MODELLI E METODI MATEMATICI DELLA FISICA A.A. 2007/2008 – Prof. C. Presilla

Prova in itinere 20 Giugno 2008

Cognome	
Nome	

Γ						
	penalità					
	penanta					

esercizio	voto
1	
2	
3	
4	
5	
6	

(a)
$$D[\operatorname{sgn}(x)\operatorname{sgn}(x-3)]$$
 (b) $\delta[\sin(x)]$ (c) $D^3[\frac{1}{1+x^2}\delta_0'']$

_____ [punteggio 6]

(a)
$$D[sgn(x) sgn(x-3)] = -2\delta_0 + 2\delta_3$$

(b)
$$\delta[\sin(x)] = \sum_{k \in \mathbb{Z}} \delta(x - k\pi)$$

(c)
$$D^{3}\left[\frac{1}{1+x^{2}}\delta_{0}^{"}\right] = D^{3}\left[\left[\frac{1}{1+x^{2}}\right]_{x=0}\delta_{0}^{"} - 2D\left[\frac{1}{1+x^{2}}\right]_{x=0}\delta_{0}^{'} + D^{2}\left[\frac{1}{1+x^{2}}\right]_{x=0}\delta_{0}\right]$$

 $= D^{3}\left[\delta_{0}^{"} - 2\delta_{0}\right]$
 $= \delta_{0}^{(5)} - 2\delta_{0}^{(3)}$

Esercizio 2	Sia (g_n) una successione di funzioni continue	su \mathbb{R} che con-
verge uniforme	emente alla funzione continua g . Dimostrare che	e la successione
di distribuzion	ni (φ_{q_n}) converge alla distribuzione φ_q .	
		[punteggio 5]

Vedi Rudimenti di analisi infinito dimensionale, pagina 126.

Esercizio 3 Sia \mathcal{F} l'operatore lineare che opera la trasformata di Fourier

$$\mathcal{F}(f)(\lambda) = \int_{\mathbb{R}} f(x)e^{-i\lambda x}dx$$

Considerando \mathcal{F} come un operatore dallo spazio $(L_1(\mathbb{R};\mathbb{C}), \|\cdot\|_1)$ allo spazio $(C_0(\mathbb{R};\mathbb{C}), \|\cdot\|_u)$, calcolarne la norma $\|\mathcal{F}\|$.

[punteggio 5]

 $\forall f \in L_1(\mathbb{R}; \mathbb{C}) \text{ si ha}$

$$\begin{split} \|\mathcal{F}(f)\|_{u} &= \sup_{\lambda \in \mathbb{R}} \left| \int_{\mathbb{R}} f(x) e^{-i\lambda x} dx \right| \\ &\leq \sup_{\lambda \in \mathbb{R}} \int_{\mathbb{R}} \left| f(x) e^{-i\lambda x} \right| dx \\ &= \sup_{\lambda \in \mathbb{R}} \|f\|_{1} = \|f\|_{1} \end{split}$$

e pertanto

$$\|\mathcal{F}\| = \sup_{f \in L_1, \ f \neq 0} \frac{\|\mathcal{F}(f)\|_u}{\|f\|_1} \leq 1.$$

D'altro canto, con la scelta

$$f(x) = \begin{cases} e^{ix} & |x| \le 1\\ 0 & |x| > 1 \end{cases}$$

si ha

$$\mathcal{F}(f)(\lambda) = \int_{-1}^{1} e^{i(1-\lambda)x} dx = 2 \frac{\sin(\lambda - 1)}{\lambda - 1}$$

e quindi

$$\frac{\|\mathcal{F}(f)\|_{u}}{\|f\|_{1}} = \frac{\sup_{\lambda \in \mathbb{R}} 2\left|\frac{\sin(\lambda - 1)}{\lambda - 1}\right|}{\int_{-1}^{1} |e^{ix}| \, dx} = \frac{2}{2} = 1$$

Si conclude che $\|\mathcal{F}\| = 1$.

Esercizio 4 Sia $f\in C_c^\infty(\mathbb{R};\mathbb{C})$ e $g=\mathcal{F}(f)$. Dimostrare il cosiddetto teorema di Plancherel, ovvero l'identità

$$\|g\|_2 = \sqrt{2\pi} \, \|f\|_2 \, .$$
 [punteggio 5]

Vedi Rudimenti di analisi infinito dimensionale, pagina 202.

Esercizio 5 Sia T l'operatore su $(\ell_2, \|\cdot\|_2)$ definito da

$$T(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, \dots) = (x_1, x_1, x_1, \frac{x_4}{3}, \frac{x_4}{3}, \frac{x_4}{3}, \frac{x_7}{9}, \frac{x_7}{9}, \frac{x_7}{9}, \dots)$$

Determinare ||T||, T^* , autovalori e autovettori di T.

