Glass formation, gelation and colloidal aggregation

 17-21 August 2008, Smögen, Sweden.
Aggregation of patchy colloidal particles: The role of the valence

Francesco Sciortino

Phase behavior of functionalized (patchy) particles (a well defined system to study self-assembly and formation of physical-gel)

Geometric Properties (percolation ideas)
Thermodynamic Properties (phase diagram)
Gel Dynamics

Università degli Studi di Roma

Figure 1 Representative examples of recently synthesized anisotropic particle building blocks. The particles are classified in rows by anisotropy type and increase in size from left to right according to the approximate scale at the bottom. From left to right, top to bottom: branched particles include gold ${ }^{31}$ and CdTe ${ }^{71}$ tetrapods. DNA-linked gold nanocrystals ${ }^{50}$ (the small and large nanocrystals are 5 nm and 10 nm respectively), silica dumb-bells ${ }^{72}$, asymmetric dimers ${ }^{73}$ and fused clusters ${ }^{17}$ form colloidal molecules. PbSe^{74} and silver cubes ${ }^{10}$ as well as gold2 ${ }^{26}$ and polymer triangular prisms ${ }^{15}$ are examples of faceted particles. Rods and ellipsoids of composition CdSe^{75}, gold ${ }^{77}$, gibbsite ${ }^{4}$ and polymer latex ${ }^{60}$ are shown. Examples of patterned particles include striped spheres ${ }^{77}$, biphasic rods ${ }^{14}$, patchy spheres with 'valence ${ }^{\prime 34}$, Au-Pt nanorods ${ }^{78}$ (the rod diameters are of the order of $200-300 \mathrm{~nm}$) and Janus spheres ${ }^{13}$. Images reprinted with permission from the references as indicated. Copyright, as appropriate, AAAS, ACS, RSC, Wiley-VCH.

Directional Interactions

(Pine's particles)

Self-Organization of Bidisperse Colloids in Water Droplets Young-Sang Cho, Gi-Ra Yi, Jong-Min Lim, Shin-Hyun Kim, Vinothan N. Manoharan,, David J. Pine, and Seung-Man Yang J. Am. Chem. Soc.; 2005; 127(45) pp 15968-15975;

DNA functionalized particles

$1.10 \mu \mathrm{~m}$	$1.87 \mu \mathrm{~m}$
fluorescent	nonfluorescent

TACATAGTTCCATTTTTT-B = b18
$\mathbf{a 1 8}=$ B-TTTTTTATGTATCAAGGT
ACATAGTTCCATTTTTT-B = b17
$a \mathbf{1 7}=$ B-TTTTTTATGTATCAAGG
CATAGTTCCATTTTTT-B $=\boldsymbol{b} 16$
$\mathbf{a} \mathbf{1 6}=$ B-TTTTTTATGTATCAAG

$$
\begin{aligned}
& \text { Cy5-a12 }=\text { ATGTATCAAGGT-Cy5 } \\
& \text { Cy5-b12 }=\text { Cy5-TACATAGTTCCA }
\end{aligned}
$$

Langmuir 2003, 19, 10317-10323

$$
T>T_{\mathrm{m}}
$$

${ }^{5}$ CGCG-A-TTGTTAAATATTCGTCTT ${ }^{3}$ Linker A

Linker A

${ }^{\prime} \mathrm{S}-\mathrm{A}_{10}$-AAGACGAATATTTAACAA CGCG-A-TTGTTAAATATTCGTCTT ${ }^{3}$ '

Vol 451|31 January 2008

DNA-programmable nanoparticle crystallization

Sung Yong Park ${ }^{1 *}{ }^{\dagger}$, Abigail K. R. Lytton-Jean ${ }^{1 *}$, Byeongdu Lee ${ }^{2}$, Steven Weigand ${ }^{3}$, George C. Schatz ${ }^{1}$ \& Chad A. Mirkin ${ }^{1}$

DNA-dendrimers

Kristen M. Stewart and Larry W. McLaughlin*

Four Arm Ologonucleotide Complexes as precursors for the generation of supramolecular periodic assemblies JACS 126, 20502004

The class of particles I will focus on includes particles with controlled valence (functionality), i.e. with a well defined maximum number f of bonded neighbors.

