MECCANICA QUANTISTICA E MECCANICA STATISTICA A.A. 2017/2018 – Prof. C. Presilla

Prova A1 – 30 gennaio 2018

Cognome										
Nome										
Matricola										
	1									
penalità										
esercizio	voto									
1		_								
2										
3										
4										
5										
6										
$ 1 \text{Sia } \xi \\ \langle A \xi A\rangle^2, \mathrm{d} $										$=\langle A \xi^2 A angle -$ [punteggio 4]
2 Siano mutano tra		ue osserva	abili che	commu	itano ei	ntramb	e con l	'osserva	bile ξ n	na non com-
$[\alpha,\xi]=0$	$0, [\beta,$	$\xi] = 0,$	$[\alpha, \beta]$	$\neq 0$.						
Dimostrare	che ξ è u	ın'osserva	bile deg	enere.						[punteggio 4]
da due sott	osistemi. hamiltoni	Assumer	ndo che	l'hamilt	oniana	del sist	tema si	a H = 1	$H_1 + H_1$ l sistem	T è formato $_2$, dove H_1 e a è additiva, [punteggio 4]
										rı

4 Un sistema, il cui spazio di Hilbert ha dimensione 3, è descritto dalla hamiltoniana

$$H = \hbar\omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Si considerino le seguenti due osservabili

$$A = a \begin{pmatrix} 0 & 0 & -i \\ 0 & 2 & 0 \\ i & 0 & 0 \end{pmatrix}, \qquad B = b \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

All'istante t=0 viene eseguita una misura di A trovando il valore a. Sia $|\psi_0\rangle$ lo stato del sistema subito dopo tale misura. Determinare:

- 1) il valore di aspettazione di A al tempo t;
- 2) i possibili risultati di una misura di B al tempo t e le corrispondenti probabilità;
- 3) la variazione dell'energia dello stato fondamentale di H, al primo ordine perturbativo, quando ad H viene aggiunto il termine $\hbar\omega B$.

_____ [punteggio 7]

5 Un sistema quantistico (rotatore) è descritto dall'hamiltoniana

$$H = \frac{L^2}{2I} + gBL_z,$$

dove L è il momento angolare orbitale, I il momento di inerzia, B il modulo di un campo magnetico esterno diretto lungo l'asse z che si accoppia con il momento magnetico gL.

- 1) Determinare lo stato $|\psi_0\rangle$ del sistema sapendo che a) una misura di L^2 su $|\psi_0\rangle$ fornisce con certezza il risultato $2\hbar^2$ e b) una misura di $(L_x + L_z)/\sqrt{2}$ su $|\psi_0\rangle$ fornisce con certezza il risultato \hbar .
- 2) Assumendo $|\psi_0\rangle$ come lo stato del sistema al tempo t=0, determinare lo stato del sistema al tempo t>0.
- 3) Determinare il valore di aspettazione di L_x in funzione del tempo.
- Si ricordi che

$$L_\pm=L_x\pm \mathrm{i}L_y, \qquad L_\pm|l,m
angle=\hbar\sqrt{l(l+1)-m(m\pm1)}|l,m\pm1
angle.$$
 [punteggio 7]

6 Si consideri un gas ideale di N particelle di massa m, vincolate all'interno di un cilindro di altezza L e raggio R. L'hamiltoniana di singola particella è