[punteggio 6]

 $\forall x \in \ell_2 \text{ si ha}$

$$||Tx||_2^2 = 3|x_1|^2 + \frac{3}{9}|x_4|^2 + \frac{3}{27}|x_7|^2 + \dots \le 3||x||_2^2$$

e quindi

$$||T|| = \sup_{x \in \ell_2, \ x \neq 0} \frac{||Tx||_2}{||x||_2} \le \sqrt{3}$$

D'altro canto, con la scelta $x=(1,0,0,\dots)$ si ha $\|Tx\|_2/\|x\|_2=\sqrt{3}$ e quindi $\|T\|=\sqrt{3}$.

L'aggiunto T^* è definito dalla relazione $\langle Tx, y \rangle = \langle x, T^*y \rangle \ \forall x, y \in \ell_2$. Poiché

$$\langle Tx, y \rangle = x_1(y_1 + y_2 + y_3) + \frac{x_4}{3}(y_4 + y_5 + y_6) + \frac{x_7}{9}(y_7 + y_8 + y_9) + \dots$$

si ha

$$T^*y = (y_1 + y_2 + y_3, 0, 0, \frac{1}{3}(y_4 + y_5 + y_6), 0, 0, \frac{1}{9}(y_7 + y_8 + y_9), 0, 0, \dots).$$

L'equazione agli autovalori $Tx = \lambda x$ fornisce

$$x_1 = \lambda x_1$$

$$x_1 = \lambda x_2$$

$$x_1 = \lambda x_3$$

$$x_4 = 3\lambda x_4$$

$$x_4 = 3\lambda x_5$$

$$x_4 = 3\lambda x_6$$

$$x_7 = 9\lambda x_7$$

$$x_7 = 9\lambda x_8$$

$$x_7 = 9\lambda x_9$$

:

Si hanno quindi i seguenti autovalori e autovettori

$$\lambda = 0$$
 $x = (0, x_2, x_3, 0, x_5, x_6, 0, x_8, x_9, \dots)$

$$\lambda = 1$$
 $x = (x_1, x_1, x_1, 0, 0, 0, 0, 0, 0, \dots)$

$$\lambda = 1/3$$
 $x = (0, 0, 0, x_4, x_4, x_4, 0, 0, 0, \dots)$

$$\lambda = 1/9$$
 $x = (0, 0, 0, 0, 0, 0, x_7, x_7, x_7, \dots)$

:

ci $\lambda = 1/(3^n)$ con autovettore $x = (0, 0, 0, \dots, x_{3n+1}, x_{3n+1}, x_{3n+1}, 0, 0, 0, \dots)$

<u>Esercizio 6</u> Sviluppare in serie trigonometrica di Fourier in $[-\pi, \pi]$ la funzione $f(x) = \operatorname{sgn}(x) \exp(x)$ e studiare la convergenza puntuale della serie così ottenuta. Suggerire una funzione g(x) tale che f(x)g(x) ammetta uno sviluppo in serie trigonometrica di Fourier convergente uniformemente in $[-\pi, \pi]$ a fg.

[punteggio 6]

Si ha

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{sgn}(x) e^x \cos(kx) dx = \frac{2(-1 + (-1)^k \cosh \pi)}{\pi (1 + k^2)},$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{sgn}(x) e^x \sin(kx) dx = \frac{2k(1 - (-1)^k \cosh \pi)}{\pi (1 + k^2)},$$

quindi

$$sgn(x)e^{x} \sim \frac{\cosh \pi - 1}{\pi} + \sum_{k=1}^{\infty} \frac{2(-1 + (-1)^{k} \cosh \pi)}{\pi (1 + k^{2})} (\cos(kx) - k \sin(kx))$$

Il prolungamento periodico da $(-\pi, \pi]$ a \mathbb{R} di f(x) è una funzione continua a tratti, con punti di discontinuità in 0 e $\pm \pi$. Pertanto la serie trigonometrica sopra scritta converge puntualmente a f(x) per $x \in (-\pi, 0) \cup (0, \pi)$ mentre per x = 0 e $x = \pm \pi$ converge rispettivamente a $(f(0^+) + f(0^-))/2 = 0$ e $(f(\pm \pi^+) + f(\pm \pi^-))/2 = \sinh \pi$. Scegliendo, ad esempio,

$$g(x) = \begin{cases} 1 & x \ge 0 \\ -e^{-2x} & x < 0 \end{cases}$$

si ha $f(x)g(x)=e^{|x|}$ il cui prolungamento periodico da $(-\pi,\pi]$ a $\mathbb R$ è una funzione continua con derivata prima continua a tratti. Questo garantisce la convergenza uniforme della corrispondente serie di Fourier.