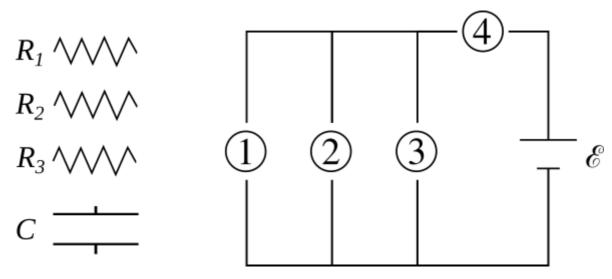
SCRITTO FISICA II - 26/01/2021

Elettricità

Il circuito in figura è composto da un generatore $\mathcal{E}=10$ V e da quattro elementi circuitali indicati con \bigcirc , \bigcirc , \bigcirc , \bigcirc e \bigcirc . La lista degli elementi circuitali è mostrata a sinistra del circuito, con $R_1=R_2=1$ Ω , $R_3=3$ Ω e C=1 nF.

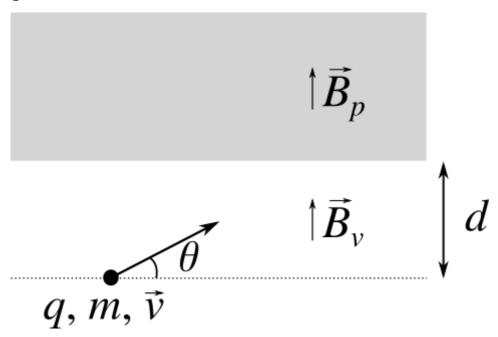


Indicare (giustificando la risposta) per quale combinazione degli elementi circuitali

- 1. la corrente che scorre in (2) è massima (6 punti).
 - o Il condensatore deve trovarsi in uno dei rami in parallelo oppure nel circuito non scorre corrente. Se si trova in \bigcirc lì non scorrerà alcuna corrente, quindi deve trovarsi in \bigcirc o in \bigcirc . Poiché due delle resistenze sono uguali, i rami in parallelo possono contenere due resistenze da $1\,\Omega$ oppure una da $1\,\Omega$ e una da $3\,\Omega$. Nel primo caso il circuito RC equivalente è $4\,\Omega$, mentre nel secondo caso è $7/4\,\Omega$. Applicando la legge di Ohm troviamo che nei due casi scorrono correnti da $2.5\,$ A e $5.7\,$ A. Analizziamo in dettaglio le due varianti. Nel primo caso nel parallelo la corrente si divide in due perché i due rami hanno la stessa resistenza, quindi in \bigcirc scorre una corrente $1.25\,$ A. Nel secondo caso la d.d.p. ai capi del parallelo è $\Delta V_p = \mathcal{E} R_4 i = 4.3\,$ V, e la corrente che scorre nei due rami si trova applicando la legge di Ohm. Così facendo troviamo che nel ramo di resistenza minore scorre una corrente $\Delta V_p/R_1 = 4.3\,$ A, mentre in quella di resistenza maggiore scorre $\Delta V_p/R_3 = 1.4\,$ A. La configurazione richiesta ha quindi R_1 (o R_2) in \bigcirc $R_3\,$ in \bigcirc e $R_2\,$ (o $R_1\,$) in \bigcirc
- 2. La carica immagazzinata dal condensatore è massima (4 punti).
 - o Se il condensatore viene messo in posizione 4 non scorre corrente nel circuito e quindi la d.d.p. ai suoi capi sarà pari a \mathcal{E} . Poiché in questo circuito questa è la massima d.d.p., in queste condizioni si avrà anche la carica massima immagazzinata, che varrà $q = C\mathcal{E}$.
- 3. La potenza dissipata dal circuito è massima (6 punti).
 - o La potenza di un circuito RC è semplicemente $\mathcal{P}=\mathcal{E}i$. Poiché \mathcal{E} è costante la potenza massima dissipata si ha quando è massima la corrente che scorre nel circuito, cioè quando la resistenza è minima. Abbiamo visto che questo avviene quando nei due rami