$$H = \frac{|\boldsymbol{p}|^2}{2m} + mgz,$$

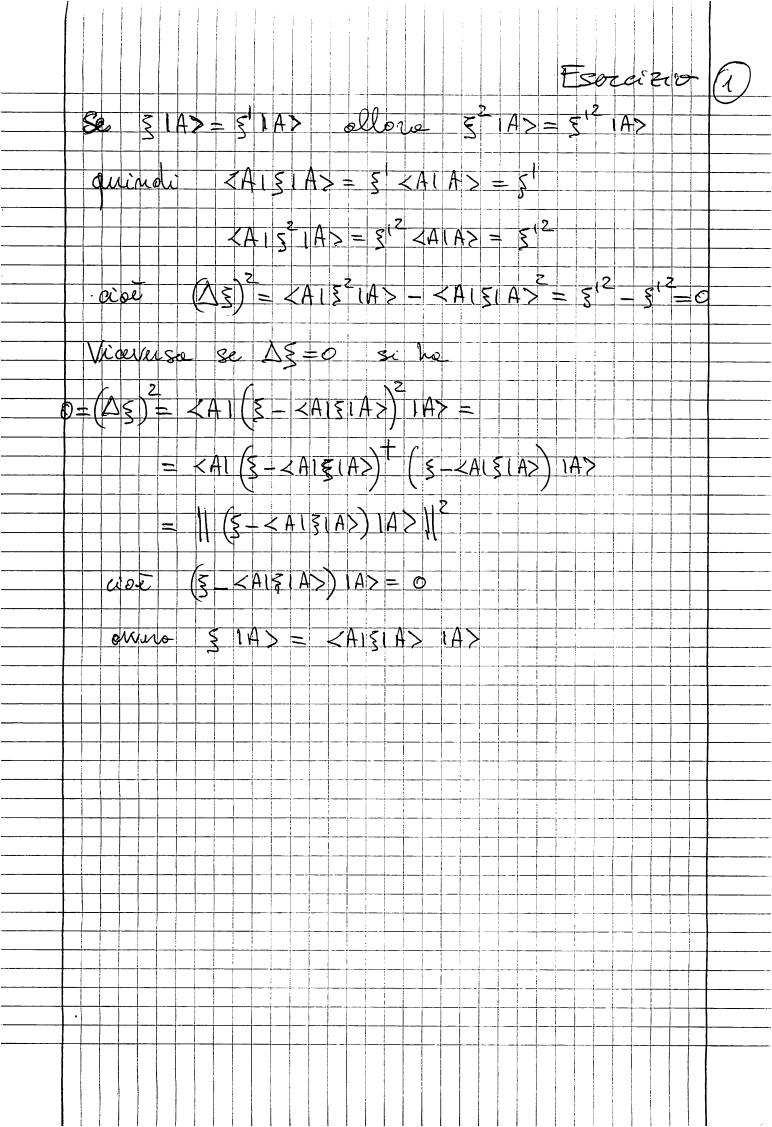
dove z è la quota dalla base del cilindro e g l'accelerazione di gravità, assunta costante. Nell'ipotesi di equilibrio termico a temperatura T e considerando le particelle come classiche, calcolare, al primo ordine nell'approssimazione $k_{\rm B}T \ll mgL$:

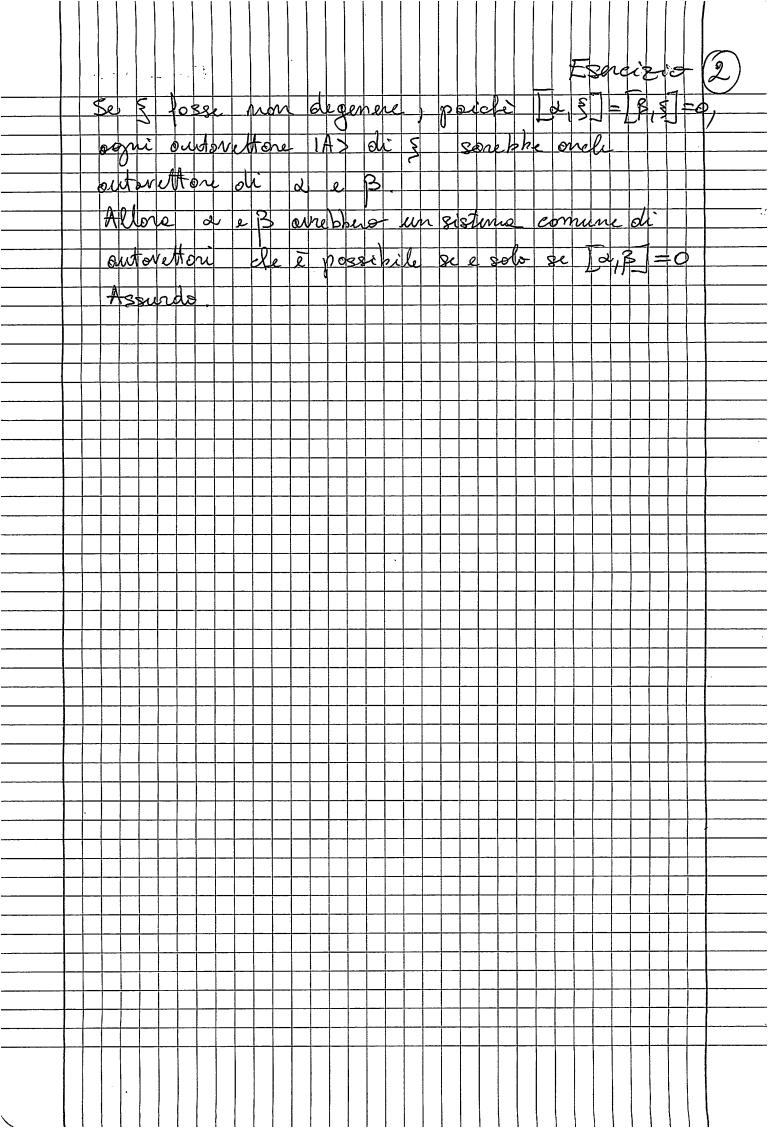
- 1) la pressione P(z) del gas alla quota z;
- 2) l'energia media E del gas.

