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We discuss the sensitivity of tunneling processes to the initial preparation of the quantum 
state. We compare the case of Gaussian wave packets of different positional variances using a 
generalized Woods-Saxon potential for which analytical expressions of the tunneling coefficients 
are available. Using realistic parameters for barrier potentials we find that the usual plane 
wave approximation underestimates fusion reactivities by an order of magnitude in a range of 
temperatures of practical relevance for controlled energy production.

1. Introduction

Tunneling processes are of crucial relevance to a broad range of physical systems, including semiconductors [1] and heterostruc-

tures [2], 𝛼-radioactivity and nuclear fusion in stars [3–5], the early Universe [6], and nuclear fusion processes in the laboratory 
[7–10]. Apart from an early contribution [11], tunneling probabilities have been usually evaluated by considering incoming plane 
waves. However in realistic settings as the ones mentioned above, the particles undergoing tunneling cannot in general be fully 
described by plane waves, either because particles are confined in space, or because in a many-body setting they undergo scatter-

ing with other particles, thereby limiting the coherence length of the plane wave [12]. Moreover, there are discrepancies between 
theoretical expectations and data from fusion experiments [13], and therefore it may be important to scrutinize all the underlying 
theoretical assumptions.

It is therefore important to discuss the robustness of tunneling coefficients and fusion reactivities with respect to the choice of more 
general initial states, for instance by considering the representative set of Gaussian wave packets. The use of generalized Gaussian 
wave packets has been already pioneered by Dodonov and collaborators [14–17], with results confirming that the predictions on 
tunneling rates may differ even orders of magnitude with respect to the one arising from the Wentzel-Kramer-Brillouin (WKB) 
approximation usually employed for fusion reactivites. These studies, in particular [16], have been focused on analytical expressions 
valid under specific conditions, not necessarily encompassing the entire parameter space.

The main goal of the present paper is to extend the above results evaluating the tunneling coefficient for arbitrary values of the 
position and momentum spreading. The analysis is carried out having in mind applications to high-temperature ionized gases such 
as light nuclei plasmas in magnetically confined setups. Fusion experiments with heavy-ion beams share the needs to incorporate 
the role of the energy width using a description in terms of wave packets [18,19]. A key ingredient of our discussion is the use of 
a potential admitting exact solutions for the tunneling coefficient in the entire energy range. This allows us to pinpoint differences 
arising from the sole structure of the incoming Gaussian wave packets, excluding other sources of differences as the ones due to the 
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Fig. 1. Positive abscissa plot of the symmetric Generalized Woods-Saxon potential [20] experienced between two nuclei, with parameters 𝑎 = 0.6 fm−1 , 𝐿 = 5 fm, 
𝑉0 = 45 MeV, and 𝑊0 = 56 MeV. With these parameters the barrier height (from zero to the maximum positive value of 𝑉 (𝑥)) is 0.540 MeV, the well width and 
depth are 7.35 fm and 40.336 MeV, respectively. All following figures are obtained using these parameters. The inset (vertical units in MeV, horizontal units in fm) 
allows to better identify the shape of the barrier otherwise barely visible on the broader scale of the well depth.

use of approximations in the calculating techniques. Additionally, we provide more intuitive arguments for the behavior of fusion 
reactivity in both the cases of very narrow and very broad positional variances. We finally identify optimal operating temperatures 
for which reactivity gains with the corresponding wave packet states occur with respect to the case of plane wave states.

2. Tunneling from wave packet states

We focus the attention on the Generalized Woods-Saxon (GWS) potential energy for a one-dimensional system first introduced 
in [20] (see also [21] for a simpler treatment)