The "number of bonds" is properly defined

$$
p_{b}=\frac{N_{b}}{N_{b}^{\max }}
$$

To "understand" self-assembly in these systems means:
A) To formulate a theory to calculate $p_{b}(\rho, T)$ Thermodynamics
B) To formulate a theory to calculate the cluster size distribution N_{n} knowing p_{b} Geometric properties

Assume we have N particles with functionaly f
Assume there are N_{b} bonds between the particles

$$
\begin{aligned}
& \qquad p_{b}=\frac{N_{b}}{(f N) / 2} \\
& \text { What is the cluster size distribution ? } \\
& \text { How do particle self - assemble into clusters? }
\end{aligned}
$$

Solution exists for loop-less clusters (Stockmayer JCP 11, 45 1943)

Why theoreticians like loop-less clusters ?
Simple relation between Number of clusters and Number of bonds

Each bond decreases by one the number of cluster !!!

7 clusters - 0 bonds

6 clusters - 1 bonds

5 clusters - 2 bonds

Review of Stockmayer approach:

Let's call N_{n} the number of loopless clusters composed of n particles

$$
\sum n N_{n}=N
$$

The total number of clusters is $N_{c}=\sum N_{n}$

$$
N_{b}=N-N_{c}==>p_{b}=\frac{2\left(N-N_{c}\right)}{N f}
$$

Fixing N and N_{c} (or equivalently N and p_{b}) which is the MOST PROBABLE distribution N_{n} ?

We need to find the N_{n} which maximize the number of modes to connect with N_{b} bonds $N f$ - functionalized particles

La Sapienza
 Università degli Studi di Roma

How to estimate the number of modes Ω

Let's call ω_{n} the number of modes of a cluster of size n
Since particles are identical we have to divide ω_{n} by n !
If there are N_{n} clusters of size n the number of modes becomes

$$
\left(\frac{\omega_{n}}{n!}\right)^{N_{n}}
$$

A further division by N_{n} ! accounts for permutations of clusters of the same size

$$
\begin{gathered}
\text { As a result } \\
\Omega=\frac{1}{N!} \prod_{n}\left(\frac{\omega_{n}}{n!}\right)^{N_{n}} \frac{1}{N_{n}!}
\end{gathered}
$$

Find the cluster size distribution which maximize the entropy satisfying the two constraints:

$$
\sum n N_{n}=N \quad \sum N_{n}=N_{c}
$$

$$
y=\log (\Omega)+\log (A) \sum n N_{n}+\log (B) \sum N_{n}
$$

With A and B Lagrange multipliers

$$
\frac{\partial y}{\partial N_{n}}=0
$$

$$
\log \left(\frac{\omega_{n}}{n!}\right)+n \log (A)+\log (B)-\log \left(N_{n}\right)=0
$$

$$
N_{n}=\frac{\omega_{n}}{n!} A^{n} B
$$

$$
f=3, N=2, \omega_{2}=9
$$

$\mathrm{AD}, \mathrm{AE}, \mathrm{AF}, \mathrm{BD}, \mathrm{BE}, \mathrm{BF}, \mathrm{CD}, \mathrm{CE}, \mathrm{CF}$

$f=3, N=3, \omega_{3}=162$

3 different dimers $(12,13,23)$ each of them made in 9 ways, times 4×3 ways to mix a dimer with the remaining monomer, divided by two to avoid overcounting
$3 \times 9 \times 4 \times 3 / 2=162$

$$
f=3, N=4, \omega_{4}=4536
$$

4 different trimers ($123,124,134,234$), each of them made in 162 ways. Separating the linear and the star configurations one gets: Linear configurations: times 4×3 (bonds, 4 on the trimer and 3 on the monomer) ways divided by two to avoid overcounting: 4×162 x $4 \times 3 / 2=3888$

Star configuration: times 1×3 (bonds, 1 on the central particle and 3 on the monome) divided by three to avoid overcounting $4 \times 162 \times 1 \times 3 / 3=648$.