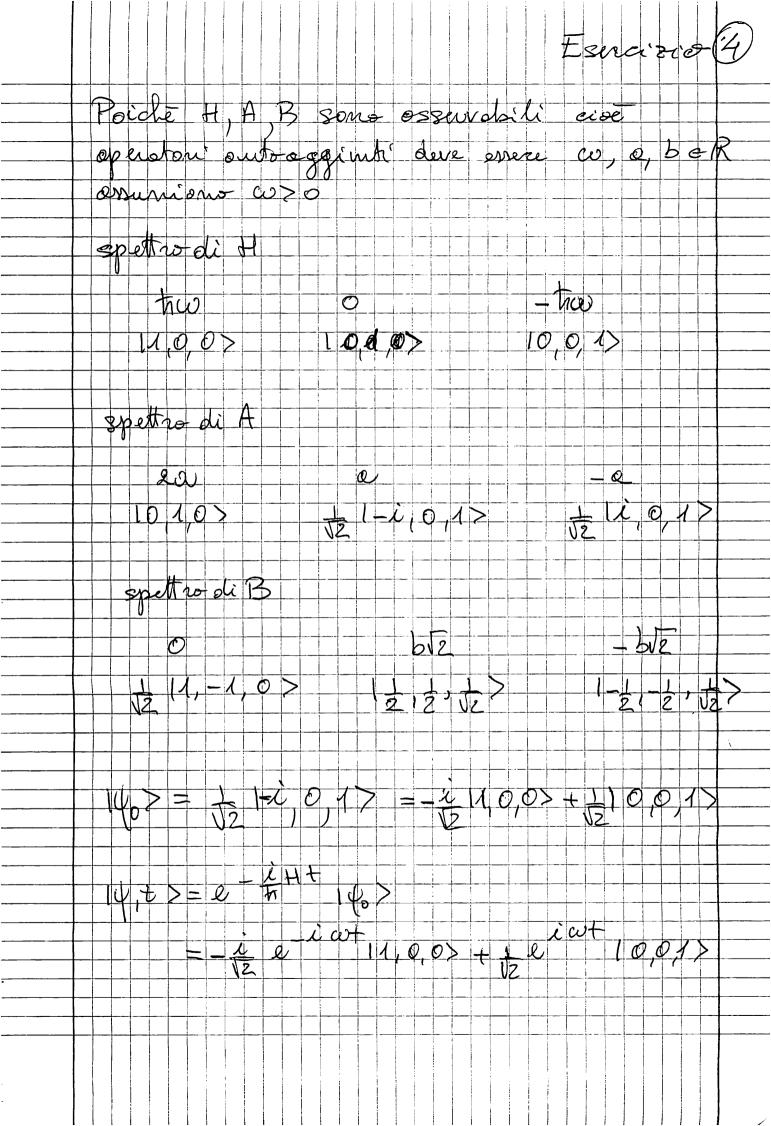
Considerando invece le N particelle come fermioni di spin 1/2 a temperatura T=0, e nell'ipotesi che N sia sufficientemente piccolo così che $\epsilon_{\rm F} \leq mgL$, calcolare:

