MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2012/2013 – Prof. C. Presilla

Prova B1 – 13 Giugno 2013

Cognome	
Nome	

II anno	
III anno o successivi	

penalità					
penanta					

esercizio	voto
1	
2	
3	
4	
5	
6	

Esercizio 1 Determinare per quali valori di $a \in \mathbb{R}$ la funzione

$$f(x) = \frac{\sin(ax)}{x - a}$$

risulta modulo quadrato integrabile nell'intervallo $[0, \infty)$.

[punteggio 5]

Dobbiamo stabilire per quali valori di $a \in \mathbb{R}$ risulta convergente l'integrale

$$||f||_2^2 = \int_0^\infty |f(x)|^2 dx = \int_0^\infty \frac{\sin^2(ax)}{(x-a)^2} dx.$$

Per a<0, si ha $x-a\neq 0$ $\forall x\in [0,\infty),$ pertanto l'integrale è convergente in quanto per $x\to\infty$ si ha

$$\frac{\sin^2(ax)}{(x-a)^2} \le \frac{1}{(x-a)^2} = O(x^{-2}).$$

Per $a \ge 0$, la funzione integranda presenta una singolarità in $x = a \in [0, \infty)$. Per determinare la natura di questa singolarità si sviluppi $\sin^2(ax)$ in serie di Taylor intorno a x = a

$$\sin^2(ax) = \sin^2(a^2) + 2a\sin(a^2)\cos(a^2)(x-a) + \frac{1}{2}2a^2\left(\cos^2(a^2) - \sin^2(a^2)\right)(x-a)^2 + O((x-a)^3).$$

Per $a = \sqrt{n\pi}$, con n = 0, 1, 2, ..., si ha

$$\sin^2(ax) = a^2(x-a)^2 + O((x-a)^3),$$

pertanto la singolarità è eliminabile e l'integrale convergente (si noti che il comportamento all'infinito è come nel caso a<0). Per $a\neq \sqrt{n\pi}$, essendo $\sin^2(a^2)\neq 0$, la singolarità è del tipo $(x-a)^{-2}$, cioè non integrabile. In conclusione $\|f\|_2<\infty$ per a<0 e per $a=\sqrt{n\pi}$, con $n=0,1,2,\ldots$

Esercizio 2	Dimostrare che le	spazio	vettoriale	normato	$(C_2[-1,1], $	$\ \cdot\ _2$
non è comple	eto.					
					[puntegg	io 5

Basta fornire un esempio di una successione di funzioni $f_n(x) \in C_2[-1,1]$ che sia di Cauchy ma convergente a una funzione discontinua in [-1,1], vedi Rudimenti di analisi infinito dimensionale, pagina 71, cambiando $\|\cdot\|_1$ in $\|\cdot\|_2$.

Esercizio 3 Nello spazio vettoriale $P(\mathbb{R})$ con prodotto scalare $\langle f,g\rangle=\int_{-\infty}^{+\infty}f(x)g(x)e^{-x^2}\mathrm{d}x$ sia $W=\mathrm{span}\{x,x^2+x\}$. Determinare la decomposizione del vettore $v(x)=x^3$ in v=w+z con $w\in W$ e $z\in W^\perp$. Si ricordi che $\int_{-\infty}^{+\infty}x^2e^{-x^2}\mathrm{d}x=\sqrt{\pi}/2$ e $\int_{-\infty}^{+\infty}x^4e^{-x^2}\mathrm{d}x=3\sqrt{\pi}/4$

[punteggio 5]

Si ortogonalizzi secondo Gram-Schmidt il sistema di vettori $\{x,x^2+x\}$

$$u_1(x) = x$$

$$||u_1||^2 = \int_{-\infty}^{+\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$u_2(x) = x^2 + x - \frac{\langle x^2 + x, u_1 \rangle}{\|u_1\|^2} u_1(x) = x^2$$

$$||u_2||^2 = \int_{-\infty}^{+\infty} x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{4}.$$

Usando il proiettore π_W si ha

$$w = \pi_W(v) = \sum_{k=1}^{2} \frac{\langle v, u_k \rangle}{\|u_k\|^2} u_k$$

ovvero

$$w(x) = \frac{\langle x^3, x \rangle}{\sqrt{\pi/2}} x + \frac{\langle x^3, x^2 \rangle}{3\sqrt{\pi/4}} x^2$$
$$= \frac{3\sqrt{\pi/4}}{\sqrt{\pi/2}} x + 0$$
$$= \frac{3}{2} x.$$

e quindi

$$z(x) = v(x) - w(x) = x^3 - \frac{3}{2}x.$$

Si può verificare che

$$\int_{-\infty}^{+\infty} \frac{3}{2} x \left(x^3 - \frac{3}{2} x \right) e^{-x^2} dx = \frac{3}{2} \frac{3\sqrt{\pi}}{4} - \frac{9}{4} \frac{\sqrt{\pi}}{2} = 0.$$