Università degli Studi di Roma

APPENDIX

A. Combinatory problems

1. We seek w_{n}, defined as the number of ways in which n distinguishable polyfunctional units, each bearing f distinguishable equivalent functional groups capable of reacting with each other, can be formed into a single polymeric molecule containing no cyclic structures.
To permit visualization, a unit can be represented as a mechanical frame containing f holes. We shall represent the polymeric molecule by introducing a number of indistinguishable bolts to connect the frames. Since an n-mer requires $(n-1)$ bonds, $(n-1)$ bolts are required to connect the frames, each bolt passing through a pair of holes belonging to different frames. In addition, we shall place bolts through each of the other holes, these not serving to connect different frames with each other. The total number of bolts required to accomplish this structure is, therefore,

$$
f n-(n-1)=f n-n+1 .
$$

Now consider a particular bolted arrangement, corresponding to one of the w_{n} ways of forming an n-mer. We wish to dissociate it into n separate frames, each containing $(f-1)$ holes filled by bolts and one empty hole, with one free bolt left over. If the free bolt is chosen first, the empty hole in each of the n frames is thereby uniquely determined. Since any one of the ($f n-n+1$) bolts may be chosen to be the free one, there are consequently ($f n-n+1$) different dissociated arrangements of the required type corresponding to the same bolted arrangement. Therefore, if P is the number of different dissociated arrangements of this type which are possible, and if Q is the number of ways in which each such dissociated arrangement can be bolted together, the number of different bolted arrangements is

$$
\begin{equation*}
w_{n}=P Q /(f n-n+1) \tag{A1}
\end{equation*}
$$

Now the number P is simply

$$
\begin{equation*}
P=f^{n} \tag{A2}
\end{equation*}
$$

since any one of the f holes on a frame may be chosen as the empty one, and since the bolts are indistinguishable. To find Q, we introduce the device of assigning a washer to each bolt which is ultimately to be used in forming a bond by passing through two holes. The washers are indistinguishable. The $(n-1)$ bolts which must receive washers may, therefore, be selected in

$$
\frac{(f n-n+1)!}{(n-1)!(f n-2 n+2)!} \text { ways, }
$$

How to calculate ω_{n} ? (Appendix A of JCP 11,45)

since each of the $(f n-n+1)$ bolts is now distinguishable by virtue of its having been assigned to a definite hole in forming a dissociated arrangement. The dissociated arrangement must now be bolted together. Washered bolts are chosen and placed through empty holes not on frames with which they are already connected, the free bolt always being kept for the last. Thus the first washered bolt can choose any of $(n-1)$ empty holes, for it must not pass through the empty hole on its own frame. Then there are still ($n-2$) single frames and one "double frame," or altogether ($n-1$) structures each still carrying one empty hole. Thus the second washered bolt can choose any of ($n-2$) empty holes, the third can choose ($n-3$), and so on. Finally, only the free bolt remains. If the free bolt has no washer, there remains just one empty hole into which it must go. If the free bolt has a washer, there remain two structures, each containing one empty hole, so that the free bolt serves to form the last bond. Hence for a given assignment of the washers the bolting process can be accomplished in $(n-1)$! ways. Combining this result with the number of ways of assigning the washers, we find the number of ways of bolting together a given dissociated arrangement to be

$$
\begin{equation*}
Q=\frac{(f n-n+1)!}{(f n-2 n+2)!} \tag{A3}
\end{equation*}
$$

Substitution of Eqs. (A2) and (A3) into (A1) then yields the desired result

$$
\begin{equation*}
w_{n}=\frac{f^{n}(f n-n)!}{(f n-2 n+2)!} \tag{A4}
\end{equation*}
$$