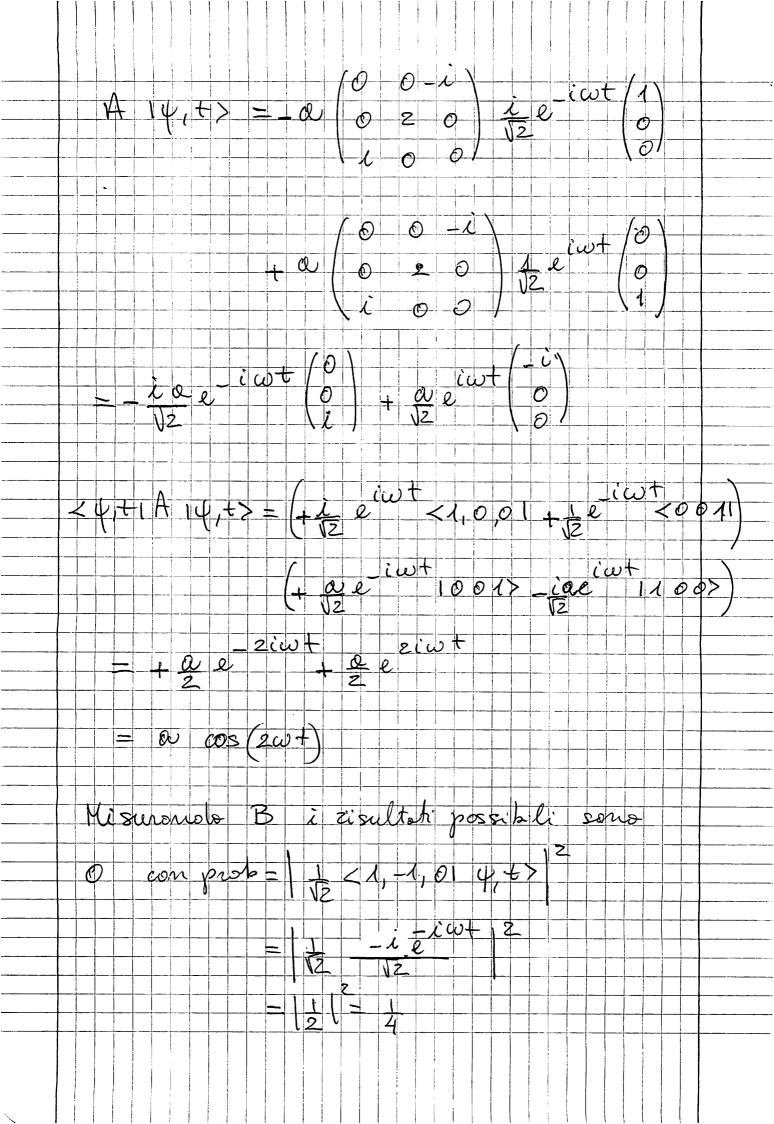
- 3) l'energia di Fermi $\epsilon_{\rm F}$;
- 4) l'energia media E del gas.

[punteggio 7]

