MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2002/2003 – Prof. C. Presilla

Prova in itinere 9 maggio 2003

Cognome	:					
Nome						
penalità						

voto

<u>Esercizio 1</u> Stabilire quale dei seguenti spazi è o non è uno spazio vettoriale sul campo reale. Rispondere si o no senza motivare.

- (a) $\{x \in \mathbb{R}^2 : x_1^2 = x_2\};$
- (b) L'insieme dei polinomi di grado n=10;
- (c) L'insieme delle funzioni reali $f: \mathbb{R} \mapsto \mathbb{R}$ con derivata n-esima continua e tali che f(1)=3;
- (d) L'insieme delle funzioni reali $f:\mathbb{R}\mapsto\mathbb{R}$ limitate e che si annullano in x=0.

_____ [punteggio 8]

Esercizio 2 — Stabilire, motivando la risposta, per quali valori $\alpha \in \mathbb{R}$

$$||f|| = \int_{-\infty}^{+\infty} \frac{|f(x)|}{(1+x^2)^{\alpha}} dx$$

è una norma nello spazio vettoriale $C_b(\mathbb{R})$ delle funzioni limitate in \mathbb{R} . [punteggio 5]

Esercizio 3 — Dimostrare che lo spazio vettoriale ℓ_f è denso in ℓ_2 . Si rammenti che

$$\ell_f = \left\{ x \in \mathbb{R}^{\infty} : \exists N \text{ tale che } x_n = 0 \text{ per } n > N \right\}$$

$$\ell_2 = \left\{ x \in \mathbb{R}^{\infty} : ||x||_2 = \left(\sum_{n=1}^{\infty} |x_n|^2 \right)^{\frac{1}{2}} < \infty \right\}$$

[punteggio 4]

Esercizio 4 Dimostrare	che, se	$e \ x \in \mathbb{I}$	$\mathbb{R}^n \in p >$	· 1, allora
------------------------	---------	------------------------	------------------------	-------------

$$||x||_1 \le n^{1-\frac{1}{p}} ||x||_p$$

______ [punteggio 4]

<u>Esercizio 5</u>	Dimostrare che	$v_1(x) = 1, v_2$	$_2(x) =$	$e^{ix} e v_3(x)$	$=e^{-}$	ix sono
vettori linearm	ente indipenden	ti in $C(\mathbb{R}; \mathbb{C})$,	spazio	vettoriale	delle f	unzioni
continue in \mathbb{R}	a valori in C.					

______ [punteggio 5]

Esercizio 6	Ortogonal	izzare i ve	ettori	$v_0(x) =$	$= 1, v_1$	1(x) = x	$e v_2$	(x) =	x^2
in $C_2(\mathbb{R}, e^{-x^2})$	dx), spazio	euclideo d	lelle fu	ınzioni	reali	continue	con	prodo	tto
scalare $\langle f, g \rangle$	$=\int_{\mathbb{R}}f(x)g($	$(x)e^{-x^2}dx.$							

_____ [punteggio 5]

Esercizio 7 Sia $\mathcal{W}=(w_1,w_2,w_3,\ldots)$ una base ortogonale (non normalizzata) nello spazio euclideo complesso infinito dimensionale $(L,\langle\cdot,\cdot\rangle)$. Dimostrare che per ogni $v\in L$ vale la disugualianza di Bessel

$$\sum_{k=1}^{\infty} \frac{|\langle v, w_k \rangle|^2}{||w_k||^2} \le ||v||^2$$

[punteggio 5]