that for g small (see Fig. S3)

εnorm ' TD-lim
K0

Np
+ gTD-lim

〈V 〉
Np

.

Remark. The GS of K + gV tends to |K0〉, or to one of the classical WCs, in the limits g → 0 and g → ∞, respectively.
Now, whereas for g sufficiently small is safe to assume that the actual GS is a slight deformation of |K0〉, i.e., a product state of
single particle Bloch waves, the investigation of the actual GS for g sufficiently large is quite more complex. In fact, depending
on p, different ansatzs have been proposed in the past: a Bloch superposition of kink-antikink configurations for p = 1 [1], and
of excited dimers for p > 1 [3]. However, whereas these ansatzs provide physical appealing insights, they remain heuristic as
essentially focus on single mode excitations. There is no reason to exclude a priori that an extensive number of kink-antikink
walls (p = 1), or other nondimer configurations (p > 1) concur to the actual GS for g finite. In fact, in both cases, the potential
values associated to the configurations contributing to these Bloch states differ from the energy of the WCs (i.e., the minima
of V ) by terms O(1), while our condition (ii) on Fcond requires a larger space, being maxVcond = minV + O(Np), and only
under such a condition a QPT can be reached.

Monotonicity and convexity of the GS energies

Consider the Taylor expansion and the infinite perturbation series of the GS energy E(g) both around an arbitrary g and
compare term by term the first- and second-order terms of the two expansions. By using the fact that the first-order term of the
perturbation series is 〈E(g)|V |E(g)〉/〈E(g)|E(g)〉 ≥ 0, we get ∂E(g)/∂g ≥ 0 (this result can be equally reached by using the
Hellman-Feynman theorem). Next, by using the fact that the second-order term of the perturbation series for the GS energy is
always negative or null, we also get ∂2E(g)/∂g2 ≤ 0. The same argument applies to Econd and Enorm. In conclusion, with
respect to g, all the GS energies are functions that are monotone increasing and convex upward.

Proof that Eq. (9) implies minKnorm/K0 = 1 in the TD-lim

The starting point is the exact probabilistic representation of the quantum evolution introduced in [5]. According to this exact
representation, at an imaginary time t, we have

〈n|e−Ht|n0〉 = E
(
M[0,t)

n0
δnNt ,n

)
, (S27)

where E(·) is the probabilistic expectation over the continuous time Markov chain of configurations n0,ns1 , . . . ,nsNt
(or

trajectory) defined by the transition matrix

Pn,n′ =
|〈n|K|n′〉|
A(n)

, A(n) =
∑
n′

|〈n|K|n′〉|, (S28)

and the sequence of jumping times s1, s2, . . . , sNt
obtained from the Poissonian conditional probability density

P (sk|sk−1) = e−ΓA(nsk−1
)(sk−sk−1)ΓA(nsk−1

). (S29)

Concretely, starting form the configuration n0 at time s0 = 0, we draw a configuration ns1 with probability Pn0,ns1
at time

s1 drawn with probability density P (s1|s0), then we draw a configuration ns2 with probability Pns1 ,ns2
at time s2 drawn with

probability density P (s2|s1), and so on until we reach the configuration nNt at time sNt such that sNt+1 > t. Note that the
Poisson processes associated to each jump are defined left continuous [5], as a consequence, the configuration nNt is the one
realized by the Markov chain just before the final time t. The stochastic functionalM[0,t)

n0 is then defined as

M[0,t)
n0

= e
∑Nt−1

k=0 [ΓA(nsk
)−V (nsk

)](sk+1−sk) · · · e[ΓA(nsNt
)−V (nsNt

)](t−sNt )
, (S30)
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where A(n) is called the number of links, or degree of n, and represents the number of non-null off-diagonal matrix elements
〈n|H|n′〉.