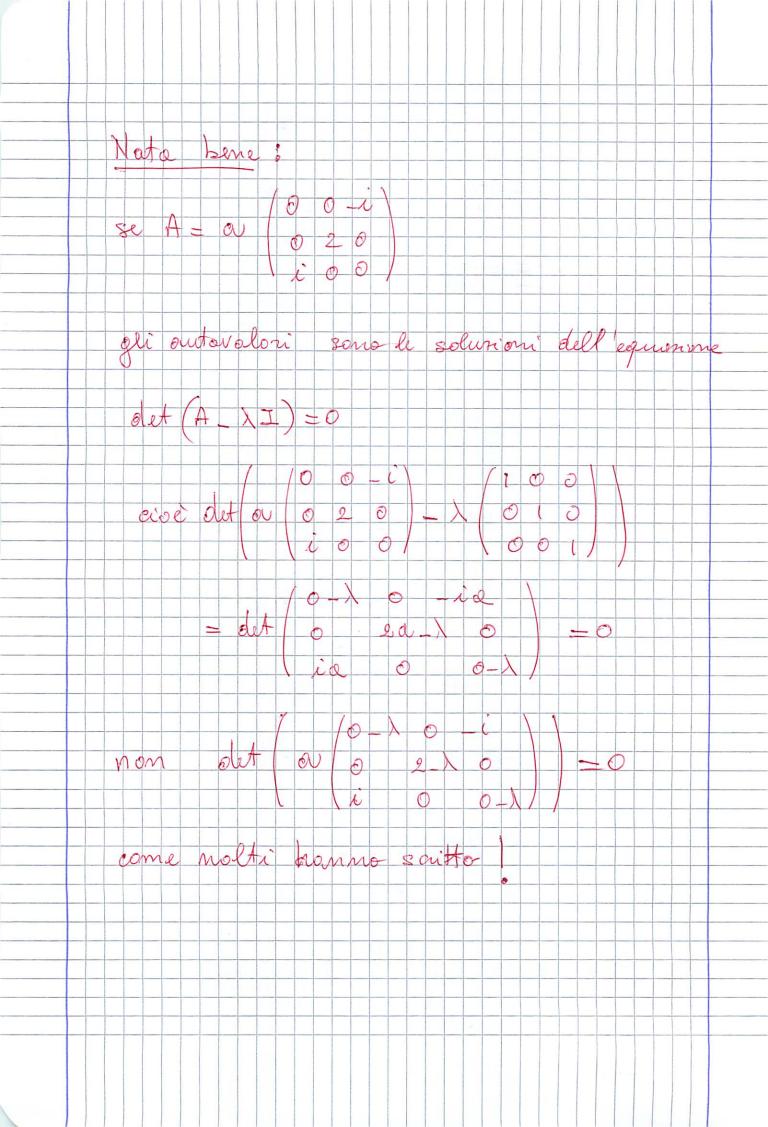




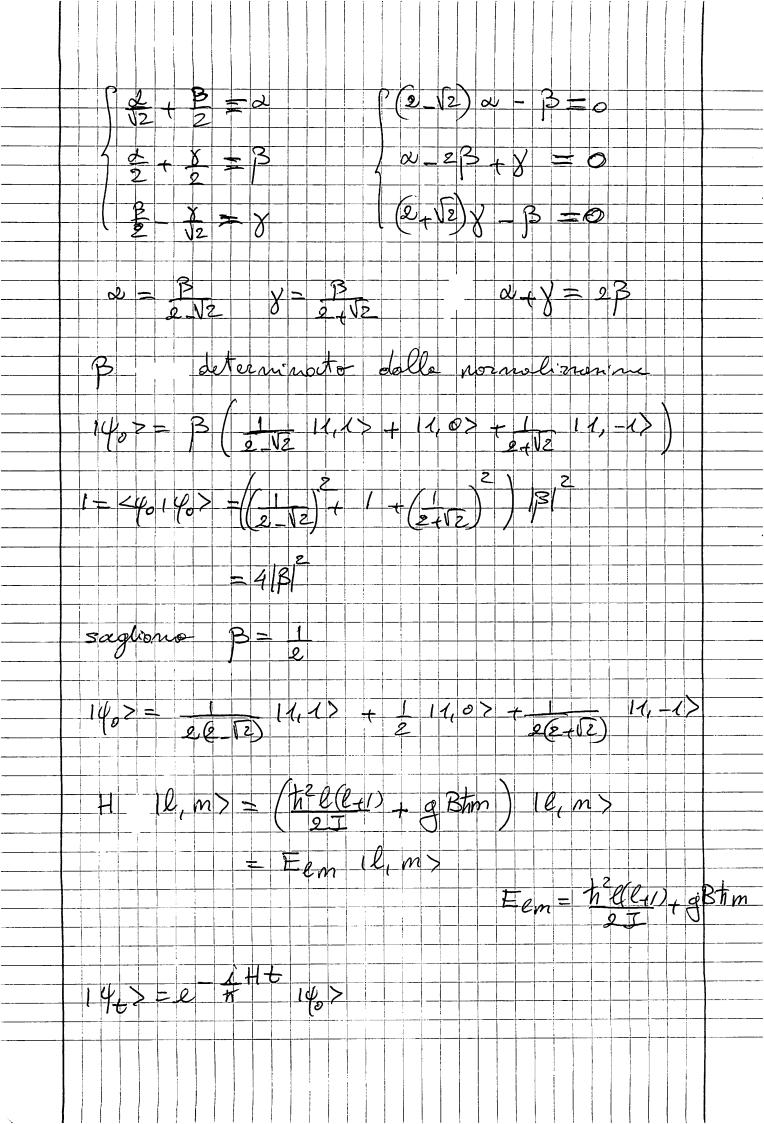


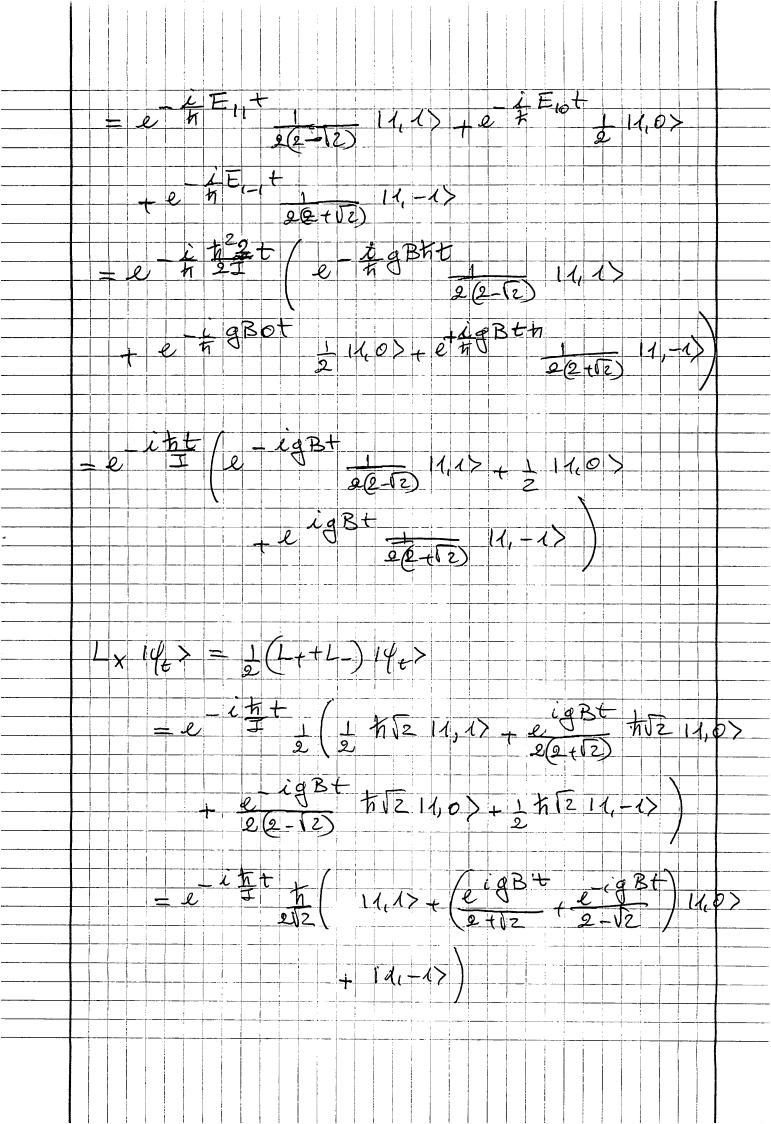


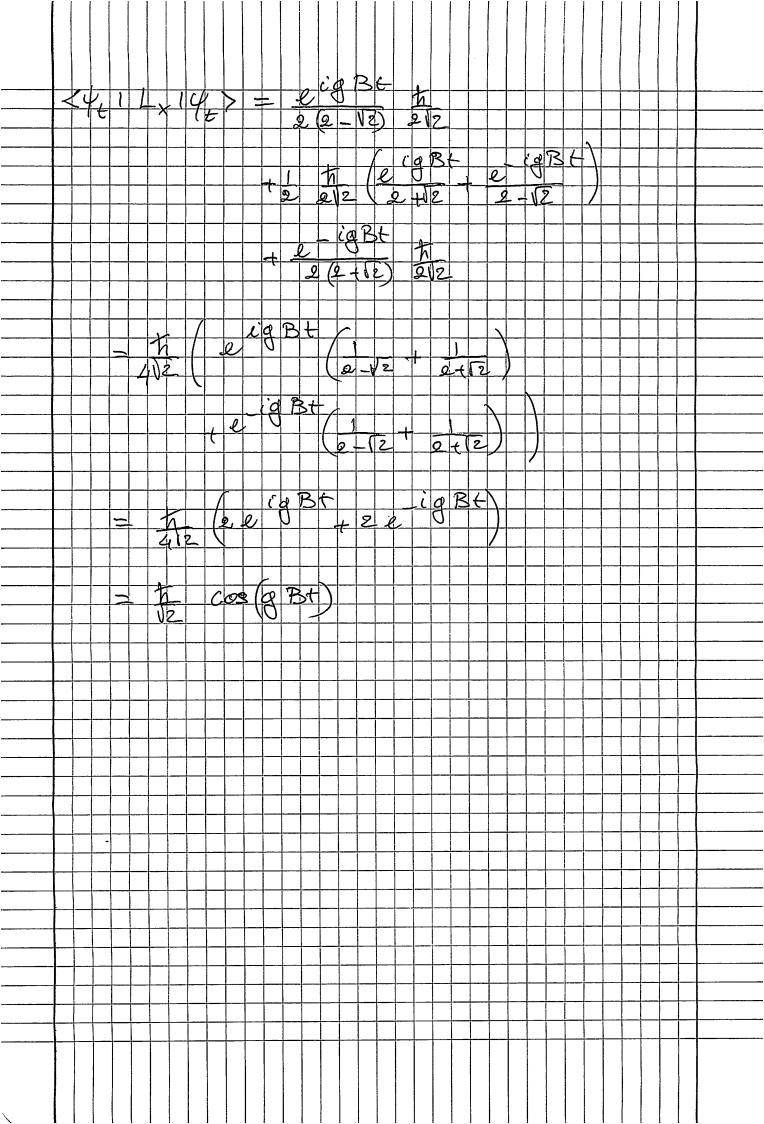
 $b\sqrt{2}$ con prob = $\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right\} \left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$ $= \frac{1}{2\sqrt{2}} \frac{1}{2\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{$ $= \frac{1}{2\sqrt{2}} e^{i\omega t} + \frac{1}{2} e^{i\omega t} + \frac{1}{2} e^{i\omega t}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $= \frac{3}{8} - \frac{1}{2\sqrt{2}} \sin(2\omega t) - \frac{3}{8} \left(1 - \frac{2\sqrt{2}}{3} \sin(2\omega t)\right)$ b 12 an prob = < -\frac{1}{2}, -\frac{1}{2}, \frac{1}{1} \quad \quad \tau \, \tau \) = 2 i at i eint $\frac{3}{8} + \frac{1}{212} \sin(2\omega t) = \frac{3}{8} (1 + 2\sqrt{2} \sin(2\omega t))$ al prino ordine perturbohivo hw -> -hw+ <0011 hwB1001 $\frac{1}{1} \pi \omega_{+}(0,0,1) \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) + \frac{1}{1} \omega_{+} \omega$ hw. hwb . 0

