
Ideal Gas in a Nutshell

QN =
1

N !λ3N

∫
d~r1....d~rN exp−βV (~r1, ~r2, ..., ~rN ) (1)

(note: V (~r...) is the potential, V without argument is the volume)

=
V N

N !λ3N
=
QN1
N !

(2)

where Q1 = V
λ3 . The Free Energy F can be written as

βFN = − lnQN = −[N ln
V

λ3
−N lnN +N ] = N [ln ρλ3 − 1] (3)

To evaluate the pressure, we differentiate βFN finding

βP = −∂βFN
∂V

=
N

V
= ρ (4)

and finally, the chemical potential µ is

βµ =
βG

N
=
βF + βPV

N
= ln ρλ3 (5)

and z = expβµ = ρλ3.

Ideal gas of clusters

Q =
∞∏
n=1

QNn
n

Nn!
(6)

Note that Qn is the partition function of the cluster, i.e. the conditions for being a cluster must
be satisfied. This introduces a constraint (a reduction) of the phase space d~r1....d~rN , that we may
indicate with a ′ sign in the integration. While it is simple to define a cluster as a group of particles
such that each particle is connected to any other particle via a sequence of bond, it is sometime
less clear how to define a bonded pair. In the case of strong bonds (the one commonly found in
association) or in the case of square-well like interaction, there is not much ambiguity.
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Qn =
1

n!λ3n

∫ ′

d~r1....d~rN exp−βV (~r1, ~r2, ..., ~rN ) (7)

Note also that particles can be not spherical. In this case

Qn =
1

n!λ3n

∫ ′

d~r1....d~rNdΩ1...dΩN exp−βV (~r1, ~r2, ..., ~rN ,Ω1, ....ΩN ) (8)

where now λ includes the rotational component of the integral over the kinetic energy. In these cases
it is convenient to redefine λ

′3 = λ3/
∫
dΩ1 and define a spherically averaged partition function

Qn =
1

n!λ′3n

∫ ′
d~r1....d~rNdΩ1...dΩN exp−βV (~r1, ~r2, ..., ~rN ,Ω1, ....ΩN )∫

dΩ1...dΩN
(9)

Going back to the calculation of F , we have

βF = − lnQ = −
∞∑
n=1

[Nn lnQn −Nn lnNn +Nn] (10)

To find the cluster size distribution in equilibrium Nn this time we have to minimize βF under the
constraint

∑
n nNn = N . Introducing a Lagrange multiplier α, we get

∂(βF + α
∑

k kNk)

∂Nn
= 0 (11)

ln
Nn

Qn
− nα = 0 (12)

or
Nn = Qn(expα)n (13)

Since N1 = Q1 expα, the same expression can be written as

Nn = Qn
Nn

1

Qn1
= Qnz

n (14)

since ρ1 = z

The resulting free energy is
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βF = −
∞∑
n=1

[Nn lnQn −Nn lnQn
Nn

1

Qn1
+Nn] = −

∞∑
n=1

[nNn ln
N1

Q1
+Nn] = N lnN1/Q1 −#c (15)

where #c is the total number of clusters in the system. The free energy, in the ideal gas of cluster
approximation, can always be written as

βF = Nβµ−#c (16)

which is reminiscent of the ideal gas relation #c = βPV . Note that the monomer concentration
(which fix the value of µ) and the total number of clusters are the only information we need to
write down the system free energy.

Warming up and simple definitions

To warm up, let’s evaluate the partition function for the monomer (setting λ
′3 = 1)

Q1 = V (17)

For the dimer Q2 = V
∫
dr12dω1dω2e

−βV (r12,ω1,ω2). If we assume that the interaction is square-well
like ( a potential well of depth -u0 (u0 > 0) and volume of a single patch V 11

b and that the particle
has f patches

Q2 =
V

2
f2V 11

b exp (βu0) (18)

In the case of the Kern-Frenkel potential V 11
b = 4

3π[(σ + ∆)3 − σ3)]χ2 where χ is the coverage, i.e.

the fraction of surface defining a patch χ = 1−cos θ
2 .

Pictorial representation of a f = 4 Kern-Frenkel particle (left), in a non-bonded dimer configuration (center) and in a bonded one (right)
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Theory f = 2

Several interesting experimental systems are described by equilibrium polymerization, when aggre-
gating particles form chains of independent bonds

For the case f = 2, the partition function can be written as

Qf=2
n =

ωn
n!
V [V 11

b exp (βu0)]
#b (19)

with #b = n− 1 and
ωn
n!

