
Reines and Cowan Experiement

Reines and Cowan experiment

coincidence plus another gamma within 5 μ s.

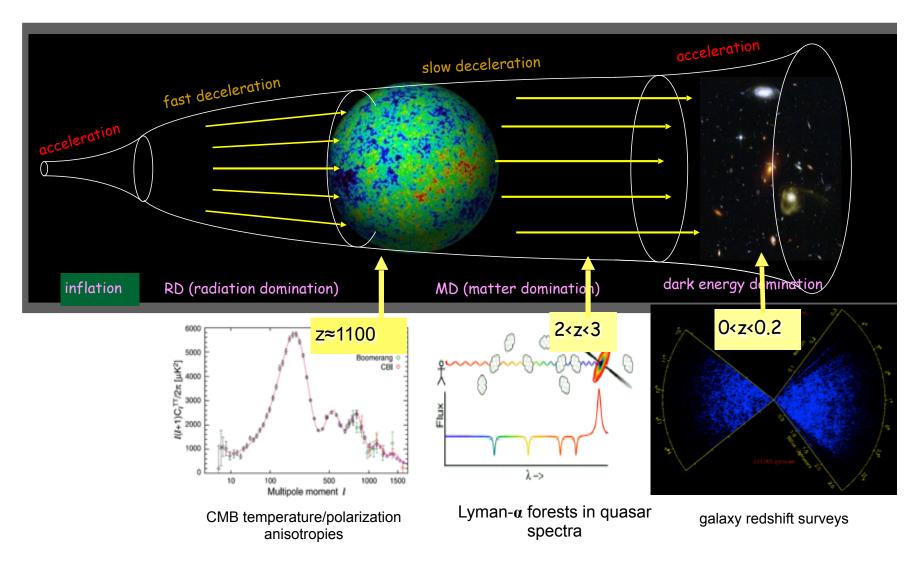
"Detection of the Free Neutrino: A Confirmation", C. L. Cowan, Jr., F. Reines, F. B. Harrison, H. W. Kruse and A. D. McGuire, Science 124, 103 (1956)

Recent m_v constraints and Tritium Experiments

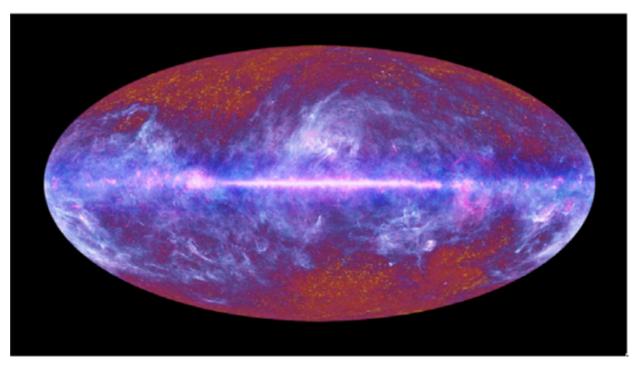
From F.Gatti and Philipp Chung-On Ranitzsch talks at Nu Telescope 2015

Introduction

- Since the flavour oscillations paradigm has been fully a remarkable increase of interest has in investigating directly the absolute mass scale
- The absolute mass scale of neutrinos remains today an open question subject to experimental investigation from both particle physics and cosmology.
- Over the next decade, a number of proposal/projects from both disciplines will aim to test the mass scale further to the very limits of the predictions from oscillation results → sub eV sensitivity.
- After the discovery of a finite neutrino mass Presently the main common issue is: "We need to imagine a PRECISION EXPERIMENT"