Determinare a quale distribuzione converge la successione di distribuzioni regolari $(\varphi_{g_n})_{n=1}^{\infty}$, dove

$$g_n(x) = n^2 \operatorname{sgn}(x) e^{-n|x|}.$$

Si osservi innanzitutto che $g_n(x)$ è una funzione continua a tratti, pertanto localmente integrabile, e quindi φ_{g_n} è una distribuzione regolare nello spazio delle funzioni fondamentali \mathcal{K} . Per ogni $f \in \mathcal{K}$, integrando due volte per

$$\varphi_{g_n}(f) = \int_{\mathbb{R}} g_n(x) f(x) dx
= -\int_{-\infty}^{0} n^2 e^{nx} f(x) dx + \int_{0}^{+\infty} n^2 e^{-nx} f(x) dx
= -n e^{nx} f(x) \Big|_{-\infty}^{0} + \int_{-\infty}^{0} n e^{nx} f'(x) dx
- n e^{-nx} f(x) \Big|_{0}^{+\infty} + \int_{0}^{+\infty} n e^{-nx} f'(x) dx
= \int_{-\infty}^{0} n e^{nx} f'(x) dx + \int_{0}^{+\infty} n e^{-nx} f'(x) dx
= e^{nx} f'(x) \Big|_{-\infty}^{0} - \int_{-\infty}^{0} e^{nx} f''(x) dx
- e^{-nx} f'(x) \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-nx} f''(x) dx
= 2f'(0) - \int_{-\infty}^{0} e^{nx} f''(x) dx + \int_{0}^{+\infty} e^{-nx} f''(x) dx.$$

Entrambi gli integrali che compaiono in quest'ultima espressione si annullano per $n \to \infty$. Si consideri, ad esempio, il secondo. Scelto arbitrariamente $\varepsilon > 0$ scriviamo

$$\int_0^{+\infty} e^{-nx} f''(x) dx = \int_0^{\varepsilon} e^{-nx} f''(x) dx + \int_{\varepsilon}^{+\infty} e^{-nx} f''(x) dx.$$

Risulta

$$\left| \int_0^\varepsilon e^{-nx} f''(x) dx \right| \le \left\| f'' \right\|_u \varepsilon$$

$$\left| \int_{\varepsilon}^{+\infty} e^{-nx} f''(x) dx \right| \le \left\| f'' \right\|_{u} e^{-n\varepsilon} \xrightarrow{n \to \infty} 0.$$

Pertanto

$$\lim_{n \to \infty} \left| \int_0^{+\infty} e^{-nx} f''(x) dx \right| \le \left\| f'' \right\|_u \varepsilon.$$

Per l'arbitrarietà di ε si deve ammettere che tale limite non può che essere 0. Analogamente si ragiona per il primo integrale. In conclusione

$$\lim_{n \to \infty} \varphi_{g_n}(f) = 2f'(0) = 2\delta_0(f') = -2\delta_0'(f)$$

[punteggio 6]

che, per l'arbitrarietà di $f \in \mathcal{K}$, implica

$$\varphi_{g_n} \xrightarrow{\mathcal{K}^*} -2\delta_0'.$$

Alternativamente, si osservi che, come stabilito in precedenza, per ogni $f \in \mathcal{K}$ risulta

$$\varphi_{g_n}(f) = \int_{\mathbb{R}} n e^{-n|x|} f'(x) dx = 2 \int_{\mathbb{R}} nh(nx) f'(x) dx,$$

dove $h(x) = e^{-|x|}/2$. Risulta $h \in C_1(\mathbb{R})$, non negativa e normalizzata $\int_{\mathbb{R}} h(x) dx = 1$. Tanto basta per concludere che nel senso delle distribuzioni $nh(nx) \xrightarrow{n \to \infty} \delta_0$, e quindi

$$\lim_{n\to\infty}\varphi_{g_n}(f)=2\delta_0(f')=-2\delta_0'(f).$$

Esercizio 5 Sia T l'operatore lineare su $(\ell_2(\mathbb{C}), \|\cdot\|_2)$ definito da

$$T(x_1, x_2, x_3, x_4, x_5, \dots) = (x_2, x_3 - x_1, x_4 - x_2, x_5 - x_3, x_6 - x_4, \dots).$$

Dimostrare che T è continuo e determinare T^* . Mostrare infine che gli autovalori di T sono immaginari puri di modulo non superiore a 2.