= 2n−1 (20)

To calculate ωn one considers that the first particle can be selected in n ways and that it has two
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possible bonding configurations. The second one among the n− 1 remaining particles, always with
two bonding possibilities. Hence

ωn = 2n× 2(n− 1)× 2(n− 2)× .....× 2 = n! 2n−1

Hence
Qf=2
n = 2n−1V [V 11

b exp (βu0)]
n−1 = V [2V 11

b exp (βu0)]
n−1 (21)

This expression has a simple interpretation: V is the center of mass partition function and [2V 11
b exp (βu0)]

the partition function of a bond. In a chain of n particles there are n − 1 bonds. Often one find
defined a bond free energy as

e−βFb = 2V 11
b exp (βu0)

so that

Qf=2
n = V [e−βFb ]n−1.

The cluster size distribution is given by

Nn =
Nn

1

Qn1
Qn = ρn1V [e−βFb ]n−1 = N1[ρ1e

−βFb ]n−1

We can also find interesting to provide a more physical (or geometrical) interpretation of the cluster
size distribution. Let’s start by defining the bond probability pb as the probability that a random
site in the system is bonded as the ratio between the number of bonded sites in the system 2#b

and the total number of sites in the system 2N . Then

pb =
2#b

2N

The total number of bonds in the system is
∑

n(n− 1)Nn, and hence∑
n

(n− 1)Nn = N −
∑
n

Nn = N −N1
1

1− [ρ1e−βFb ]

pb = 1− N1

N

1

1− [ρ1e−βFb ]

Now, it is easy to convince yourself that the number of monomers are given in term of pb by
N1 = N(1− pb)2, since a monomer must have a two unbonded sites. Hence ρ1 = N1

V = ρ(1− pb)2

(1− pb)2

1− [ρ(1− pb)2e−βFb ]
= 1− pb

or
pb

(1− pb)2
= ρe−βFb

In this language

5



Nn = N(1− pb)2[pb]n−1 (22)

Check
∑
nNn = N (1−pb)2

pb

∑
npnb = N

Hence we have an exponential decay of the cluster size distribution, with characteristic size 1/ ln pb,
diverging when pn → 1:

Nn = N
(1− pb)2

pb
en ln pb (23)

We also note on passing that the expression

pb
(1− pb)2

= ρe−βFb (24)

could have been obtained by using the relation

N2 = Q2
N2

1

V 2

considering that N1 = N(1− pb)2 and N2 = Ω2pb(1− pb)2. The value of Ω2 can be calculated with
simple consideration. A dimer is found by selecting randomly a particle, by selecting randomly
one of the two sites, by bonding it with another particle, by imposing that all remaining sites are
empty. The final result has to be divided by two to account for the probability of starting on the
second particle and re-generating the same dimer. This shows that Ω2 = 1. Then

Npb(1− pb)2 =
4

2!
V Vbe

βu0
N2(1− pb)4

V 2
pb = ρ 2Vbe

βu0(1− pb)2

The same expression can be interpreted as a chemical reaction between two sites

A+A <=> A2

in which ρ2Vbe
βu0 ≡ ρe−βFb plays the role of free energy change from a free state in which the

volume per particle is V/N to a bonded state in which the volume is Vb and the energy is u0.
ρe−βFb = 2NVb

V eβu0 . The entropy change is the ratio between the total volume for bonding and V ,
while the energy change is u0.

Some key elements of self-assembly are already visible in the simple f = 2 case: The way the
aggregation depends on ρ and T and the peak in the constant volume specific heat.

Identical particles with f patches - Limited valence particles
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Let’s now discuss how the previous formal information can be applied to the case of single-bond-
per-patch cases (limited valence particles), when there are f patches per particle and under the
assumption of independent bonds...

Assuming no loops and independent bonds, and neglecting any information on the vibrational
properties of the aggregate as a whole (e.g. the polymer radius of gyration entropy) the general
expression is

Qn =
ωn
n!
V [V 11

b exp (βu0)]
#b (25)

where #b = n − 1 is the number of bonds and ωn is the number of independent bonding configu-
rations (the permutations of all distinct r1...rn,Ω1....Ωn in the integral of Qn, i.e. colored particles
and colored bonding sites). In the absence of bond loops, the system partition function can be
written in term of the total number of bonds in the system #bT = N −#c

Q =
∏
n

QNn
n

Nn!
= [V 11

b exp (βu0)]
#bT

∏ 1

Nn!

(ωn
n!

)Nn

(26)

It is easy to see that ω1 = 1 and ω2 = f2.
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Stockmayer (JCP 11,1945) has shown that the general expression for ωn is

ωn =
fn(fn− n)!

