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Periodically time-modulated bistable systems: Stochastic resonance
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We characterize the notion of stochastic resonance for a wide class of bistable systems driven by a
periodic modulation. On developing an adiabatic picture of the underlying relaxation mechanism,
we show that the intensity of the effect under study is proportional to the escape rate in the absence
of perturbation. The adiabatic model of stochastic resonance accounts for the role of Anite damping
and finite noise correlation time as well. Our predictions compare well with the results of analogue
simulation.

I. INTRODUCTION
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and the potential V (x, t) comprises a deterministic term
V(x) and a periodic time dependent perturbation P(x, t),

V(x, t) = V(x)+P(x, t), (1.3)

A typical feature of stochastic relaxation in a periodi-
cally modulated bistable system is the so-called stochastic
resonance (SR). The interplay of intrinsic noise and
periodic driving mechanism produces a sharp enhance-
ment of the signal power spectrum corresponding to the
forcing frequency. Such an effect is apparent even when
the perturbation is weak enough not to appreciably affect
the rate of the noise-induced switch process. The nonsta-
tionary properties of one-dimensional bistable systems
driven by a sinusoidal forcing term have been illustrated
in Ref. l by means of a perturbation approach. The SR
mechanism is related to the oscillating behavior of the
signal autocorrelation function (ACF) for times much
larger than the relevant decay time (the reciprocal of the
Kramers rate) in the unperturbed system. Recently a
characteristic SR behavior has been detected in complex
systems ' which resists the perturbation approach of I.
SR turns out to be of potential application in the model-
ing of a variety of physical phenomena.

In the present paper we report and discuss the results
of analogue simulation for the process described by the
differential equation (prime and overdot denote x and t
derivation, respectively)

x+yx = —V'(x, t)+g(t),
where y is the damping constant, g(t) is a Gaussian
zero-mean-valued noise with correlation function

The overdamped limit of the process (1.1) and (1.2),

x = —V'(x)+g(t),

with noise correlation function

(1.6)

(1.7)

II. STOCHASTIC RESONANCE

The notation of SR is based on the remark that the
output signal x (t) from a stochastic bistable system may
be modulated in time by applying an external periodic
perturbation. A way of quantifying this effect is to look
at a discrete stochastic process associated with x (t). Let
T(n) denote the first-crossing time' of the nth sampling
record of the output signal x(t) (with fixed length much
larger than the forcing period Tn=2vr/0). The first-
crossing time thus determined corresponds to measuring
the switch time of x (t) between its stable values. In Fig.
1 we display the distribution of T(n), N(T), for the pro-
cess (1.1)—(1.5) with h(x)=x, as previously reported in
Ref. 3. At A =0 we recover the usual distribution of the
first-passage times in an unperturbed bistable potential

No( T) =(2T1, ) 'e (2.1)

has been investigated in I in the limit of vanishing corre-
lation time, ~~0. The findings of our analogue simula-
tion allow us to appreciate the general nature of SR and
its most remarkable features (Sec. II). The interpretation
of our experimental data relies on an adiabatic picture of
the relevant relaxation process, the prediction of which is
comparable with the theory of I for the overdamped limit
(Sec. III). The role of damping and finite noise correla-
tion time is well explained within our approximations
(Sec. IV).

with

and

V(x)= ——x + —xa 2 b 4

2 4

P(x, t)= —Ah ( )xc (oust 8+) .

(1.4)

(1.5)

where Tk is the reciprocal of the Kramers rate out of a
single metastable well. In the presence of deterministic
forcing term, AWO, instead, the number of crossings
peaks at T=vr/Q This implies .that the process x(t)
switches almost periodically between its stable minima
with frequency vn=O/2m. . The peak of N(T) reaches a
maximum for a certain value of vn [Fig. 1(b)]. For lower
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FIG. 1. First crossing-time distribution W(T) for the system
(1.1)—(1.5) with (a) A =0, (b) Ax =0.55Vand v~=30 Hz, and
(c) Ax =0.56V and v&=6 Hz. Other parameter values are
x =7.3 V, &2a =10.2 kHz, hV/D =3, y=0. 64&2a, and
v =50 ps. The estimated error is less than S%%uo.