Magnetismo

Una particella di massa $m=1.68\times 10^{-27}$ Kg e carica $q=1.602\times 10^{-19}$ C si muove all'interno di un solenoide indefinito con velocità \vec{v} . Al tempo t=0 nel solenoide viene fatta scorrere una corrente che genera un campo magnetico uniforme \vec{B}_v di direzione e verso tali per cui \vec{v} forma un angolo $\theta=30^\circ$ con il piano ortogonale al campo (vedi figura). La particella comincia quindi a percorrere un moto elicoidale di velocità angolare $\omega=9.69\times 10^7~{\rm s}^{-1}$ e passo $p=3.28\times 10^{-2}$ m. Una volta percorsa una distanza d=1 m lungo la direzione del campo la particella entra in una regione di spazio in cui è presente anche un materiale di costante magnetica relativa $\kappa_m=10$ (in grigio in figura).



Nota Bene: gli esercizi vanno risolti nell'approssimazione in cui il campo magnetico è costante e uniforme in entrambe le regioni.

- 1. Determinare i raggi di curvatura r_v e r_p della traiettoria percorsa dalla particella quando questa si trova nella regione vuota e nella regione piena (**5 punti**).
 - o Per calcolare i raggi di curvatura serve conoscere il valore del modulo del campo e della componente ortogonale al campo della velocità. Il campo si può trovare dalla relazione $\omega=qB_v/m_r$ da cui si ricava:

$$B_v = rac{\omega m}{q} = 1 \, \mathrm{T}.$$

Il valore del modulo del campo nella regione piena è quindi $B_p=\kappa_m B_v=10$ T. Considerando che la componente della velocità ortogonale al piano (e quindi parallela al campo) è $v_o=v\sin\theta$, per il passo dell'elica vale la relazione $p=2\pi v\sin\theta/\omega$, da cui si trova:

$$v = \frac{p\omega}{2\pi\sin\theta} = 10^6 \text{ m/s}.$$

Ricordando che $r=mv_p/qB$, dove $v_p=v\cos\theta$ è la componente della velocità ortogonale al campo, si trova:

$$r_v = rac{mv\cos heta}{qB_v} = 9.03 imes10^{-3} ext{ m} \ r_p = rac{mv\cos heta}{qB_p} = 9.03 imes10^{-4} ext{ m}.$$

- Calcolare il numero di circonferenze complete percorse dalla particella dal momento in cui è stato acceso il campo a quello in cui è entrata nella regione di campo piena di materiale (6 punti).
 - o Per definizione il tempo impiegato dalla particella per percorrere una circonferenza è

$$T = rac{2\pi}{\omega} = 6.48 imes 10^{-8} \, \mathrm{s}$$

mentre il tempo che impiega la particella per attraversare la regione vuota è dato dallo spostamento diviso la velocità:

$$\Delta t = \frac{d}{v \sin \theta} = 2 \times 10^{-6} \,\mathrm{s}.$$

Il rapporto tra questi due tempi è uguale al numero di circonferenze compiute dalla particella:

$$\frac{\Delta t}{T} = 30.9$$

La cui parte intera è il numero di circonferenze complete, $N_c=30$.

- 3. Calcolare il modulo delle componenti della velocità ortogonale e parallela al campo nella regione piena di materiale **(5 punti)**.
 - o Poiché il campo magnetico nella regione piena ha la stessa direzione e lo stesso verso di \vec{B}_v e la forza di Lorentz non fa lavoro, le componenti restano inviariate, quindi si ha:

$$v_o = v\cos\theta = 8.66 imes 10^5 \, \mathrm{m/s}$$

$$v_p = v\cos heta = 5 imes 10^5 \, \mathrm{m/s}$$