(fn− 2n+ 2)!
(27)

resulting in

Nn = Nn
1

Qn
Qn1

= Nn
1

Qn
V n

=
Nn

1

V n

fn(fn− n)!

n!(fn− 2n+ 2)!
V [V 11

b expβu0]
n−1 (28)

By grouping the terms in power n− 1,

Nn = N1
f(fn− n)!

n!(fn− 2n+ 2)!
[fN1V

11
b expβu0/V ]n−1 (29)

For example, N2 = N1f [fN1V
11
b expβu0/2V ]

Now, for a better understanding, let’s define 1 − pb the probability that an arbitrary patch is not
bonded. Clearly, then the number of monomers is N1 = N(1− pb)f . Also, considering that in the
no-loop approximation the number of bonds in a cluster of size n is n − 1, then —- apart from
geometric factors — Nn must be proportional to pn−1b and to (1− pb)fn−2(n−1) (the number of free
sites is equal to the total number of sites fn minus the number of sites involved in bonding and
each bond blocks two sites). Hence

Nn ∼ pn−1b (1− pb)n(f−2)+2 = pn−1b [(1− pb)(f−2)]n(1− pb)2 = [pb(1− pb)(f−2)]n−1(1− pb)f

This allow us to confirm that
N1 = N(1− pb)f

and identifying the contributions in powers of n− 1
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pb(1− pb)(f−2) = fN(1− pb)fV 11
b expβu0/V (30)

so that
pb

(1− pb)2
= fρV 11

b expβu0 (31)

We can thus write

Nn = N(1− pb)f
f(fn− n)!

n!(fn− 2n+ 2)!
[pb(1− pb)f−2]n−1 (32)

Here N2 = f
2N(1− pb)f [pb(1− pb)f−2] = f

2N [pb(1− pb)2f−2] and N2

N2
1

= 1
2V f

2V 11
b exp (βu0).

One can check that
∑

n nNn = N (when p < pp). The two boxed equations (Eq. 31 and 32)
are particularly important, since they completely define the self-assembly process. The T and ρ
dependence of the aggregation enters in pb. Solving this expression provides pb(T, ρ). Plugging pb
in Eq. 32 allows us to calculate the cluster size distribution.

Understanding Wertheim

Let’s assume we are dealing with particles with valence f , all identical and with the single-bond
per patch condition, and assume that all sites can bind. The maximum number of bonds that the
system can form is Nmax

b = Nf/2. If we call #b the number of bonds in the system, then we can
define a bond probability pb as pb = #b/N

max
b = 2#b/Nf . In term of pb the monomer number is

N(1 − pb)f . Similarly, the total number of clusters is #c = N −#b. Indeed, each bond decreases
by one the number of clusters. Hence #c = N −Nfpb/2 = N(1− fpb/2) and

βF = N ln[ρ(1− pb)f ]−N(1− fpb/2) = N [ln(ρ)− 1] +N{ln[(1− pb)f ] + fpb/2} (33)

This can be written in a more transparent way, separating the ideal gas component from the
bonding remaining part

βF = βFig + βFbonding (34)

where
βFbonding = N{ln[(1− pb)f ] + fpb/2} (35)

The density and T dependence of pb controls everything. All systems with the same valence behave
in the same way if pb is assumed as a scaling variable.

9



One can do a little better by adding the bonding free energy βFbonding to the hard-sphere reference.
Also, consistently, the hard-sphere radial distribution function gHS modulates the bonding volume

V 11
b =

∫
dr12dω1dω2gHS(r12)e

−βV (r12,ω1,ω2)∫
dω1dω2

(36)

To evaluate the T and ρ dependence of pb one need to solve in term of pb the equation for N2,

N2 = Q2
N2

1

V 2

Theory f = 3 (or larger)

When f > 2 ... see slides....

Exercise: Binary mixture of AfA and BfB with only AB bonds

How will the bonding free energy be written in term of bond probability ? First of all, we note that
the probability that a A site is bonded is pA = #b/fNA and that the probability that a B site is
bonded is pB = #b/fNB. Since #b is the same, pA = pB

NB
NA

. Now....

βF = NAβµA +NBβµB −#c (37)

where βµA = ln(NA(1 − pA)fA) and βµB = ln(NB(1 − pB)fB ). The number of clusters is given,
once more, by the number of particles minus the number of bonds (assuming no loops). Hence
#c = NA +NB − pAfNA, or in a more symmetric way #c = NA +NB − pAfNA/2− pBfNB/2.

