15th International Conference on Magnetic Fluids ICMF-15 July 4-8 2016 Ekaterinburg.

Francesco Sciortino

http://glass.phys.uniroma1.it/sciortino/

Outline:

A review of our last years work on the dipolar hardsphere model

Is there a "gas-liquid" critical point ? Monte Carlo simulations at low T(Albert's question)

Patchy models with similar behavior Competitive interactions

From in-silico to the real world: a designed example of competitive interactions: a re-entrant DNA hydrogel

Fig. 2. The phase diagram of the dipolar network calculated for defect energies of $\varepsilon_1 = 0.67$ and $\varepsilon_3 = 0.12$. At the critical point (circle), the coexistence curve (thick solid line), the phase stability boundary (dashed line), and the connectivity transition (dotted line) meet. The lines denote the coexistence of the end-rich "gas" with the junction-rich "liquid." At low temperatures, the coexistence region narrows to very low densities.

Tlusty-Safran, Science (2000)

Simulation Methods

- Grand Canonical Monte Carlo (Ewald Sums)
- Advance Volume Biasing (100x). Biased insertion
- Successive Umbrella Sampling (100x)

U=-2

Typical snapshots of equilibrium configurations of DHS at T = 0.125, 0.140, 0.155 and $\rho = 0.007$, 0.028, 0.056, 0.140. The

No Evidence of Gas-Liquid Coexistence in Dipolar Hard Spheres

Lorenzo Rovigatti and John Russo

Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy

Francesco Sciortino

Dipartimento di Fisica and CNR-ISC, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy

In the competition between branching and linear chains....

a new actor: The Ring

Nonmonotonic Magnetic Susceptibility of Dipolar Hard-Spheres at Low Temperature and Density

Sofia Kantorovich,^{1,2} Alexey O. Ivanov,¹ Lorenzo Rovigatti,² José Maria Tavares,^{3,4} and Francesco Sciortino^{2,5}

¹Ural Federal University, Lenin Avenue 51, 620083, Ekaterinburg, Russia

²Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy ³Instituto Superior de Engenharia de Lisboa-ISEL, Rua Conselheiro Emídio Navarro 1, P-1950-062 Lisbon, Portugal ⁴Centro de Física Teórica e Computacional, Avenida Professor Gama Pinto 2, P-1649-003 Lisbon, Portugal ⁵CNR-ISC, Università di Roma La Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy

The effect of the rings on the initial magnetic susceptibility

Should we add other ingredients to Safran's approach beside the ring ?

Yes! Other defects are becoming important at low T

The primary clusters: chain and ring

Interaction chain-chain

Branching chain-chain

Interaction chain-ring

Branching chain-ring

Interaction ring-ring

CrossMark Temperature-induced structural transitions in self-assembling magnetic nanocolloids

Cite this: Phys. Chem. Chem. Phys., 2015, 17, 16601

CrossMark

Sofia S. Kantorovich,*^{ab} Alexey O. Ivanov,^b Lorenzo Rovigatti,^a Jose M. Tavares^{cd} and Francesco Sciortino^e

SE

)S with

SPONSE

Fig. 2. The phase diagram of the dipolar network calculated for defect energies of $\varepsilon_1 = 0.67$ and $\varepsilon_3 = 0.12$. At the critical point (circle), the coexistence curve (thick solid line), the phase stability boundary (dashed line), and the connectivity transition (dotted line) meet. The lines denote the coexistence of the end-rich "gas" with the junction-rich "liquid." At low temperatures, the coexistence region narrows to very low densities.

Tlusty-Safran, Science (2000)

Effective temperature valence

A patchy particle models that behaves as Safran's DHS

PATCHY PARTICLES THAT FORM CHAINS:

Re-entrant Phases: What is the physics of competitive interactions ?

the emergence of a structure controlled by energy (stable at low T) which competes with a structure stabilized by entropy at intermediate T.

entropy-energy balance to stabilize different local structures:

Our goal: to design (and to experimentally realize) a patchy-particle gel that forms both on cooling AND on heating

Sándalo Roldán-Vargas¹, Frank Smallenburg¹, Walter Kob² & Francesco Sciortino¹

SCIENTIFIC REPORTS | 3:2451 | DOI: 10.1038/srep02451

How do we form an equilibrium gel?

Small Valence The essence of the gel state of matter

How do we break a gel?

 $\varepsilon_{AB} < \varepsilon_{AA}/2$

Network 2e_{AA}

Blocked particle $4\epsilon_{AB}$

How to stabilize the network: Entropy

Bonding volume AA >> Bonding volume AB

Forming and melting the gel Wertheim theory

Simulations

Can we design a system that does it in the laboratory ?

Bulk quantities of patchy particles !

Experiments: DNA constructs: The patchy particles

Experiments: DNA constructs: The patchy particles

Two serious problems to solve:

How to avoid BB pairing ? How to increase the entropy cost of bonding ?

Nupack Evaluations: www.nupack.org

Now... experiments: The phase diagram

(ethidium bromide)

The phase diagram:

ě,

The T-region where the gel breaks

Conclusions

DHS.. Attempt to write a "expanded" Free-energy accounting for rings and ring-ring interactions

Competitive interactions: very powerful concept for designing sensitive structured materials

DNA constructs: tuning the material properties by design (including nonmonotonic T dependence)

Thanks to...

Alexey O. Ivanov, Sofia Kanthorovic, Lorenzo Rovigatti, J. M. Tavares - Chaining and Branching in DHS

Walter Kob, Sandalo Roldan, Frank Smallenburg - Gel on heating (in silico)

Tommaso Bellini, Roberto Cerbino, Francesca Bomboi Javier Castanon, Patriza Filetici, Manuela Leo, Federico Bordi – Gel on heating (experiments)

Flavio Romano - Gel on heating (design)

