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We discuss conditions for the enhancement of fusion reactivities arising from different choices of energy
distribution functions for the reactants. The key element for potential gains in fusion reactivity is identified in
the functional dependence of the tunneling coefficient on the energy, ensuring the existence of a finite range of
temperatures for which reactivity of fusion processes is boosted with respect to the Maxwellian case. This is
shown using a convenient parametrization of the tunneling coefficient dependence on the energy, analytically in
the simplified case of a bimodal Maxwell-Boltzmann distribution, and numerically for kappa distributions. We
then consider tunneling potentials progressively better approximating fusion processes and evaluate in each case
the average reactivity in the case of kappa distributions.
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I. INTRODUCTION

The relevance of controlled nuclear fusion in the current
context, to contain global warming and to mitigate geopo-
litical conflicts, has been extensively debated. While the gap
between experimental demonstrations and commercial use of
nuclear fusion is being progressively narrowed with projects
like ITER currently under construction, and DEMO, in the
middle of this century, there have been parallel efforts to
discuss the possibility to enhance fusion cross sections by
exploiting the basic physics of tunneling and the possible
presence of screening of the Coulomb barrier. Considering
the extreme sensitivity of quantum tunneling to the details
of the process, significant gains may be expected. Examples
of proposals range from discussion of correlated states [1],
interference from superposition of plane waves [2], use of
generalized Gaussian wave packets [3,4], shielding of strong
electromagnetic fields [5], and the effect of the hypothet-
ical presence of strong scalar fields [6], among the many
proposals. Another sequel of proposals has focused on the
intrinsic three-dimensional nature of the confined plasmas,
with the goal to enhance the reactivity by producing Maxwell-
Boltzmann (MB) distributions with different temperatures
along different spatial directions [7–12].

In this paper we discuss the impact of various choices
of macroscopic states for the reactants, i.e., their energy
distribution, on the resulting average reactivity. Preliminary
discussions of this aspect can be found in Ref. [13] using
Dagum distributions, and in Ref. [14], in which the potential
gain in using energy distributions with hard high-energy tails
of the so-called kappa distributions (κ distributions in the
following)—already broadly used in space plasma physics
and astrophysics [15–18]—has been discussed by evalu-
ating reactivities with empirically determined fusion cross
sections [19]. We extend here these considerations to ana-
lytically evaluated ab initio cross sections, showing general
features and discussing conditions under which gains are

expected with respect to Maxwell-Boltzmann (MB) energy
distributions. A recent paper is also exploring, on top of
trapping anisotropies, κ distributions in magnetically confined
plasmas [20].

The paper is organized as follows: In Sec. II we first recall
general properties of two classes of non-MB distributions:
bimodal MB and κ distributions. We discuss the presence of
population excesses at low and high energy and population
depletion at intermediate energies with respect to a Maxwell-
Boltzmann distribution. We then report, in Sec. III, average
reactivities gains in an idealized case of tunneling coefficient
dependence on the energy. In Sec. IV we discuss tunneling
in the case of two barriers which are amenable to a complete
analytic treatment, yet capturing some features of the more
complex nuclear fusion case, the double square well and a
generalized form of the Woods-Saxon potential. In the same
section we also provide explicit examples of configurations,
within these two classes of potentials, for which it is ad-
vantageous to use κ distributions. We briefly comment on
the impact for fusion reactions involving deuterium-deuterium
and deuterium-tritium mixtures, by using empirical cross sec-
tions already available in the literature.

In the conclusions we qualitatively comment on the po-
tential relevance of these results in the context of magnetic
confined fusion reactors. Two Appendixes, one on explicit
calculations for the tunneling coefficient of the square well
case and another on the discussion of the convexity of the
tunneling coefficient evaluated with the Wentzel-Kramers-
Brillouin (WKB) approximation in the case of two relevant
barriers, complete the paper.

II. GENERALIZED ENERGY DISTRIBUTIONS

In practical settings and especially in hot plasmas, the
energy distributions of the reactants is determined by classical
statistical mechanics. We discuss here two energy distribu-
tions more general than the MB energy distribution, namely,
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FIG. 1. Probability densities for non-Maxwell-Boltzmann energy distributions and for the corresponding MB energy distributions with the
same average energy versus E (in arbitrary units). Three cases of bMB distributions are shown in panel (a), with inverse temperatures β1 = 1
and β2 = 10−1 (in arbitrary units) for different weights of x1 = 0.25, with long dashed red (light gray) line, x1 = 0.50 (dotted black line),
x1 = 0.75 (double-dot-dashed blue line). The corresponding MB distributions with the same average energy and therefore inverse temperature
β0 [derived from Eq. (3)] are also shown x1 = 0.25 with continuous red (light gray) line, x1 = 0.5 (short dashed black line), x1 = 0.75 (blue
dot-dashed line). The case of κ distributions is shown in panel (b) for different values of κ = 0.6, 1, 2, 20 and constant η = −1/2. For
sufficiently large κ , the distribution approaches the MB distribution. A common feature of the two non-Maxwellian distributions with respect
to the corresponding MB distribution is the presence of regions with higher probability densities at both low and high energy, with a region in
between for which MB instead has higher probability densities.

a superposition of two MB distributions at different tempera-
tures and the so-called κ distribution.