FIG. 2. Output-signal autocorrelation function C ( t) for
v&=2 Hz and (1) AV!D =2, Ax =0.55V, (2) AV/D =3,
Ax =0.225V, (3) hV/D =2, Ax =0.226V. The other pa-
rameter values are as in Fig. 1. No appreciable statistical error
is expected.

forcing frequencies the SR peak smooths out, whereas in
the opposite limit it merges into the exponentially decay-
ing branch of N( T) about T =0. Furthermore, at high
frequencies side peaks located at about the odd multiples
of m. /0 become detectable. The explanation of such be-
havior reveals an important feature of SR. For low forc-
ing frequencies vz & Tz, the relaxation process in a bi-
stable symmetric potential can be envisaged as the statist-
ical superposition of two relaxation processes in the
asymmetric potentials V+(x)—:V(x)+ Ax driven by the
noise g(t). If the perturbation P(x, t) is taken small,
V+(x) are bistable asymmetric potentials with absolute
minimum at x+ &0 and x = —x+ &0, respectively.
Under this approximation we can define two Kramers
rates, px out of the deeper well (px (px ) and px. out of
the shallow one (px )px ) for both V+(x). The forcing
mechanism alternatively tilts V(x) in the configurations
V+ and V for half a forcing period so that, if the condi-
tion pz &2vz &pz is fulfilled, the output signal switches
between the relevant stable values with frequency vz, giv-
ing x (t) little chance to leave the absolute minimum x~
of V+(x) during one half-period n. /Q. The periodicity of
the switching signal is blurred by too fast a hopping dy-
namics (out of the deeper well), 2vn (hatt, or too slow a
forcing mechanism (compared to the escape rate from the
shallow well), 2vn& hatt. The side peaks of Fig. 1(b) can
be explained by noticing that there is a finite probability
that x (t) sojourns about the relative minimum of V+(x)
longer than half a forcing period, so that x(t) may be
trapped in a semiaxis during an odd ~/Q multiple time
interval. As a consequence, the intensity of the kth side
peak decreases relatively to the main peak with an ex-
ponential law, exp( —kittxvn). From the above discus-
sion we learn that SR is an adiabatic process occurring at
low forcing frequencies.

A second characterization of SR is provided by the

study of the autocorrelation function of the signal x(t),
C(t), and its Fourier transform C(v). In Figs. 2 and 3
we display C(t) and C(v) for the process (1.1)—(1.5) with
h (x)=x at diff'erent values of the parameters A and D.
C(t) exhibits an oscillating behavior for large values of t,
t ))Tk, with frequency vz. Accordingly, the spectrum
C(v) exhibits a 5-function-like spike at vn =A/2~. Such
an important property of C(t) has been determined
analytically in I for the overdamped process (1.6)—(1.7)
with &=0. The generalization of this property to more
general cases can be realized as follows. The external
perturbation tilts V(x) from V+ to V and vice versa
every half forcing period. V+ are the configurations
which maximize the absolute mean value of x and x~.
Provided that the relaxation process within the deeper
well is fast compared to both the escape mechanism and
the forcing dynamics, the asymptotic behavior of
(x (t)x (0) ) is then represented by an oscillating function
with amplitude xz and frequency vz. Furthermore, the
dependence of xz on D admits of two interesting limits:

C(v)

Ja. 4 LUi ji~g

I I I ~ I I I I I ~ ~ ~ I I I I I I I I I I Ii

0 5 10 15 C} 5 10 15 0 '5 10 15

v (Hz)

FIG. 3. Fourier transform of the correlation functions in Fig.
2 (arbitrary units).
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xT vanishes for both D~0 and D~ ~. In fact, on in-
creasing D the potential barrier and the time-dependent
modulation P(x, t) become negligible, the symmetry of
the problem is thus gradually restored. On decreasing D,
at fixed 0, instead, pz grows eventually much smaller
than vz, so that the hopping mechanism is only marginal-
ly affected by the periodic forcing. Following the au-
thors of Ref. 4, we agree to term this phenomenon sto-
chastic resonance. Finally, it is clear from this line of
reasoning (see also I) that no oscillating behavior for
C(t), and therefore no SR can be observed in bistable po-
tentials, the symmetry of which is not altered by the
external perturbation P(x, t). For the process (1.1)—(1.5)
this amounts to requiring that h (x) has to be an odd
function of x.