𝑉 (𝑥) = −
𝑉0

1 + 𝑒𝑎(|𝑥|−𝐿) +
𝑊0𝑒

𝑎(|𝑥|−𝐿)
(1 + 𝑒𝑎(|𝑥|−𝐿))2 , (1)

where both 𝑉0 and 𝑊0 determine the peak values of the potential energy, and 𝐿, 𝑎, as in the usual Woods-Saxon potential, determine, 
respectively, the size of the effective well around the origin and its spatial spread. For a convenient choice of these four parameters, 
the GWS potential represents a symmetric well with value in the origin equal to −𝑉0∕(1 +exp(−𝑎𝐿)) +𝑊0 exp(−𝑎𝐿)∕(1 +exp(−𝑎𝐿))2, 
and −𝑉0∕2 +𝑊0∕4 at |𝑥| = 𝐿. At large distances |𝑥| ≫ 𝐿 the potential energy decreases exponentially to zero as 𝑉 (𝑥) ≃ (𝑊0 −
𝑉0) exp(−𝑎𝑥), i.e., within a range 𝜆 ≃ 1∕𝑎. This means that a semiqualitative difference from potential energies of interest for instance 
in nuclear fusion is that the barrier experienced by the nucleons, if schematized with this potential, does not have the long range as 
expected for Coulomb interactions, though in a realistic plasma the latter are screened on the Debye length. In light of the simplicity 
of the potential capturing the essential feature of the tunneling process, and the presence of exact solutions, we do not expect the 
results being qualitatively different from the ones achievable by more sophisticated analyses. We choose the set of parameters as 
described in the caption of Fig. 1, resulting in well depth, barrier height and width of the well comparable to the ones of light nuclei. 
We do not consider here the effect on tunneling of intrinsic degrees of freedom, such as vibrational or rotational couplings among 
the nucleons generating excited states, see [22], therefore focusing only of the dependence of fusion rates on the external - due to 
translational motion - state. Using this potential and the related solutions in terms of tunneling coefficients 𝑇 (𝐸) evaluated for plane 
waves at energy 𝐸, we have considered more general cases of wave localized in both space and momentum. The most practical case, 
though not exhaustive of all possibilities, is a Gaussian wave packet.

Let us consider the scattering of a one-dimensional Gaussian wave packet with positional variance 𝜉2, characteristic wave vector 
𝐾 and mean energy ℏ2𝐾2∕(2𝑚). The corresponding wavefunction reads

𝜓(𝑥) =
(

2
𝜋𝜉2

)1∕4
𝑒−(𝑥−𝑥0)

2∕𝜉2+𝑖𝐾𝑥, (2)

which in wave vector space 𝑘 becomes

𝜑(𝑘) = 1√
2𝜋

+∞

∫
−∞

𝜓(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥

= 1
(2𝜋)1∕4

√
𝜉𝑒−𝜉

2(𝑘−𝐾)2∕4𝑒𝑖(𝐾−𝑘)𝑥. (3)

This equation shows that we are dealing with an ensemble of plane waves with wave vector 𝑘 ∈ (−∞, +∞) distributed according to 
2

the probability density
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Fig. 2. Transmission coefficient of a Gaussian wave packet of width 𝜉 and mean energy 𝐸 impinging on the GWS potential of Fig. 1. Curves from a to d respectively 
correspond to the cases 𝜉 = 2, 8, 32, 128 fm, while the case of tunneling of a plane wave f is also depicted. In the inset we show a zoom-in of curve f on the region close 
to complete transmission, clearly showing one resonant tunneling oscillation. Note that this oscillation is progressively smeared out in curves d-a by decreasing 𝜉.

𝑃 (𝑘,𝐾) = |𝜑(𝑘)|2 = 𝜉√
2𝜋
𝑒−𝜉

2(𝑘−𝐾)2∕2, (4)

where we have introduced the positional spreading 𝜉 as the square root of the positional variance. Note that the probability density 
𝑃 (𝑘, 𝐾) is a Gaussian function of 𝑘 − 𝐾 , i.e., it depends on the mean energy ℏ2𝐾2∕(2𝑚) of the packet via its characteristic wave 
vector 𝐾 .