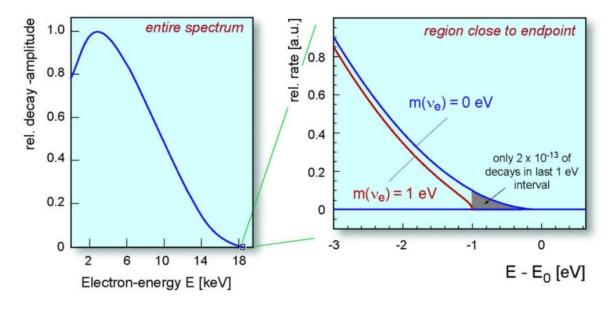

Kinematical methods

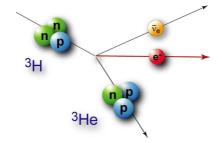
- β decay: $m_j \neq 0$ affect β -spectrum endpoint. Sensitive to the "effective electron neutrino mass": $\mathbf{m}_{\beta} = \{ \sum_j m_j^2 | | U_{ej} |^2 \}^{1/2}$ Flavor-Mass Mixing Parameter
- $0v2\beta$ decay: can occur if $m_j \neq 0$. Sensitive to the "effective Majorana mass": $\mathbf{m}_{\beta\beta} = \{ \sum_j m_j \mid |U_{ej}|^2 e^{i\phi_j} \}$ Flavor-Mass Mixing parameter + imaginary phase
- Cosmology: $m_j \neq 0$ can affect large scale structures in (standard) cosmology constrained by CMB and not CMB (LSS,Lya) data. Sensitive to: $\mathbf{m} = \sum_i m_i$


Flavor-Mass Mixing independent

Cosmological constraints (overview)

Imprint of cosmological neutrinos upon the structure evolution of the universe is testable by cosmology observation

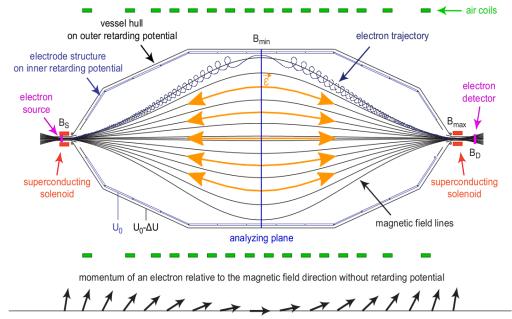

Cosmological Constraints (Planck)



Parameter	TT	TT+lensing	TT+lensing+ext	TT, TE, EE	TT, TE, EE+lensing	TT, TE, EE+lensing+ext
Ω _K	$-0.052^{+0.049}_{-0.055}$	$-0.005^{+0.016}_{-0.017}$	$-0.0001^{+0.0054}_{-0.0052}$	$-0.040^{+0.038}_{-0.041}$	$-0.004^{+0.015}_{-0.015}$	$0.0008^{+0.0040}_{-0.0039}$
$\Sigma m_{\nu} [eV] \ldots \ldots$	< 0.715	< 0.675	< 0.234	< 0.492	< 0.589	< 0.194
N _{eff}	$3.13^{+0.64}_{-0.63}$	$3.13^{+0.62}_{-0.61}$	$3.15^{+0.41}_{-0.40}$	$2.99^{+0.41}_{-0.39}$	$2.94^{+0.38}_{-0.38}$	$3.04^{+0.33}_{-0.33}$
<i>Y</i> _P	$0.252^{+0.041}_{-0.042}$	$0.251^{+0.040}_{-0.039}$	$0.251^{+0.035}_{-0.036}$	$0.250^{+0.026}_{-0.027}$	$0.247^{+0.026}_{-0.027}$	$0.249^{+0.025}_{-0.026}$
$dn_s/d\ln k \dots$	$-0.008^{+0.016}_{-0.016}$	$-0.003^{+0.015}_{-0.015}$	$-0.003^{+0.015}_{-0.014}$	$-0.006^{+0.014}_{-0.014}$	$-0.002^{+0.013}_{-0.013}$	$-0.002^{+0.013}_{-0.013}$
<i>r</i> _{0.002}	< 0.103	< 0.114	< 0.114	< 0.0987	< 0.112	< 0.113
<i>w</i>	$-1.54^{+0.62}_{-0.50}$	$-1.41^{+0.64}_{-0.56}$	$-1.006^{+0.085}_{-0.091}$	$-1.55^{+0.58}_{-0.48}$	$-1.42^{+0.62}_{-0.56}$	$-1.019^{+0.075}_{-0.080}$

(Tritium) β -decay and neutrino mass

 $\beta\text{-decay:} \qquad {}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+1}X_{N-1} + e^{-} + \overline{v}_{e}$