We conclude this section by introducing a characteri-
zation of SR introduced by the authors of Ref. 2: the
signal-to-noise ratio (SNR). One determines the signal
power spectrum ~x(v)~ and measures the ratio of the
strength of the 5-function-like spike at the forcing fre-
quency to the background spectrum at the same frequen-
cy. ' This quantity accounts for the energy transfer from
the (unperturbed) background spectrum, determined by
the system response to the noise, to the ordered mode
driven by the periodic modulation. The SNR thus relates
the asymptotic oscillatory behavior of the perturbed sys-
tem with its stochastic dynamics at the time scale of the
hopping mechanism. SNR vanishes for both D~O and
D ~~, and it has been shown to peak at about
D /6 V =0.5 under different experimental circum-
stances. ' Contrary to xT, the curves for SNR versus D
approach a limiting curve for vanishingly small values of
the forcing frequency (Fig. 4). Most importantly, the

15—

dependence of SNR on the relevant system parameters
can be discussed in some detail within the adiabatic ap-
proximation of Sec. III.

III. ADIABATIC APPROACH

V(x, t) = V(x) —Ax cos(Qt +8) . (3.1)

Our approach, however, applies for any choice of h (x)
(odd) provided that the perturbation can be considered
small. The mean value of x (t) in the presence of pertur-
bation (3.1) oscillates between +xz. with

—V+ (x)/D
d~ x

xT—
fdxe

—V+ (x)/D (3.2)

The second moment of x (t), instead, can be cast in the
form

2 —V(x, 0) /D

—V(x, 9)/D~
(3.3)

where V(x, 8)= V(x) —Ax cos8. To account for the
slow variation of V(x, t) with time, one must average
(x (8) ) over the phase 8 (see paper I), i.e.,

In order to describe the oscillatory behavior of the sig-
nal ACF we develop here in some detail the adiabatic ar-
gument introduced in Sec. II. Let us assume that the
forcing frequency vz is much smaller than any other
characteristic frequency of the system under investigation
and, in particular, that v&((pz. The adiabatic approxi-
mation consists of determining the statistical quantities of
interest at a fixed value of the perturbation and, then, let-
ting the perturbation vary in time. For the sake of sim-
plicity we confine ourselves to the case of an additive
modulation, h (x)=x, i.e.,

« '»= ' f'd8( '(8)&.
277 0

(3.4)
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I
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FICx. 4. SNR vs D/hV at several values of Ax /6 V(dashed
line, 0.22; solid line, 0.5; dot-dashed line, 0.66) and vz (squares,
15 Hz; crosses, 30 Hz; lozenges, 500 Hz). The other parameter
values are as in Fig. 1. The relevant averages have been taken
over 5000 digitized spectra.

On combining Eqs. (3.2) and (3.3) we obtain our estimate
for the amplitude CT (see Figs. 2 and 3):

2x y.

((x')) (3.5)

We note immediately that CT(D) of Eq. (3.5) is in-
dependent of 0, consistently with the adiabatic approxi-
mations introduced above. Equation (3.5) can be approx-
imated analytically in the limit of low-noise intensity
D ((6V and small perturbation Ax ((D. +x denote
here the bistable minima of the unperturbed potential
V(x). Under such circumstances the stationary probabil-
ity distribution corresponding to the tilted potential V+
can be substituted by two normalized 6 functions cen-
tered at about the two local minima of the function
V+(x). The relative and absolute minima of V+(x) are
located in x, = A /V" (x ) —x and x2 = A /V" (x )

+x, respectively. Making use of the approximations
V(x, )= V(x ) —Ax and V(x2)= V(x )+ Ax, we
obtain for xT
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A +x tanhV"(x
Ax

D

—Ax /D Ax /D
+x2e

—Ax /D Ax /D+8

(3.6)

peak of the curve CT(D), the agreement improving by
lowering the forcing frequency. For a comparison with
analogue simulation data, the reader is referred to Sec.
III of I.

IV. SIGNAL-TO-NOISE RATIO

The 8-averaged variance of x ( t ), ((x )), instead, coin-
cides at the leading order with the second moment of the
stationary distribution of the unperturbed system.
Without a gross inaccuracy we can approximate ((x ))
with x . Finally, in the limit considered here,
b, V»D » Ax, Eq. (3.5) reduces to

Ax
CT(D) = tanh (3.7)

CT(D) = (3.8)

In Fig. 5 we compare our adiabatic prediction for CT
(3.5) with the corresponding prediction of the perturba-
tion approach, ' for the process (1.6)—(1.7) in the limit of
white noise (r~0). As expected, the adiabatic approach
turns unsatisfactory on decreasing the noise intensity,
when it fails to reproduce the sharp drop of CT(D) to
zero. The adiabatic result, instead, looks reliable in the
intermediate region of D values, which also includes the