Performing the sums... one finds

$$
0<p_{b}<\frac{1}{f-1}
$$

$$
\begin{aligned}
& N_{n}=N \frac{f(f n-n)!}{n!(f n-2 n+2)!}\left(1-p_{b}\right)^{f}\left[p_{b}\left(1-p_{b}\right)^{f-2}\right]^{n-1} \\
& N_{c}=N\left(1-p_{b} \frac{f}{2}\right)
\end{aligned}
$$

Simple case: f=2 (chains) (see JCP 126, 194903 2007)

$$
\begin{aligned}
& 0<p_{b}<1 \\
& N_{n}=N\left(1-p_{b}\right)^{2} p_{b}^{n-1}=N \frac{\left(1-p_{b}\right)^{2}}{p_{b}} \exp \left(n \log \left(p_{b}\right)\right) \\
& \left(1-p_{b}\right)^{2} \\
& \underbrace{-8} \\
& p_{b}\left(1-p_{b}\right)^{2} \\
& 0_{b}^{2}\left(1-p_{b}\right)^{2} \\
& 10^{98}
\end{aligned}
$$

Simple case: f=2 (chains) (see JCP 126. 194903 2007)

Now... $\mathrm{f}>2$ (branching). Where does the system percolate?
Bond probability=p

$$
\begin{aligned}
& \mathrm{C}_{1}=\mathbf{f} p \\
& \mathrm{C}_{2}=(\mathbf{f}-\mathbf{1}) p \mathrm{C}_{1} \\
& \mathrm{C}_{3}=(\mathbf{f} \mathbf{- 1}) p \mathrm{C}_{2} \\
& \ldots \ldots \ldots \ldots \ldots \ldots . \\
& \mathrm{C}_{\mathrm{N}}=[(\mathbf{f}-\mathbf{1}) p]^{\mathrm{N}-1} \mathrm{C}_{1} \\
& \text { Critical Value !!! } \\
& (\mathbf{f}-\mathbf{1}) \mathrm{p}_{\mathrm{c}}=\mathbf{1}
\end{aligned}
$$

$$
p_{c}=\mathbf{1} /(\mathbf{f}-\mathbf{1})
$$

Let's go back to the cluster size distribution.... $(\mathrm{f}=3)$

Increase of the polydispersity on increasing pb

Cluster size distribution at percolation

$$
\begin{aligned}
& N_{n}=\frac{f(f n-n)!}{n!(f n-2 n+2)!}\left(1-p_{b}\right)^{f}\left[p_{b}\left(1-p_{b}\right)^{f-2}\right]^{n} \\
& \text { substitute } p_{b}=\frac{1}{f-1} \\
& N_{n}=N \frac{f(f n-n)!}{n!(f n-2 n+2)!}\left(\frac{f-2}{f-1}\right)^{f}\left[\frac{1}{f-1}\left(\frac{f-2}{f-1}\right)^{f-2}\right]^{n}
\end{aligned}
$$

Using Stirling's approximation $\quad \ln (n!)=n \ln (n)-n+\frac{1}{2} \ln (2 \pi n)$

$$
N_{n}\left(p=p_{b}\right) \cong \frac{f}{\sqrt{2 \pi(f-2)(f-1)}} e^{-5 /[(f-2) n]} \quad n^{-2.5}
$$

Cluster size distribution at percolation

$$
N_{n}\left(p=p_{b}\right) \cong \frac{f}{\sqrt{2 \pi(f-2)(f-1)}} e^{-5 /[(f-2) n]} n^{-2.5}
$$

Critical behavior - power law dependence - critical exponent - 2.5

Absence of a characteristic size

Cluster size distribution close to percolation p_c.....

$$
\frac{N_{n}\left(p_{b}\right)}{N_{n}\left(p_{c}\right)}=\frac{\left(1-p_{b}\right)^{f}}{\left(1-p_{c}\right)^{f}} \frac{\left[p_{b}\left(1-p_{b}\right)^{f-2}\right]^{n-1}}{\left[p_{c}\left(1-p_{c}\right)^{f-2}\right]^{n-1}}
$$