The MB in one dimension is defined as

pMB(E ; β ) =
√

β

4π
E−1/2 exp (−βE ), (1)

with β, the unique parameter of this energy distribution, being
the inverse temperature, such that the temperature T is related
to β as β = (kBT )−1, with kB the Boltzmann constant, and T
expressed in Kelvin. A bimodal Maxwell-Boltzmann (bMB)
distribution is described by the weighted sum of two MB
distributions:

pbMB(E ; β1, β2) = x1 pMB(E ; β1) + x2 pMB(E ; β2). (2)

Here the two weights x1 and x2 satisfy x1 + x2 = 1, and the
average energy of a bimodal system is 〈E〉 = x1β

−1
1 + x2β

−1
2 .

We therefore can compare a bMB distribution to a single MB
distribution with the same average energy, which means with
an MB distribution with inverse temperature β0 such that

β−1
0 = x1β

−1
1 + x2β

−1
2 . (3)

Examples of bMB energy distributions and comparison to the
corresponding MB distributions with the inverse temperature
determined by Eq. (3) are shown in Fig. 1(a). Actual bMB
distributions have been observed in laboratory plasmas [21].

The class of κ distributions was introduced to fit mag-
netospheric electron data and have been used to describe a
plethora of astrophysical and space plasmas phenomena [18].
It has been also discussed in the framework of nonextensive
statistical mechanics in which the q parameter, representing
nonextensivity, is shown to be related to the κ parameter [22].
Moreover, it has been shown that generalizations of bMB
distributions allow us to effectively capture the effect of a κ

distribution [23]. In the one-dimensional case, κ distributions

can be expressed, as discussed in Ref. [24], in the following
form:

pκ (E ; β, κ, η) =
√

β

4π (κ + η)

�(κ + 1)

�(κ + 1/2)

× E−1/2

(
1 + βE

κ + η

)−κ−1

, (4)

in which, in addition to the inverse temperature β, two further
parameters appear with respect to an MB distribution: κ and
η. The parameter κ expresses the “distance” of the distribution
from the corresponding MB distribution and determines more
specifically the high-energy behavior due to its presence in
the generalized, power-law dependent, Lorentzian function.
Based on the usual definition of the exponential function as
a limiting process ex = limn→∞(1 + x/n)n, it is evident that
the MB distribution in Eq. (1) is recovered for κ → +∞.

For finite κ instead, the distribution has larger probability
in the high-energy tail with respect to the corresponding MB
distribution, and these hard tails become more prominent as
κ becomes smaller. The average energy E of a particle in a
κ-distributed ensemble is written as

E = κ + η

β

∫ +∞
0 x1/2(1 + x)−1−κ∫ +∞

0 x−1/2(1 + x)−1−κ
dx

= κ + η

β

�(κ − 1/2)

2�(κ + 1/2)
= κ + η

2β(κ − 1/2)
, (5)

where the dimensionless parameter x is defined as x =
βE/(κ + η). Equation (5) shows that the expectation of the
equipartition principle valid for an MB distribution in one
dimension [E = kBT/2 = 1/(2β )] is modified by a factor
(κ + η)/(κ − 1/2), obviously tending to unity for κ → +∞,
the MB limit. For the choice η = −1/2, the kinetic definition
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of temperature valid for an MB distribution is recovered re-
gardless of the value of κ , allowing for a fair comparison
between different κ distributions therefore having the same
total energy. This also coincides with the dependence of η on
the number of kinetic degrees of freedom dκ of the system (in
our case dκ = 1), as η = −dκ/2 [25]. A comparison between
κ and MB distributions is also possible in general at the price,
however, of introducing an effective temperature depending
on κ . For this reason, we focus in the following considerations
only on the simplest case of η = −1/2.

Some remarks are also in order. First, the parameters T and
η can be related to the velocity distribution’s second moment

〈v2〉 = κ + η

κ − 1/2

kBT

m
, (6)

showing that both T and η are related to the distribution’s vari-
ance (since the average velocity is zero), with the exceptional
case of η = −1/2 commented above.