3. Fusion reactivities from thermal states

The characteristic wave vector 𝐾 around which the wave vectors of the packet are distributed according to quantum mechanical 
probabilities is in turn distributed according to the initial classical preparation of the particle’s energies. Equation (4) allows us to 
consider fusion processes taking place in an ensemble of nuclei represented by Gaussian wave packets with arbitrary distribution of 
their mean energy. In particular, apart from the case of a monoenergetic distribution, or a highly peaked one, therefore represented 
by a single or a narrow range of 𝐾 values, respectively – as typically realized in fusion experiments with ion beams – it is important 
to consider a Maxwell-Boltzmann energy distribution of the particles when modelizing thermonuclear fusion. This translates into 
considering the convolution of the 𝑘 wave vectors quantum mechanical distribution and the 𝐾 characteristic wave vector classical 
distribution, reminiscent of the Voigt profile broadly used in atomic spectroscopy [23,24]. Therefore we now assume that the nuclei 
are at thermal canonical equilibrium with inverse temperature 𝛽. The one-dimensional wave vector 𝐾 is then distributed according 
to the Maxwell-Boltzmann probability density

𝑤(𝐾,𝛽)𝑀𝐵 =
(
𝛽

𝜋

ℏ2

2𝑚

)1∕2
𝑒−𝛽ℏ

2𝐾2∕(2𝑚), (5)

where 𝑚 = 𝑚𝑎𝑚𝑏∕(𝑚𝑎 +𝑚𝑏) is the reduced mass of the two nuclei 𝑎 and 𝑏 which actually take part in the fusion process. Eq. (5), in 
which the wave vector 𝐾 can assume any positive or negative value, is normalized as

1 =

+∞

∫
−∞

𝑤(𝐾,𝛽)𝑀𝐵 𝑑𝐾.

The spread of the wave vector 𝐾 is determined by the inverse temperature 𝛽, as customary for canonical ensembles.

Particularly relevant to the discussion of fusion processes is the reactivity defined as ⟨𝜎(𝐸)𝑣(𝐸)⟩𝑀𝐵 where ⟨...⟩𝑀𝐵 denotes the 
average over the statistical distribution of the reactants, which in our case is the Maxwell-Boltzmann distribution, 𝜎(𝐸) is the cross-

section of the process, and 𝑣(𝐸) is the particle velocity. In one dimension and for nuclei at energy 𝐸 = 𝑚𝑣2∕2 = ℏ2𝑘2∕(2𝑚), the 
cross-section is 𝜎(𝐸) = 𝑇 (𝐸)𝜋∕𝑘2 [25], and

𝜎(𝐸)𝑣(𝐸) = 𝜋ℏ2√
2𝑚3

1√
𝐸
𝑇 (𝐸). (6)

In our case, each nucleus does not correspond to a monochromatic plane wave at energy 𝐸 = ℏ2𝑘2∕(2𝑚), instead it is represented 
by a Gaussian wave packet with wave vectors 𝑘 distributed with probability density 𝑃 (𝑘, 𝐾). In turn, the Gaussian wave packets 
representing the nuclei in the thermal ensemble have characteristic wave vectors 𝐾 spread with Maxwell-Boltzmann distribution 
3

𝑤(𝐾, 𝛽)𝑀𝐵 . It follows that the average fusion reactivity is
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Fig. 3. Fusion reactivity, evaluated for the same Gaussian wave packets of Fig. 2 (and same labeling a-f) with energy 𝐸 averaged over a Maxwell-Boltzmann 
distribution as a function of the temperature 𝛽−1 . The dashed line (case g) is the case in which the positional spreading depends on temperature as 𝜉 = 𝜆(𝛽)∕

√
2, 

where 𝜆(𝛽) is the thermal wavelength of the nuclei [26]. The ratio between this latter curve and the curve for a plane wave (case f) versus 𝛽−1 is reported in the inset 
to evidence their differences in a region of interest for nuclear fusion.

Fig. 4. Enhancement of fusion reactivity with thermal wave packets. The ratio between the dashed line (case g in Fig. 3) in which the positional spreading depends 
on temperature as 𝜉 = 𝜆(𝛽)∕

√
2, where 𝜆(𝛽) is the thermal wavelength of the nuclei [26], and the curve for a plane wave (case f in Fig. 3), is reported versus 𝛽−1 in a 

temperature region of interest for nuclear fusion. Two cases allow to evidence the dependence of the enhancement on the reduced mass of the nuclei.