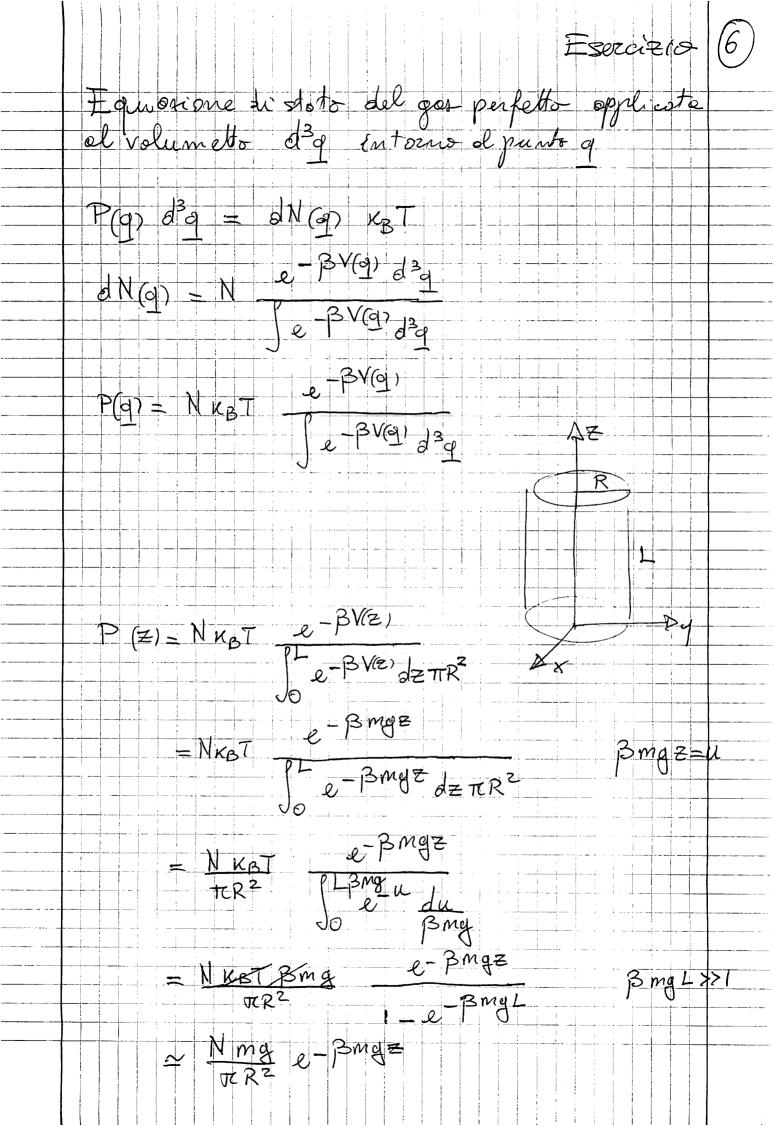


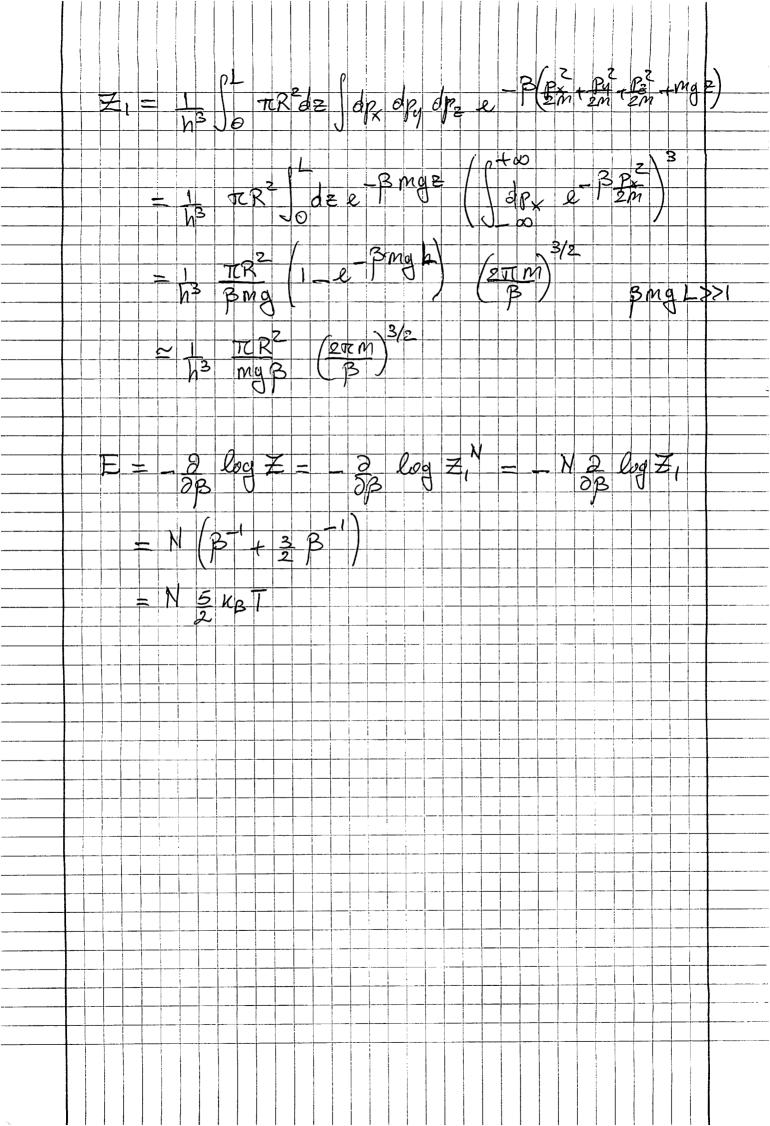
Esercizio $L^{2}|l,m\rangle = h^{2}l(l-1)|l,m\rangle$ $L_{2}|l,m\rangle = hm|l,m\rangle$ l=0,1,2, -lsm = e e) 140> deve evere uo stoto con l=1 140>= 211,12+311,0>+811,-1> $\frac{1}{\sqrt{2}}(1 \times + L_2) |\psi_0\rangle = \frac{1}{2\sqrt{2}}(1 + L_1 + 2L_2) |\psi_0\rangle$ $\frac{1}{2\sqrt{2}}\left(1+1+2L_2\right) \propto 111$ 1 (14+1 +212) 311,0> + Jul (1++1-+242) x 11,-1> = $\frac{\omega h}{2} \left(\sqrt{2} 11,0 \right) + 2111$ + 3/1 (\2 11,1> + \2 11,-1>) (8th (J2 11,07 _ 2 11,-1 >) $111 > \left(2 + \frac{3h}{2} + \frac{3h}{2}\right) + 11,0 > \left(\frac{3h}{2} + \frac{3h}{2}\right)$ +11,-1> (Bt - 8t) = to 140> = to 1112 + t B 11,0 > + ty 11-1> (402 dere ever surostoto sh 1 (x+ Lz) con outsublant











$$G(E) = \frac{2}{h^3} \int_{a}^{3} \frac{1}{9} \int_{a}^{3} \frac{1}{9} S\left(\frac{1}{9} - \frac{1}{9} - \frac{1}{9}$$

$$N(\varepsilon) = \int_{0}^{\varepsilon} G(s) ds' = \frac{s\pi^{2}R^{2}}{3h^{3}mg} \int_{0}^{\varepsilon} (2m\varepsilon')^{3/2} d\varepsilon'$$

$$= \frac{s\pi^{2}R^{2}}{3h^{3}mg} \frac{2}{5} (2m\varepsilon)^{5/2} \frac{1}{2m}$$

$$= \frac{s\pi^{2}R^{2}}{15h^{3}m^{2}g} (2m\varepsilon)^{5/2}$$

$$= A \varepsilon^{5/2} A \varepsilon^{5/2} A \varepsilon d\varepsilon$$

$$= \int_{0}^{\varepsilon} G(\varepsilon) \varepsilon d\varepsilon$$

$$= \int_{0}^{\varepsilon} G(\varepsilon) \varepsilon d\varepsilon$$

$$= \int_{0}^{\varepsilon} A \varepsilon^{5/2} d\varepsilon d\varepsilon$$