Second, the velocity distribution Pκ corresponding to the
energy distribution pκ as in Eq. (4), expressed as

Pκ (v; β, κ, η) =
√

mβ

2π (κ + η)

�(κ + 1)

�(κ + 1/2)

×
(

1 + βmv2

2(κ + η)

)−κ−1

, (7)

always reaches a maximum at v = 0, and the ratio between
the peaks of the κ distribution and the corresponding MB
distribution for v = 0 is

Pκ (v = 0; β, κ, η)

PMB(v = 0; β )
= �(κ + 1)√

κ + η �(κ + 1/2)
. (8)

By using asymptotic expressions for the Gamma function, for
instance a Stirling-like formula (see more in general [26]),

�(x + 1) ∼
√

2πx
(x

e

)x
, (9)

we find that in the case η = −1/2 that we are considering,
the ratio in Eq. (8) is always larger than unity for a finite
κ , obviously tending to unity in the κ → ∞ limit. This im-
plies that κ distributions have both hard high-energy tails and
more populated peaks at zero velocity with respect to the
corresponding MB distribution. Due to the normalization of
probability distributions, this implies that there will be an
intermediate regime of velocities in which the MB distribu-
tion prevails over the κ distribution. This effect is shown
in Fig. 1(b), in which various κ distributions are considered
including the limiting case of an MB distribution, nearly in-
distinguishable from a κ distribution for κ = 20.

Third, an intriguing situation occurs in the limit of
κ → −η, as in this case, by introducing ε > 0 such that κ =
−η + ε, we have

Pκ (v; T,−η + ε, η) =
√

m

2πkBT
ε−1/2 �(1 − η)

�(1/2 − η)

×
(

1 + mv2

2εkBT

)η−1−ε

, (10)

which, for ε → 0 and in the specific case of η = −1/2 that
we are considering, can be written as

Pκ (v; T, η, ε) � kBT ε

mv3
, (11)

diverging in the limit of v → 0 at finite ε.

III. REACTIVITY WITH NON-MAXWELL-BOLTZMANN
DISTRIBUTIONS

In this section we provide more quantitative arguments
for understanding the effectiveness of the non-Boltzmann
distributions with respect to an MB distribution (for previ-
ous related discussions, see also Refs. [14,24]) for processes
involving tunneling phenomena, such as fusion. Before dis-
cussing the results, it is worth commenting on this specific
unusual situation in which the velocity (and kinetic energy)
distribution is dominated by classical physics, yet the reac-
tants are evolving with fully quantum-mechanical laws, either
via Rutherford scattering (ineffective for nuclear fusion) or
via fusion allowed by quantum tunneling. This implies that
the variance of the single wave packet, so far considered
as attributable to a Gaussian momentum distribution as cus-
tomary for wave packets of quantum-mechanical origin, is
actually determined by the spreading of the velocities due to
the classical distribution in the statistical ensemble, which in
turn depends on the temperature and density and the κ and
η parameters in the case of a κ distribution (for a related
discussion, see Ref. [27]). The cross section corresponding to
the tunneling process is

σ = π

k2
T (k) = π h̄2

2mE
T (E ), (12)

where we have introduced the wave vector k such that h̄k =√
2mE , and the velocity of the particle with wave vector k is

v = h̄k/m. The average reactivity is then calculated as

〈σv〉 =
∫ +∞

0
P(v)σvdv

= π h̄2

√
2m3/2

∫ +∞

0
p(E )T (E )E−1/2dE , (13)

with p(E ) one of the energy distributions defined in Eqs. (1),
(2), or (4).

Basically the potential gain in using non-Boltzmann dis-
tributions stems from the fact that, with respect to an MB
distribution, there is a more populated high-energy tail. For
the same average energy, this means that the non-Boltzmann
distribution will also have a more populated low-energy com-
ponent, as visible in Fig. 1. Then the advantage of using
non-Boltzmann distributions relies on the functional depen-
dence of the tunneling probability upon the energy, T (E ).
If the latter is a convex function, the contribution to the in-
tegrated tunneling probability from the high-energy tail will
overcompensate the lower contribution due to the increased
component of the distribution at low energy. We also expect
that, at temperature large enough there will be marginal gain
in using non-Boltzmann distributions. Indeed, for an arbitrary
barrier we have T → 1 for E → +∞, which implies that,
at high energy, the T (E ) curve will always be concave. We
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FIG. 2. Parameter δRbMB/RMB versus the α exponent of the tunneling coefficient assumed in Eq. (15). Four cases of bMB with x1 = 0.2,

0.4, 0.6, 0.8, all with β1 = 1, β2 = 10−1, are depicted and (a) β0E0 = 10−2, (b) β0E0 = 102.

therefore mainly focus on the behavior at lower temperatures,
which is also the most interesting region for fusion reactions
of technological interest.

For a generic non-MB distribution the gain with respect
to the corresponding MB distribution may be quantified by
considering the difference between the reactivities δR defined
as

δR = 〈σv〉 − 〈σv〉MB

= π h̄2

√
2m3/2

∫ +∞

0
[p(E ) − pMB(E )]T (E )E−1/2dE . (14)

A more practical and universal dimensionless parameter is
obtained by considering δR/RMB, the relative deviation from
the MB reactivity.

In a hypothetical case of T (E ) scaling exactly as E1/2 in
the entire energy range, this difference will be zero because
the two distributions are normalized to unity. However, the
tunneling coefficient cannot grow indefinitely, being limited
to unity, so this scaling law does not allow for breakeven in
practice. The difference p(E ) − pMB(E ) for the two cases of
non-MB distributions we are considering is positive at low and
high energy, being instead negative in a regime of intermediate
energies, as already commented. However, at low energy the
tunneling coefficient is small, while at high energy the cross
section is small, as evident by the explicit E−1/2 factor, with
the tunneling coefficient approximating unity.