⟨𝜎𝑣⟩𝑀𝐵 = 𝜋ℏ2√
2𝑚3

+∞

∫
−∞

𝑑𝑘

+∞

∫
−∞

𝑑𝐾

(
ℏ2𝑘2

2𝑚

)−1∕2

× 𝑇 (ℏ
2𝑘2

2𝑚
)𝑃 (𝑘,𝐾)𝑤(𝐾,𝛽)𝑀𝐵. (7)

Due to the Gaussian nature of the functions 𝑃 (𝑘, 𝐾) and 𝑤(𝐾, 𝛽)𝑀𝐵 , the integral over 𝐾 can be evaluated analytically, yielding the 
rather compact formula

⟨𝜎𝑣⟩𝑀𝐵 =
√
𝜋

2
ℏ

𝑚

+∞

∫
−∞

𝑑𝑘
1
𝑘
𝑇 (ℏ

2𝑘2

2𝑚
)𝜉eff 𝑒

−𝜉2eff 𝑘
2∕2
, (8)

where we have introduced an effective positional spreading 𝜉eff , depending on the inverse temperature, such that

1
𝜉2eff

= 1
𝜉2

+ 𝑚

𝛽ℏ2
. (9)

States approximating a plane wave satisfy 𝜉2 ≫𝛽ℏ2∕𝑚, therefore 𝜉2eff ≃ 𝛽ℏ
2∕𝑚, i.e., 𝜉eff becomes the thermal De Broglie wavelength. 

In the opposite limit of states highly localized in position, 𝜉2 ≪𝛽ℏ2∕𝑚, we have 𝜉eff ≃ 𝜉. High-temperature Boltzmann states are then 
approximating wave vector eigenstates (of eigenvalue 𝐾), while low-temperature Boltzmann states approximate position eigenstates. 
This shows that even assuming an initial quantum state with positional variance of quantum nature, at temperature large enough the 
4

relevant lengthscale below which quantum coherence of the wave packet is maintained no longer depends on the initial preparation. 
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Fig. 5. Fusion reactivity versus the positional spreading 𝜉 for four temperature values 𝛽−1 = 10, 20, 50, 100 keV of relevance in fusion of light nuclei. The dots denote 
the reactivities for the positional spreading from the thermal wavelength of the nuclei as discussed in Fig. 3 and evaluated at the corresponding temperatures shown 
here.

Analogous conclusions have been already obtained in [26,27]. This can also be interpreted, in the case of a gas at given temperature 
and density, as corresponding to the mean free path for two-particle collisions.

The tunneling coefficient versus the mean energy of the wave packet 𝐸 is depicted in Fig. 2 for various values of the width 𝜉
of the Gaussian wave packet. The dependence of the tunneling coefficient on 𝐸 is, quite predictably, mild when the value of 𝐸
is comparable or higher than the barrier height. Instead its dependence at lower energies strongly depends on 𝜉, with the case of 
plane waves (in the limit of 𝜉 → +∞) underestimating the transmission coefficient by even five orders of magnitude at the lowest 
reported energies, with respect to the case of a Gaussian wave packet with size 𝜉 smaller than the size of the effective well. The 
case of small positional variance should correspond, for a state of minimal quantum uncertainty, to a broad distribution of possible 
momenta, including some corresponding to kinetic energies comparable or higher than the barrier height. Notice the presence of 
resonant tunneling in the case of plane waves and spatially delocalized Gaussian wave packets, which is instead washed out in the 
integration when considering Gaussian wave packets of smaller width in position, and therefore broader in momentum/wave vector 
space.