The major limitation of the adiabatic approximation is
due to the fact that on decreasing D at a fixed value of the
forcing frequency, pz becomes smaller than vz, thus
breaking the starting assumption vz«pz. Moreover,
our estimate for CT(D) has to be taken with some caution
even in the limit of vanishingly small v&.. as a matter of
fact the argument of the hyperbolic tangent has to be
very small, so that

2

The adiabatic approach of Sec. III fails to reproduce
the SR behavior of CT(D). However, an interesting char-
acterization of SR has been introduced recently, which
can be studied by having recourse to our adiabatic pic-
ture of the process under investigation, namely, the
signal-to-noise ratio (SNR). The intensity S of the 5-
function-like spike showing up in the Fourier transform
of the signal ACF in correspondence with its oscillating
tail can be easily determined within the adiabatic ap-
proach, i.e.,

CT
&(vn) = (4.1)

where Av is the finite bandwidth actually employed in the
procedure of frequency analysis. On the other hand, the
background of the x (t) spectrum, B (v), is closely repro-
duced by the power spectrum of the unperturbed process.
Under the condition that at long times the unperturbed
relaxation dynamics in the potential V(x) is dominated
by the hopping mechanism with rate pz, the background
B(v) for the relevant stationary process can be deter-
mined through standard techniques

2pscB(v)=
(~v) +(p )x

(4.2)

Such an assumption is certainly tenable in the limit of
low forcing frequency v& «pz and small perturbation,
Ax ((D. On taking the limit vn~0 of (4.2), our esti-
mate for SNR, R (D), follows immediately:

CT(D)
R (D) = pK(D) . (4.3)
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FIG. 5. CT(D) vs D/AV for different values of the forcing
frequency. The upper curve represents the adiabatic prediction
(3.5), the lower ones are the results of the perturbative approach
presented in I for v~ = 10 Hz (solid), v& =30 Hz (dashed), and
v,&

= 50 Hz (dot-dashed). Other parameter values are
Ax =0.56V, x =7.3 V, v=0, and a =6850 Hz.

It is clear, now, why our adiabatic approximation (4.3)
for R (D) reproduces, indeed, the typical SR behavior for
a wide class of physical systems. For large values of D,
R (D) tends to zero due to the fact that, in the cases we
consider here, CT(D) vanishes with increasing D faster
than pz(D) increases. In the limit of small D values, in-
stead, pK(D) vanishes, whereas CT(D) approaches a con-
stant value (see Fig. 5). We know that the adiabatic
determination of CT(D), (3.5), is not tenable for small
noise intensity where pz & v,z, however, the drop of
R (D) for D tending to zero is apparently dominated by
the Arrhenius factor in px(D). For instance, on compar-
ing Fig. 5 with Fig. 1 in I, we learn that the adiabatic pre-
diction for CT(D) reproduces fairly closely the decreas-
ing branch of the relevant simulation curve. Lowering
the forcing-frequency shifts the peak of CT(D) towards
smaller D values. On the other hand, every experimental
evidence (Sec. II) locates the SR peak at D jb, V =0.5, ir-
respective of the value of the forcing frequency and the
intensity of the perturbation. This argument comforts
our attempt at interpreting the features of SR under
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V. CONCLUSIONS

We have characterized the SR as an adiabatic mecha-
nism which takes place in a bistable system modulated by
a periodic perturbation with forcing frequency compara-
ble with the escape rate in the unperturbed process. SR
is well described in terms of the amplitude of the oscillat-
ing tail of the signal ACF for a variety of bistable sys-
tems. Unfortunately, the adiabatic approach does not al-
low a correct determination of this observable. An exper-
imentally well motivated, but somewhat more involved,
signature of SR is provided by the signal-to-noise ratio.
The scarce dependence of this quantity on the forcing fre-
quency is intrinsic to its definition. For the same reason

its dependence on the various parameters may be ex-
plained within the adiabatic picture. In fact, the signal-
to-noise ratio relates the di8'usive properties of the unper-
turbed system (noise) with its modulation in the presence
of periodic forcing (signal). At the present stage of our
analysis we conclude that a complete account of the SR
properties of a bistable system is provided by the asymp-
totic behavior of the signal ACF.
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