[punteggio 6]

Per dimostrare che T è continuo basta mostrare che è limitato. Sia x una generica successione di $\ell_2(\mathbb{C})$, si ha

$$||Tx||_{2}^{2} = |x_{2}|^{2} + \sum_{k=2}^{\infty} |x_{k+1} - x_{k-1}|^{2}$$

$$\leq |x_{2}|^{2} + \sum_{k=2}^{\infty} (|x_{k+1}| + |x_{k-1}|)^{2}$$

$$\leq 4 ||x||_{2}^{2},$$

che implica $||T|| \leq 2$.

L'operatore aggiunto T^* è definito dalla relazione $\langle T^*x,y\rangle=\langle x,Ty\rangle\ \forall x,y\in\ell_2(\mathbb{C})$

$$\langle T^*x, y \rangle = \sum_{k=1}^{\infty} (T^*x)_k \overline{y_k}$$

$$\langle x, Ty \rangle = x_1 \overline{y_2} + x_2 (\overline{y_3} - \overline{y_1}) + x_3 (\overline{y_4} - \overline{y_2}) + x_4 (\overline{y_5} - \overline{y_3}) + \dots$$

$$= -x_2 \overline{y_1} + (x_1 - x_3) \overline{y_2} + (x_2 - x_4) \overline{y_3} + (x_3 - x_5) \overline{y_4} + \dots$$

Dall'arbitrarietà di x e y segue

$$T^*(x_1, x_2, x_3, x_4, x_5, \dots) = -(x_2, x_3 - x_1, x_4 - x_2, x_5 - x_3, x_6 - x_4, \dots).$$

Poiché $T^* = -T$, gli autovalori di T sono immaginari puri. Infatti detto $\lambda \in \mathbb{C}$ un autovalore di T con autovettore x, $Tx = \lambda x$, si ha

$$\lambda \langle x, x \rangle = \langle \lambda x, x \rangle = \langle Tx, x \rangle = -\langle T^*x, x \rangle = -\langle x, Tx \rangle = -\langle x, \lambda x \rangle = -\overline{\lambda} \langle x, x \rangle,$$

da cui segue

$$\lambda + \overline{\lambda} = 2 \operatorname{Re} \lambda = 0,$$

cioè $\lambda = ib$ con $b \in \mathbb{R}$. Infine, ricordando che $\sigma(T) \subset \overline{B}(0, ||T||)$ e usando $||T|| \leq 2$, si ricava $|\lambda| \leq 2$.

Alcuni hanno provato a dimostrare la proprietà Re $\lambda=0$ affermando che gli autovalori di T^* sono i complessi coniugati degli autovalori di T. Negli spazi infinito-dimensionali questa affermazione è falsa (si considerino, ad esempio, gli operatori θ_+ e θ_- tali che $\theta_+^*=\theta_\pm$). Vale invece la relazione

$$\sigma(T^*) = \{ z \in \mathbb{C} : \ \overline{z} \in \sigma(T) \}$$

che si riduce a $\sigma_p(T^*) = \{z \in \mathbb{C} : \overline{z} \in \sigma_p(T)\}$ nel caso finito-dimensionale in cui lo spettro continuo è vuoto.

Esercizio 6 Sia $f(x) = \theta(1-x^2)$ con $x \in [-\pi, \pi]$ e dove θ è la funzione di Heaviside, $\theta(x) = 1$ per $x \ge 0$ e $\theta(x) = 0$ per x < 0. Sviluppare f in serie di Fourier e studiare la convergenza puntuale della serie ottenuta. Valutare infine la somma della serie $1 + \sum_{k=1}^{\infty} k^{-1} \sin(2k)$.

[punteggio 6]

Osservando che $1 - x^2 \ge 0$ se $|x| \le 1$, si ha

$$f(x) = \begin{cases} 1 & -1 \le x \le 1 \\ 0 & -\pi \le x < -1, \quad 1 < x \le \pi \end{cases}$$

Poiché f è pari risulta

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx)$$

con

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx = \frac{2}{\pi} \int_{0}^{1} \cos(kx) dx = \frac{2 \sin k}{k\pi},$$

per k > 0 e

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{1} dx = \frac{2}{\pi}.$$

La serie di Fourier

$$\frac{1}{\pi} + \sum_{k=1}^{\infty} \frac{2\sin k}{k\pi} \cos(kx)$$

converge puntualmente a f(x) per $x \in [-\pi, -1) \cup (-1, 1) \cup (1, \pi]$ mentre per $x = \pm 1$ converge a 1/2. Ponendo $x = \pm 1$ si ha quindi

$$\frac{1}{\pi} + \sum_{k=1}^{\infty} \frac{2\sin k}{k\pi} \cos k = \frac{1}{\pi} + \sum_{k=1}^{\infty} \frac{\sin(2k)}{k\pi} = \frac{1}{2},$$

ovvero

$$1 + \sum_{k=1}^{\infty} \frac{\sin(2k)}{k} = \frac{\pi}{2}.$$