In Fig. 3 we present the average reactivity corresponding to a Maxwell-Boltzmann distribution versus temperature for different 
values of the positional spreading 𝜉. Reflecting the results presented in Fig. 2, the high temperature behavior is the same for the 
various cases, while at low temperature the same pattern appears, with the highest reactivity occurring for the Gaussian wave packet 
of smallest value. Notice a further curve (dashed) which is evaluated for a temperature-dependent positional spreading as discussed 
in [26]. This curve is relevant for at least two reasons. First, without any active control of the positional variance of the wave packet, 
this is what we expect by considering a gas of reagents with a Maxwell-Boltzmann distribution. Secondly, in the temperature range 
between 10 keV and 100 keV, of interest for controlled thermonuclear fusion, we estimate a boost of the reactivities if compared to 
the ones achieved by considering plane waves. This is more easily noticeable in Fig. 4, where we report the ratio between the dashed 
curve of Fig. 3 and the curve corresponding to the prediction of plane waves, versus the temperature. In the above mentioned range 
the ratio is about 1.5, followed by a mild increase to almost 2, then becoming smaller than unity at even higher temperatures. The 
peak value of the ratio depends on the involved masses, as shown in the comparison of the two nucleons with a mass of 2 a.m.u. 
(reduced mass of 1 a.m.u.) and 12 a.m.u. (reduced mass of 6 a.m.u.). While the latter example has been chosen having in mind the 
case of Carbon quite relevant in astrophysics, it should be kept in mind that the same GWS potential is used in both cases to see the 
sole dependence on the mass, which is unrealistic for Carbon especially in regard to its actual larger well width.

We emphasize more these considerations from a complementary standpoint by plotting the reactivity as a function of the posi-

tional variance 𝜉 for values of temperature relevant to fusion processes of light nuclei, 𝛽−1 = 10, 20, 50, 100 keV, as depicted in Fig. 5. 
This plot allows to better appreciate that there is an optimal value of 𝜉 maximizing the reactivity at a given temperature. Indeed, in 
the case of 𝜉→ 0 there will be increasing components of the wave packet at large 𝑘. These components will saturate the transmission 
coefficient to its maximum value, and will strongly suppress the cross-section due to the dependence of the latter upon 1∕𝑘2, with 
the overall dependence on reactivity then scaling as the inverse of the wave vector.

The above results have been tested for various choices of the parameters of the potential with outcome qualitatively similar to 
the specific case considered in this paper. We expect robustness also in the case of a potential which is the sum of a flat potential at 
distances smaller than the average radius of the nuclei, and a Coulomb potential. The outcome should also hold in the more realistic 
three-dimensional setting, when including effects due to the angular momentum, and a spherically symmetric electric field inside the 
nucleus assuming uniform electric charge density. Indeed, intuitively, in the full three-dimensional case the scattering of plane waves 
as initial states is expected to differ even more from the case of initial states well localized in position, and the thermal distribution of 
𝐾 will be proportional to 𝐾2 exp(−𝛽ℏ2𝐾2∕(2𝑚)). However, more extensive analyses will be necessary to determine the quantitative 
5

gain in using optimized Gaussian wave packets under these more realistic – yet not susceptible of analytic solutions – situations.
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4. Conclusions

In conclusion, we have investigated the sensitivity of tunneling processes to the preparation of Gaussian wave packets – and 
contrasted to the usually assumed case of plane waves – in the case of an analytically solvable potential and in the presence of a 
canonical ensemble of nuclei. Two sources of uncertainty in the knowledge of the wave vector are present, the quantum mechanical 
uncertainty due to the consideration of a wave packet of positional spread 𝜉 instead of a plane wave, and the classical uncertainty 
in the energy of the particle belonging to an ensemble with an energy distribution given by classical statistical mechanics. In 
the specific case of Gaussian wave packets and a canonical distribution, the two sources of uncertainty are combined in a simple 
formula leading to a positional spreading as in Eq. (9), which can also be interpreted as a positional spreading renormalized by the 
presence of the environment of surrounding nuclei at finite temperature. We have evidenced sensitivity of the resulting reactivities 
for fusion processes, a result of interest also in the astrophysical setting for primordial nucleosynthesis [28]. It is still unclear how 
to engineer in general wave packets of well-defined, targeted, positional variance. These results should provide further stimuli to 
design thermonuclear fusion prototypes in which emphasis is put in maximizing the plasma temperature with more moderate plasma 
density, an important point for achieving deuterium-deuterium fusion, with well-known advantages with respect to the currently 
experimentally investigated deuterium-tritium fusion [29].
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