To put the discussion on more quantitative grounds, we
introduce a fictitious tunneling coefficient depending on the
energy as

T (x) =
{

(E/E0)α, E < E0

1, E > E0.
(15)

The parameter α (0 � α < +∞) plays the role of a “convex-
ity” parameter such that, for E < E0, we have T (E ) convex if
α > 1, concave if α < 1.

This allows us to obtain a simple relationship for δR/R
in the case of bMB distributions. In this case the reactivity

difference δR is written as

δRbMB = 〈σv〉bMB − 〈σv〉MB

=
√

π

2

h̄2

m3/2
(x1F1 + x2F2 − F0), (16)

where

Fi(βi; E0, α) = (βiE0)−α�(α + 1/2; 0, βiE0)

+�(α + 1/2; βiE0,+∞), (17)

with i = 0, 1, 2, and

�(n; x, y) =
∫ y

x
e−t t n−1dt, (18)

is the incomplete Gamma function of order n. In Fig. 2 we
show the plots of δRbMB/RMB versus α for various values of
x1 for a bMB distribution. The case (a) [Fig. 2(a)] is relative
to a choice of βE0 = 10−2, case (b) [Fig. 2(b)] deals with
the opposite situation of βE0 = 102. In the limit βiE0 → 0,
Fi(βi; E0, α) → �(α + 1/2), the complete Gamma function,
and then in the same limit there is complete cancellation
among the three contributions, with the plot showing the
small, residual term at finite βiE0. In the opposite limit,
βiE0 → +∞, the second term on the right-hand side of (17)
tends to zero, and then Fi(βi; E0, α) → (βiE0)−α�(α + 1/2).
This implies a limit form of the reactivity relative difference
δRbMB/RMB:

δRbMB

RMB
� x1β

−α
1 + x2β

−α
2(

x1β
−1
1 + x2β

−1
2

)α − 1. (19)

It is easy to check that, for 0 < α < 1, δRbMB/RMB < 0, and
for α > 1, δRbMB/RMB > 0, with the borderline case α = 1
yielding δRbMB/RMB = 0. Therefore it is confirmed, at least
for this power-law dependence of the tunneling coefficient
upon the energy, that a convex function yields gain in using
a bMB distribution with respect to an MB distribution with
the same average energy. Considering the richness of possi-
ble situations, both in terms of T (E ) dependencies, with the
possibility of resonant tunneling for instance, and of possible
non-Maxwellian distributions, this result has to be considered
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FIG. 3. Parameter δRκ/RMB versus the α exponent of the tunneling coefficient. Four cases are shown with κ = 1, 2, 5, 10 and (a)
βE0 = 10−2, (b) βE0 = 102. This plot differs from the one of bMB distributions because there is a gain in using κ distributions also at very
low α and because δRκ = 0 at two values of α: at α = 0.5 independently of κ , and at a value of α progressively increasing with decreasing κ .

a qualitative guideline to appreciate the possibility of reactiv-
ity gains in a general context.

In the case of κ distributions, we write an analogous rela-
tionship

δRκ = 〈σv〉κ − 〈σv〉MB

= π h̄2

√
2m3/2

∫ +∞

0
[pκ (E ) − pMB(E )]T (E )E−1/2dE ,

(20)

and the numerical integration provides the plots in Fig. 3 once
again for choices of βE0 = 10−2 [Fig. 3(a)] and βE0 = 102

[Fig. 3(b)]. Similarly to the bMB case, when βE0 is small
there is a small enhancement at all α due to the low-energy
dominance of the κ distribution with respect to the corre-
sponding MB distribution. The case of large βE0 is more
interesting, showing an interval of α values for which the
reactivity of the MB distribution is significantly larger than
that of the κ distribution, which instead prevails at small and
large α. The enhancement strongly depends on βE0, and large
values of this parameter, either a large E0 or a low temperature
β−1, makes the reactivity quite sensitive to the high-energy
tails, more prominent in the κ distribution than in the MB case.
Also notice that, unlike the case of the bMB distribution, the
threshold value of α for which the κ distribution has higher
reactivity occurs at α > 1, therefore requiring more curvature
due to the presence of a strong low-energy component in the κ

distribution and a stronger depletion at intermediate energies,
as noticeable by comparing the two panels of Fig. 1.