Hence

βF = NA ln(NA(1− pA)fA/V ) +NB ln(NB(1− pB)fB/V )− (NA +NB − pAfANA/2− pBfBNB/2)
(38)

βF = NA lnNA/V −NA+NB lnNB/V −NB+NA[ln(1−pA)fA+pAfA/2]+NB[ln(1−pB)fB +pBfB/2]
(39)
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where the first contribution can be identified with the ideal gas contribution (including mixing
entropy)

βFig = NA lnNA/V −NA +NB lnNB/V −NB = N [x lnx+ (1− x) ln(1− x) + lnN/V − 1] (40)

and
βFbonding = N [x(ln(1− pA)fA + pAfA/2) + (1− x)(ln(1− pB)fB + pBfB/2)] (41)

Theory f = 2 competing structures ... chains and rings

(if you are interested see Quantitative description of the self-assembly of patchy particles into chains
and rings J. Chem. Phys. 137, 044901 (2012))

If we assume an ideal gas of chains and rings, we can separate the cluster size distribution in two
groups, chains and rings. The monomer is in equilibrium with both and hence

N chain
n = Qchainn

Nn
1

Qn1
(42)

N ring
n = Qringn

Nn
1

Qn1
(43)

or

N chain
n

N ring
n

=
Qchainn

Qringn

(44)

which means that, at the same size, the ratio between number of chains and number of rings
depends only on the ratio between their partition functions. This shows that in the ideal-gas (of
clusters) limit the ring size distribution is not an independent variable, being proportional to the
chain size distribution times the ratio of the ring and chain partition functions.

If we define Q̃n ≡ Qn/V , the chain partition function can be written as

Q̃cn = e(n−1)βFb (45)

in term of the bond free energy Fb. This expression corresponds to assume that each of the n− 1
bonds lowers the free energy by Fb. The ring partition function depends for short rings on the
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geometry of the model, while it reaches a well established asymptotic value for large n values,
dictated by the self-similar nature of the growth process. More specifically, in the dilute limit,

Q̃rn ∼
Vb

nR3
ee(n)

enβFb (46)

where Vb is the bonding volume and Ree is the end-to-end distance. Compared to linear polymers,
rings are thus stabilized by the presence of n bonds (one more than a chain). On the other hand, the
number of configurations allowing for ring formation are proportional to the ratio Vb/R

3
ee(n). The

additional n dependence arises from the number of way a ring can open to form a chain. Assuming
that chains form a self-avoiding walk for large n (i.e. Ree(n) ∼ nνSAW , where νSAW = 0.588 is the
self-avoiding walk exponent), one can thus write

Q̃rn = α(n)
Vb

n3νSAW+1
enβFb (47)

where α(n) describes the model dependent short-n behavior and approaches a constant value for
large n, when the self-similar nature of the chain is reached.

The system free energy can thus be expressed as

βF = N lnN1/V −#c (48)

where

#c =
∑

(N chain
n +N ring

n ) =
∑

N chain
n

(
1 + α(n)n−(3νSAW+1)eβFb

)

Qf=2
n = V [2V 11

b exp (βu0)]
n−1 (49)

Now... ∑
n

N chains
n = V

∑
n

(
N1

V
)n[2V 11

b exp (βu0)]
n−1 =

N1

1− [2ρ1V 11
b exp (βu0)]

∑
n

N chains
n Wn[2V 11

b exp (βu0)] = V
∑
n

Wn(
N1

V
)n[2V 11

b exp (βu0)]
n = V

∑
n

Wn[2ρ1V
11
b exp (βu0)]

n

And the free energy assumes the form

βF = N ln
N1

V
− N1

1− [2ρ1V 11
b exp (βu0)]

− V
∑
n

Wn[2ρ1V
11
b exp (βu0)]

n (50)
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In Wertheim language, since the rings do not have broken bonds, the fraction of unbonded sites
XA = 2

∑
nN

chains
n /(2N), and X0 is the name associated to the fraction of unbonded particles

(monomers) (X0 = N1/N). In this language

XA =
X0

1− [2ρX0V 11
b exp (βu0)]

The normalization condition, to evaluate N1 arises from∑
n

(nN chains
n + nN rings

n ) = N

which can be expressed as

N1

(1− [2ρ1V 11
b exp (βu0)])2

+
∑
n

nWn[2ρ1V
11
b exp (βu0)]

n = N

and defining the Wertheim quantity

G1 =
∑
n

nWn[2ρ1V
11
b exp (βu0)]

n

In symbolic form the normalization condition becomes

X2
A

X0
+
G1

ρ
= 1

Free energy for particles with competitive interactions

Let’s discuss here the case of a particle with 2 A sites, promoting chaining and f B sites promoting
branching, via AB bonds.