The exact probabilistic representation (S27) is at the base of the unbiased Monte Carlo simulations used to sample the GS
properties (by sending the imaginary time t to sufficiently large values), as explained before (see Figs. S2 and S3). Eq. (S27),
however, lends itself also to quite interesting analytical treatments allowing for a direct connection between GS properties and the
(virtual) trajectories of the Markov chain [8, 25]. Here we consider the case with no interaction V ≡ 0 and Np odd, i.e., a lattice
chain of spinless fermions with no sign problem (equivalent to a system of hard-core bosons). As done in [8], in this particular
case we can easily decompose the expectation of the stochastic functionalM[0,t)

n0 as a sum over trajectories that, starting from
a given initial configuration n0, perform Nt = k jumps within the time t. By integrating out the ordered jumping times
s1, s2, . . . , sk distributed according to the probability density (S29), and by using

∫ t
0

Γds1

∫ t
s1

Γds2 . . .
∫ t
sk−1

Γdsk = (Γt)k/(k!),
we arrive at ∑

n

〈n|e−Ht|n0〉 = E
(
M[0,t)

n0

)
=

∞∑
k

(Γt)k

k!
N (n0; k), (S31)

whereN (n0; k) counts the total number of trajectories having k jumps (each starting from n0). Similarly, for the Hamiltonians
Hcond and Hnorm defined as the Hamiltonian H restricted to the subspaces Fcond and Fnorm, respectively, we have

∑
n∈Fcond

〈n|e−Hcondt|ncond〉 =

∞∑
k

(Γt)k

k!
Ncond(ncond; k), (S32)

∑
n∈Fnorm

〈n|e−Hnormt|nnorm〉 =

∞∑
k

(Γt)k

k!
Nnorm(nnorm; k), (S33)

where ncond and nnorm are two arbitrary initial configurations of Fcond and Fnorm, respectively. On expanding the lhs of these
equations to leading order in t we get

∑
n

〈n|n0〉e−Et =

∞∑
k

(Γt)k

k!
N (n0; k), (S34)

∑
n∈Fcond

〈n|ncond〉e−Econdt =

∞∑
k

(Γt)k

k!
Ncond(ncond; k), (S35)

∑
n∈Fnorm

〈n|nnorm〉e−Enormt =

∞∑
k

(Γt)k

k!
Nnorm(nnorm; k). (S36)

On the other hand, taking into account that Ncond(ncond; k) and Nnorm(nnorm; k) are fast growing functions of the space
dimensions Mcond and M −Mcond, respectively, if condition (9a) is satisfied, TD-limMcond/M = 0, independently from the
choice of the initial configurations, we clearly see that, for system size sufficiently large, and for any k larger than some finite
threshold

Nnorm(nnorm; k) > Ncond(ncond; k). (S37)

Comparing Eqs. (S35) and (S36) we therefore conclude that, for system size sufficiently large,

Enorm < Econd, (S38)

which, plugged into Eq. (9b), proves that minKnorm/K0 = 1 in the TD-lim.

[1] S. Fratini, B. Valenzuela, and D. Baeriswyl, “Incipient quantum melting of the one-dimensional Wigner lattice”, Synthetic Metals 141,
193 (2004).



9

[2] J. Hubbard, “Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane(TCNQ) salts”, Phys. Rev.
B 17, 494 (1978).

[3] V. Slavin, “Low-energy spectrum of one-dimensional generalized Wigner lattice”, Phys. Stat. Sol. (b) 242, 2033 (2005).
[4] M. Ostilli and C. Presilla, “Exact Monte Carlo time dynamics in many-body lattice quantum systems”, J. Phys. A 38, 405 (2005).
[5] M. Beccaria, C. Presilla, G. F. De Angelis, G. Jona Lasinio, “An exact representation of the fermion dynamics in terms of Poisson processes

and its connection with Monte Carlo algorithms ”, Europhys. Lett. 48, 243 (1999).
[6] M. Troyer, U.-J. Wiese, “Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations”,

Phys. Rev. Lett. 94, 170201 (2005).
[7] A. Savitzky, M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures”, Analytical Chemistry, 36,

1627 (1964).
[8] M. Ostilli and C. Presilla, “An analytical probabilistic approach to the ground state of lattice quantum systems: exact results in terms of a

cumulant expansion”, J. Stat. Mech., P04007 (2005).
[9] M. Ostilli and C. Presilla, “The Exact ground state for a class of matrix Hamiltonian models: quantum phase transition and universality in

the thermodynamic limit”, J. Stat. Mech., P11012 (2006).