In the specific case of the κ distribution with κ → −η

discussed earlier, it is possible to support a similar convexity
argument as follows: The reactivity in that case assumes the
form

〈σv〉 = π h̄2kBT ε

m

∫ +∞

0

T (v)

v4
dv, (21)

where T (v) is the tunneling coefficient T (E ) expressed as a
function of the particle velocity, E = mv2/2, and we expect
T (v) → 1 for v → +∞. This means that the reactivity does
not present divergences at large velocities. However, there

are possible divergences in the v → 0 limit, depending on
T (v). Let us focus on the integrand at small v, including
also the infinitesimal quantity ε for the analysis of the diver-
gences. Let us suppose that ε � v/v0 → 0, i.e., goes to zero
as the velocity, with v0 a characteristic velocity, for instance
the quadratic mean velocity. Then we have an expression for
the reactivity as

〈σv〉 � π h̄2kBT

mv0

∫ +∞

0

T (v)

v3
dv. (22)

Suppose that T (E ) ∝ Eα in the E → 0 limit, then T (v) ∝
v2α , which means that the integral will be finite if α > 1,
and diverging at −∞ otherwise. This confirms, within the
limit of this example and related assumptions, that the T (E )
dependence should correspond to a convex function at least
initially to avoid meaningless divergences of the reactivity.
Notice that, in this case, the reactivity is directly proportional
to the temperature.

IV. TUNNELING COEFFICIENTS FOR POTENTIALS
WITH ANALYTIC SOLUTIONS OF THE SCHRÖDINGER

EQUATION

In this section, we discuss tunneling probabilities for one-
dimensional systems described by potentials progressively
approximating the physical case of nuclear fusion but still
admitting analytical solutions. We start by considering the
case of a potential describing a stepwise double symmetric
barrier, then we discuss the most realistic case of a gener-
alized Woods-Saxon potential. We investigate the tunneling
phenomenon for different preparations of the wave function
of the incident particle. As discussed in Ref. [28], there is
a sensitive dependence of the tunneling coefficient upon the
spatial spreading of the incident wave packet. While we refer
to this contribution for further details, we summarize here the
results relevant for the current discussion.

The incident particle is schematized via a Gaussian wave
packet with positional spreading ξ (such that the position
variance is ξ 2), average wave vector K , and mean energy
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FIG. 4. (a) Tunneling coefficient versus the energy of the incident particle for a stepwise double barrier potential, with different cases
of positional spreading of a Gaussian state, ξ = 5 (green dashed line), ξ = 20 (red dot-dashed line), and the case of a plane wave (black
continuous line). The parameters of the potential are, with the notation used in Eq. (30), c = 0.734, b = −c, d = c + 5, a = −d , V0 = 5.4,
V1 = −40.33. (b) Same for the case of a GWS potential, with λ = 1.67, L = 0.5, U0 = 25, W0 = 56, all lengths being expressed in fm and all
energies in MeV. The reduced mass is m = 1u.

h̄2K2/(2m):

ψ (x, 0) =
(

2

πξ 2

)1/4

e−(x−x0 )2/ξ 2+iKx. (23)

The corresponding wave function in wave-vector space k is

ϕ(k) = 1√
2π

∫ +∞

−∞
ψ (x, 0)e−ikxdx

= 1

(2π )1/4

√
ξe−ξ 2(k−K )2/4ei(K−k)x. (24)

Therefore the probability to measure a generic wave vector
k is a Gaussian function of k peaked around K :

P(k, K ) = |ϕ(k)|2 = ξ√
2π

e−ξ 2(k−K )2/2. (25)

The tunneling coefficient is therefore expressed by an integral
over all wave vectors k as

T (K ) =
∫ +∞

−∞
dk T

(
h̄2k2

2m

)
P(k, K ). (26)

The reactivity is evaluated as

〈σv〉i = π h̄2

√
2m3

∫ +∞

−∞
dk

∫ +∞

−∞
dK

√
2m

h̄2k2

× T

(
h̄2k2

2m

)
P(k, K )Pi(K, β ), (27)

where if the energy is κ distributed (i = κ) we have

Pκ (K, β ) =
√

h̄2β

2πm(κ + η)

�(κ + 1)

�(κ + 1/2)

×
[

1 + h̄2K2

2m

β

κ + η

]−κ−1

, (28)

while in the MB case (i = MB) we have

PMB(K, β ) =
√

h̄2β

2πm
exp (−β h̄2K2/2m). (29)

As discussed in Ref. [28], the reactivity for fusion pro-
cesses is extremely sensitive to the spreading of the Gaussian
wave packet, reaching a maximum for an intermediate value
of ξ . We discuss in the following both cases of highly local-
ized Gaussian wave packets as well as states resembling the
limiting case of plane waves. Besides extending the analysis to
localized states, we introduce more realistic potentials leading
to tunneling processes in lieu of considering an artificial case,
such as the one of Eq. (15). We first consider a stepwise double
barrier potential defined as

VStep(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < a
V0, a � x < b
V1, b � x < c
V0, c � x < d
0, x � d,

(30)

where a < b < c < d and V0 e V1 are both positive defined. If
V0 > V1 the potential V (x) becomes a double barrier surround-
ing a well of depth V0 − V1. This potential admits an analytic
solution for the corresponding time-independent Schrödinger
equation, and transmission and reflection coefficients are cal-
culated as described in detail in Appendix A. In Fig. 4 the
dependence of the tunneling coefficient upon the energy of
an incident particle is shown for two cases of positional
spreading ξ and of a plane wave. A distinctive feature of
the various cases is that, for large positional spreading, the
curvature of the tunneling coefficient is positive at low en-
ergy, i.e., T = T (E ) is initially a convex function. For small
positional spreading the curve becomes concave in the whole
range except in a tiny region near E = 0.