In this case, we can define two probabilites: the probability pA that an A site is occupied and pB that
a B site is occupied. The monomer concentration will then be given by N1 = N(1− pA)2(1− pB)f .
In the system there will be NAA bonds of type AA and NAB bonds of type AB. In terms of these
quantities we can write

pA =
2NAA +NAB

2N
pB =

NAB

fN

The probability pA can be written as pAA + p + AB according to the type of bond the site is
involved. Clearly pAA = NAA/N and pAB = NAB/2N .

Inverting these relations
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NAA = NpA −
fNpB

2
NAB = fNpB

The number of clusters is always N −#b = N −NAA −NAB, so that

βF = N ln
N(1− pA)2(1− pB)f

V
−N +NpA +

fNpB
2

=

N(ln ρ− 1) +N

[
2 ln (1− pA) + f ln (1− pB) + pA +

fpB
2

]
where we can easily identify the bonding contribution (per particle)

βFbonding/N = 2 ln (1− pA) + f ln (1− pB) + pA +
fpB

2

To estimate the T and ρ dependence of pA and pb we can make use of the connection between the
number of dimers and of monomers. Defining XA = 1− pA and XB = 1− pB we can immediately
write

N1 = NX2
AX

f
B

NAA
2 = ωAA2 NX2

AX
2f
B pAA

NAB
2 = ωAB2 NX3

AX
2f−1
B pAB

where pAB = f
2 (1−XB) while

pAA = NAA/N = pA −
fpB

2
= (1−XA)− f

2
(1−XB)

Note: ωAA2 = 1. Indeed a dimer can be formed by starting on any monomer N , selecting two
possible sites to start the chaining (2), then connecting with probability pAA and then imposing
the emptiness of the other sites. Then we have to divide by 2 to avoid over-counting (selecting the
final particle as the original one). For the AB case, also ωAB2 = 1, since we select in two ways (2)
a site A and connect it to a B with probability pAB. Note that we would have got the same result
by selecting a B site in f ways and connecting it with an A site with probability pBA. Indeed,
fpBA = 2pAB.

Now, as usual,

NAA
2 =

N2
1

V 2
QAA2 NAB

2 =
N2

1

V 2
QAB2

which gives
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ωAA2 NX2
AX

2f
B pAA =

(NX2
AX

f
B)2

V 2
QAA2

and

ωAB2 NX3
AX

2f−1
B pAB =

(NX2
AX

f
B)2

V 2
QAB2

Simplifying one gets

ωAA2 pAA =
NX2

A

V 2
QAA2 pAA =

NX2
A

V 2

QAA2
ωAA2

and

pAB =
NXAXB

V 2

QAB2
ωAB2

From which we obtain the system to be solved

(1−XA)− f

2
(1−XB) =

NX2
A

V 2

QAA2
ωAA2

and
f

2
(1−XB) =

NXAXB

V 2

QAB2
ωAB2

Now, ωAA2 = ωAB2 = 1 and one gets

QAA2 =
1

ωAA2

V

2!λ′6

∫ ′
d~r12dΩ1dΩ2 exp−βV (~r12,Ω1,Ω2)∫

dΩ1dΩ2
= 2V V AA

b eβuAA

where we have considered that there are 4 idential integral over AA bonds and similarly (there are
2f identical integrals for AB)

QAB2 =
2f

2!
V V AB

b eβuAB

so that the equations to solve are

(1−XA)− f

2
(1−XB) = 2V AA

b eβuAAρX2
A

and
1−XB = 2ρV AB

b eβuABXAXB

Evaluation of Qn via simulations

Work in the subspace of the cluster (′), i.e. the set of configurations in which all n particles belong
to the same cluster.

• 1) Start from infinite T and integrate (see Fantoni et al Soft Matter )
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• 2) Perform a grand canonical simulation in cluster space (see XXXX)

Let’s look at the second method:

P (n, z, T ) =
znQn∑
n z

nQn
(51)

P (n, z, T )

P (1, z, T )
=
zn−1Qn
Q1

(52)

Qn = V
P (n, z, T )

zn−1P (1, z, T )
(53)

From here... and if one want to compare with a system with zMC = N1/V

Nn = Qn
Nn

1

Qn1
=
P (n, z, T )

P (1, z, T )

Nn
1

(zV )n−1
= N1

P (n, z, T )

P (1, z, T )
(
zMC

zGC
)n−1 (54)
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Possible numerical tricks:
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• Implement umbrella sampling (even better successive umbrella sampling)

• Implement re-weighting techniques, such that in each umbrella window P (n) ≈ P (n+ 1)

• Implement parallel tempering

When do we need this ....

• When the gas phase is a cluster phase !

• To evaluate coexistence with crystal phases

• To access the metastability of the gas phase
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