Tritium ³H: $E_0 = 18.6 \text{ keV}$ $T_{1/2} = 12.3 \text{ y}$

Rhenium ¹⁸⁷Re: $E_0 = 2.47 \text{ keV}$ $T_{1/2} = 4.3 \ 10^{10} \text{ y}$

 $\frac{dN}{dE} = K F(E,Z) p (E_e + m_e) (E_0 - E_e) \sqrt{(E_0 - E_e)^2 - m(\bar{v}_e)^2}$

MAC-E Filter

Magnetic Adiabatic Collimation and Electrostatic Filter:

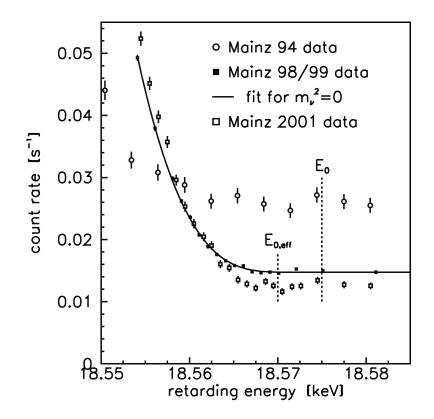
Magnetic guiding and collimation of e^{-} \succ Transform E_{\perp} to E_{\parallel}

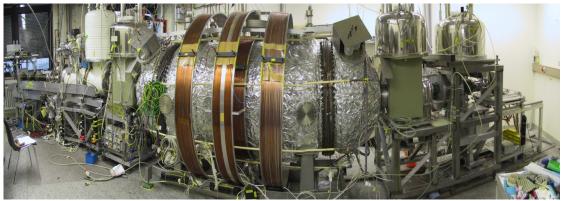
Electrostatic field for energy analysis

- Sharp transmission depending on:
 - Emission angle
 - > Radius in at B_{\min}

Integrated energy resolution:

$$\Delta E = E \ \frac{B_{\min}}{B_{\max}}$$

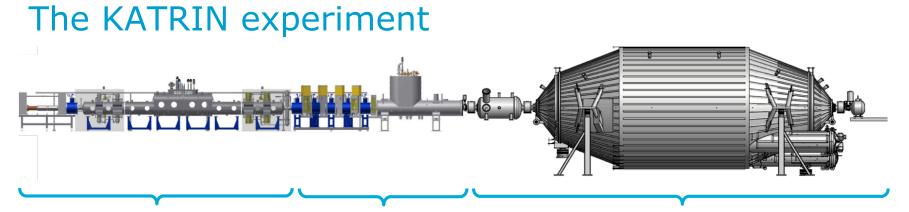



Fig. 20. Averaged count rate of the 98/99 data (filled squares) with fit for $m^2(\nu_e) = 0$ (line) and the 2001 data (open squares) in comparison with previous Mainz data from phase I (open circles) plotted as function of the retarding potential near the endpoint E_0 .

Previous MAC-E filter experiments: Troisk & Mainz

Troisk experiment:

Mainz experiment:



Re-analysis 2011: $m^{2}(v_{e}) = (-0.67 \pm 1.89 \pm 1.68) eV^{2}$ $m(v_{e}) < 2.05 eV$

V.N. Aseev et al., Phys. Rev. D 84 (2011) 112003

Final result 2004: $m^{2}(v_{e}) = (-0.6 \pm 2.2 \pm 2.1) eV^{2}$ $m(v_{e}) < 2.3 eV$

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447

Source section: High intensity, highly stable T₂ source WGTS Tritit

Transport section:

Tritium retention by a factor 10¹⁴

DPS, CPS

Spectrometer and detector section: Electron analysis and detection

The KATRIN experiment

KATRIN sensitivity:

- 3 full years of beam time:
- systematic and statistical error about equal:
 - $\sigma_{stat} = 0.018 \text{ eV}^2$
 - $\sigma_{syst} < 0.017 \text{ eV}^2$
- Sensitivity:
 - m(v) = 200 meV (90 % C.L.)
 - $= 350 \text{ meV} (5 \sigma)$

KATRIN beyond m(v):

- sterile neutrinos:
 - light (eV-range)
 - reactor anomaly
 - heavy (keV-range)
 warm dark matter
- Technological advances:
 - Vacuum technology
 - Field calculation & Particle tracking simulation
- etc.