A more realistic case, at least because of the absence of
discontinuities, is provided by the generalized Woods-Saxon
(GWS) potential energy for a one-dimensional system, as first
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FIG. 5. Reactivity dependence on temperature for different states and energy distributions. In the top panels we show the cases of a stepwise
double barrier potential, with (a) ξ = 20 fm and (b) ξ = 5 fm. In the bottom panels the corresponding cases of the GWS potential are shown
for (c) ξ = 20 fm and (d) ξ = 5 fm, respectively. The various cases in each plot are relative to the choice of κ-distributed energies, with
κ = 0.6, 1, 2, 20, and η = −1/2, and the corresponding MB distribution.

discussed in Ref. [29],

VGWS(x) = − U0

1 + e(|x|−L)/λ
+ W0e(|x|−L)/λ

(1 + e(|x|−L)/λ)2 , (31)

parametrized by two characteristic lengths L and λ and two
energy scales U0 and W0. The parameter L determines the size
of the effective well, and λ is its spatial spread. The potential
has a value in the origin equal to −U0/[1 + exp(−L/λ)] +
W0 exp(−L/λ)/[1 + exp(−L/λ)]2, while −V0/2 + W0/4 at
|x| = L. At large distances |x| 
 L the potential energy de-
creases as V (x) � (W0 − V0) exp(−x/λ). This means that a
semiqualitative difference from potential energies of interest
in nuclear fusion is that the barrier experienced by the nu-
cleons, if schematized with this potential, does not have the
long range as expected for Coulomb interactions, although in
a realistic plasma the latter are screened on the Debye length.
We choose the set of parameters as described in the caption of
Fig. 4, resulting in well depth and barrier height and width of
the well comparable to those of light nuclei.

These potentials are reminiscent, in a one-dimensional set-
ting, of the more general nucleus-nucleon interaction potential
which also includes a Coulomb term inside the nucleus dic-

tated by an assumed uniform electric charge density (here
neglected) and a centrifugal term with the possibility for a
scattering with nonzero impact parameter evidently absent in
a one-dimensional analysis; see, for instance, Refs. [30–32].
The tunneling coefficient versus the energy of the incident
particle is shown in Fig. 4 for different values of ξ . A similar
phenomenon to the case of a stepwise double well is also
visible, with the change of convexity depending on the values
of ξ . The presence of less defined boundaries with respect to
the stepwise case makes resonant tunneling less remarkable,
especially in the ξ = 20 case, with a barely visible peak
around the energy of 6 MeV.

Based on these tunneling coefficients, we can evaluate
the reactivities in some examples, for simplicity limiting the
analysis to the case of κ distributions. Representative results
for the reactivity dependence upon the temperature are shown
in Fig. 5 for both stepwise and GWS potentials. As for the
tunneling coefficients, cases of Gaussian states with narrow
and broad positional spreading are considered. A broad Gaus-
sian state, with the transmission coefficient having positive
curvature at low energy as shown in Fig. 4, at low temperature
has a smaller reactivity for an MB distribution with respect
to the corresponding κ distribution. The opposite occurs in
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FIG. 6. Reactivity gain in using κ-distributed energies. The ratio of reactivities with the most favorable case of κ = 0.6 and the case of an
MB distribution is plotted for the two positional spreadings ξ = 5 fm and ξ = 20 fm, for (a) the stepwise potential and (b) the GWS potential,
the same parameters as in Fig. 4.

the case of a narrow Gaussian state in which the transmission
coefficient has negative curvature in the entire range of ener-
gies. By increasing the temperature, the MB state dominates
over the κ-distribution cases until the harder energy tails of
the latter determine once again a gain in reactivity at even
higher temperatures. To better evince the enhancement and
suppression patterns, we show in Fig. 6 the ratio of reac-
tivities between the case of κ = 0.6, the most extreme κ

distribution we consider, and the case of the corresponding
MB distribution. It is worth noticing that using broad Gaus-
sian states with κ distributions at small κ allow for a gain,
with respect to the MB distribution, of almost one order of
magnitude, and most importantly in a range of temperatures
below 1 MeV, of relevance for nuclear fusion. The analysis
seems robust with respect to the choice of the potential energy,

as shown by the similarity of the curves in the two cases
considered.

While we plan to discuss a comprehensive analysis of
realistic cases of fusion in the future, it may be worth briefly
discussing the reactivity gain in using κ distributions with
respect to the MB case, evaluated from empirical cross sec-
tions for fusion of deuterium-deuterium and deuterium-tritium
mixtures [19]. In Fig. 7(a) this gain is plotted versus tem-
perature in a range of interest for most of the experiments
using Tokamak machines. The behavior is similar for the two
mixtures. At large κ , as in the κ = 10 case, there is no gain
at high temperature, while in the same temperature range it
is not advantageous to use energy distributions with smaller
values of κ . Significant gains are instead expected at lower
temperatures. In this region of temperature there is an optimal,
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FIG. 7. Reactivity gain in using κ-distributed energies for deuterium-deuterium (continuous lines) and deuterium-tritium (dashed lines)
plasmas. The ratio between reactivities with various κ distributions (κ = 1.6, 2, 10, with the κ = 1.6 case very close to the threshold value
having η = −3/2 in the three-dimensional case) and the case of an MB distribution is plotted (a) versus temperature in a range of interest for
the current experiments with Tokamak machines, and (b) versus the κ parameter for the three cases of temperatures of 5, 10, and 20 keV. The
reactivities have been computed by using the experimental cross sections parametrized as in Ref. [19] by integrating the reactivity over energy
intervals in which the interpolation is validated, 0.5–550 keV for the deuterium-tritium reaction, 0.5–5000 keV for D(d, p)T, 0.5–4900 keV
for D(d, n) 3He (see Table IV in Ref. [19]).
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intermediate value of κ maximizing the reactivity, since a too
small κ creates a nearly diverging population at very low
energy—see discussion around Eq. (11)—not favorable for
fusion processes, see Fig. 7(b). Optimizing the value of κ

yields significant reactivity gains at low and already accessible
temperatures. These gains could be even substantial because,
in this analysis, we do not consider the optimization with
respect to the positional spreading. Moreover, the interval
of energies for which the reactivity is evaluated is limited
by the parametrization to a finite range, thereby resulting
in conservative estimates, considering the importance of the
high-energy tail for the more populated κ distribution. This
analysis, based on a concrete three-dimensional situation, also
confirms the general trends reported earlier on more idealized
and one-dimensional models.

V. CONCLUSIONS

By using generalizations of the Maxwell-Boltzmann
statistics, we have discussed a key condition to enhance
the tunneling probabilities and the reactivities of nuclear
fusion processes in the framework of one-dimensional po-
tentials admitting exact solutions for the corresponding
time-independent Schrödinger equation. A prominent convex-
ity of the transmission coefficient ensures that the unavoidable
overpopulation of low-energy states does not offset the
effect of the high-energy tail in a κ distribution, result-
ing in enhanced integrated reactivity with respect to the
Maxwell-Boltzmann energy distribution operating at the same
effective temperature. This has been explicitly shown for bMB
and κ distributions by using a convenient parametrization of
the tunneling coefficient, and discussing how the latter can be
approximated in more realistic but still analytically tractable
potentials exhibiting tunneling.

We have presented examples of potentials for which it is
advantageous to use non-Boltzmann distributions to enhance
fusion reactivity. The whole parameter space for which such
an advantage exists can be explored via optimization of the
reactivity ratio with respect to a few parameters, three in
the case of the stepwise double barrier, and four in the case
of the GWS barrier, for each temperature and positional
spreading. The optimization is far more complex in terms
of requested numerical resources by using a more realistic
potential such as, for example, a combination of Woods-Saxon
and Coulomb potentials. It should be kept in mind that an
overall optimization of the reactivity is what is beneficial to
boost the fusion rate, therefore there is a competition between
the choice of the positional spreading ξ and the κ parameter.
As noticeable by comparing side by side the panels in Fig. 5,
even if the gain in using a small ξ is smaller with respect to
the choice of a large ξ with the same κ in the low-temperature
range, the absolute reactivities are larger in the former case.

Generalizations to more realistic cases requires handling
tunneling coefficients and incorporating the possible pres-
ence of states with nonzero angular momentum in a full
three-dimensional treatment, as well as the effect of the con-
fining potential on the energy distribution. The extent to
which κ distributions can be realized in concrete setups is
still open; however, it is expected that long-range interac-
tions in a generic statistical system will show deviations from

a Maxwell-Boltzmann distribution rigorously valid only for
short-range interactions. This point is extensively discussed
in Ref. [22] and corroborated by numerical simulations in the
case of the Hamiltonian mean-field model [33,34]. Although
we still lack evidence for κ-distributed energies in the case
of genuine dynamical systems such as interacting classical
gases, steps towards this direction are currently undergoing
[35,36]. On the experimental side, spectroscopy of the fusion
reaction products is expected to provide precise assessments
of the deviation from MB distributions, as recently discussed
in Ref. [37].

APPENDIX A: TUNNELING COEFFICIENT IN A
STEPWISE DOUBLE WELL POTENTIAL

We report here the results for a potential made of a double
well, starting with the time-independent Schrödinger equation

d2

dx2
φ(x) + 2m

h̄2 [E − V (x)]φ(x) = 0, (A1)

for a one-dimensional stepwise potential as defined in
Eq. (30). Equation (A1) admits, for E � 0, a continuous and
doubly degenerate spectrum. For each energy eigenvalue E
there are two eigenstates φk (x) and φ−k (x) with the positive
wave vector k defined as

k =
√

2m

h̄2 E . (A2)

By introducing the positive wave vectors in the regions at
potentials V0 and V1,

k0 =
√

2m

h̄2 (V0 − E ), k1 =
√

2m

h̄2 (E − V1), (A3)

the eigenstates φk (x) can be expressed as

φk (x) = (2π )−
1
2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

eikx + r(k)e−ikx, x < a

A+(k)ek0x + A−(k)e−k0x, a � x < b

B+(k)eik1x + B−(k)e−ik1x, b � x < c

C+(k)ek0x + C−(k)e−k0x, c � x < d

t (k)eikx, x � d.

(A4)

In this form the state +k describes the stationary state of
a particle coming from x = −∞ with momentum h̄k. The
normalization is chosen in such a way that the eigenstates are
orthogonalized with respect to the wave vector [38]:∫ +∞

−∞
dx φk (x)∗φk′ (x) = δ(k − k′). (A5)

The particle is reflected or transmitted, respectively, with
probability

R(k) = |r(k)|2, T (k) = |t (k)|2. (A6)

The reflection and transmission amplitudes r(k) and t (k)
are determined together with the coefficients A±(k), B±(k),
and C±(k) by imposing the continuity of the eigenstates
and their first derivatives in the discontinuity points of the
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potential. This leads to

t (k) = 16kk1k2
0

f−(k) − f+(k)
e−ik(d−a), (A7)

where

f±(k) = e∓k0(b−a)(k0 ± ik)[e−ik1(c−b)(k0 ± ik1)g+(k)

+ e+ik1(c−b)(k0 ∓ ik1)g−(k)], (A8)

g±(k) = e∓k0(d−c)(k0 + ik1)(k0 ± ik)

− e±k0(d−c)(k0 − ik1)(k0 ∓ ik). (A9)

The remaining coefficients are then determined as

A±(k) = e∓k0b

2k0
[B+(k)eik1b(k0 ± ik1)

+ B−(k)e−ik1b(k0 ∓ ik1)], (A10)

B±(k) = e∓ik1c

2ik1
[C+(k)ek0c(ik1 ± k0)

+C−(k)e−k0c(ik1 ∓ k0)], (A11)

C±(k) = e∓k0d

2k0
t (k)eikd (k0 ± ik), (A12)

r(k) = eika

2ik
[A+(k)ek0a(ik − k0)

+ A−(k)e−k0a(ik + k0)]. (A13)

APPENDIX B: INFLUENCE OF THE SHAPE OF THE
BARRIER ON THE CONVEXITY OF THE TUNNELING

COEFFICIENT

In this Appendix we show with a representative example
how the shape of the barrier strongly influences the reactiv-
ity gain, even within the WKB approximation for which the
only relevant quantity is the area of the classically forbidden
region. In the case of a rectangular barrier of height V0 and
thickness a, with the particle mass and energy m and E re-

spectively, the WKB approximation yields

Tr (E ) ∼ exp

[
−2a

h̄

√
2mV0

(
1 − E

V0

)1/2
]
, (B1)

which, in the limit E/V0 → 0, can be expanded as

Tr (E ) ∼
(

1 +
√

2mV0a

h̄

E

V0

)
exp

(
−2a

h̄

√
2mV0

)
, (B2)

a linear dependence on E in the same limit, implying no initial
curvature.

If we instead consider a case with a smoother barrier, such
as the following containing a Coulomb-like component:

V (x) =
{

V0, x ∈ [−a,+a]
V0a/|x|, x ∈ (−∞,−a] ∪ [+a,∞), (B3)

we obtain, always in the WKB approximation

TC (E ) ∼ exp

⎡
⎣−2a

h̄

√
2mV 2

0

E
arctan

(√
V0

E
− 1

)⎤
⎦, (B4)

where TC (E ) is observed to be convex in the entire range
0 � E/V0 � 1. More specifically, in the E/V0 → 0 limit, the
transmission coefficient is approximated as

TC (E ) ∼ exp

⎛
⎝−πa

h̄

√
2mV 2

0

E

⎞
⎠. (B5)

Notice the nonanalytical dependence TC ∝ exp(−A/
√

E ),
which implies a very soft increase and therefore a positive
curvature at small values of E , i.e., TC (E ) is convex. This is
easily interpreted in terms of the behavior of the barriers as
the energy of the impinging particle is increased. In the case
of the rectangular barrier the increase in energy results in a
linear decrease of the area of the classically forbidden region,
therefore implying a square root dependence for the argument
of the integral in the exponent of the WKB relationship. In-
stead, in the case of the Coulomb potential the decrease of
the area of the classically forbidden region when increasing E
has a stronger dependence on E , at least initially. This creates
convexity of T (E ) at low energy. Under these conditions, as
discussed in Sec. IV, spreading the energy distribution can be
advantageous for enhancing the reactivity.
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