Expanding $\left[p_{b}\left(1-p_{b}\right)^{f-2}\right]$ around percolation, one finds

$$
\begin{gathered}
N_{n}\left(p_{b}\right) \sim n^{-2.5} e^{-\mathcal{K} n \Delta p^{2}} \\
N_{n}\left(p_{b}\right) \sim n^{-\tau} f\left(n^{\sigma} \Delta p\right) \\
\tau=2.5 \quad \sigma=0.5
\end{gathered}
$$

$\begin{gathered}\text { Mean Cluster Size } S \\ \text { Diverges at percolation with critical exponent -1 }\end{gathered} \quad S=\frac{\sum_{n} n^{2} N_{n}}{\sum_{n} n N_{n}}$

Fraction of particles in the infinite cluster:

$$
\begin{gathered}
P_{\infty}=1-\frac{\sum_{n} n N_{n}}{N} \\
P_{\infty}(f=3)=0, \quad p_{b}<0.5 \\
P_{\infty}(f=3)=1-\frac{\left(1-p_{b}\right)^{3}}{p_{b}^{3}}, \quad p>0.5
\end{gathered}
$$

f=3

Beta=1

$$
P_{\infty} \sim\left(p_{b}-p_{b}^{\text {percolation }}\right)
$$

$$
\begin{gathered}
\text { Predictions (close to } p_{c} \text {) : } \\
n_{s} \sim s^{-\tau} f\left[s^{\sigma}\left(p-p_{c}\right)\right]^{\text {No loops: } \tau=2.5, \sigma=0.5\left(\mathrm{~d}_{\mathrm{f}}=4\right)} \begin{array}{c}
\text { 3d (approx): } \tau=2.18, \sigma=0.45, \mathrm{~d}_{\mathrm{f}}=2.53
\end{array} \\
S=\int s^{2} n_{s} \sim\left|p-p_{c}\right|^{\frac{-(3-\tau)}{\sigma}} \quad \gamma \quad \text { suscettibility } \\
P_{\infty} \sim\left|p-p_{c}\right|^{\frac{(\tau-2)}{\sigma}} \quad \beta \quad \begin{array}{l}
\text { magnetization } \\
\text { (order parameter) }
\end{array} \\
\xi_{c} \sim\left|p-p_{c}\right|^{-\frac{1}{d_{f} \sigma}} \quad \nu
\end{gathered}
$$

Università degli Studi di Roma

Little break

> Percolation: what does it means for reversible bonds?

Thermodynamics $\quad p_{b}(\rho, T)$
(in the "ideal gas" limit)
$\beta P V=N_{c}$

$$
\begin{aligned}
& N_{c}=N-N_{b}=N\left(1-\frac{f}{2} p_{b}\right) \\
& \beta P=\rho\left(1-\frac{f}{2} p_{b}\right)
\end{aligned}
$$

Since it is a system in dynamic equilibrium

$$
\begin{aligned}
z & \equiv \frac{1}{\Lambda^{3}} \exp (\beta \mu) \quad z=\rho_{1}=\rho\left(1-p_{b}\right)^{f} \\
\frac{\beta F}{V} & =\rho \beta \mu-\beta P=\rho \ln \left[\rho \Lambda^{3}\left(1-p_{b}\right)^{f}\right]-\rho\left(1-\frac{f}{2} p_{b}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{\beta F}{V}=\rho \beta \mu-\beta P=\rho \ln \left[\rho \Lambda^{3}\left(1-p_{b}\right)^{f}\right]-\rho\left(1-\frac{f}{2} p_{b}\right) \\
\beta F\left(p_{b}=0\right)=\beta F_{i g}=\rho \ln \left[\rho \Lambda^{3}\right]-\rho \\
\frac{\beta F_{\text {bonding }}}{V}=\frac{\beta F-\beta F_{i g}}{V}=\rho \ln \left[\left(1-p_{b}\right)^{f}\right]+\rho \frac{f}{2} p_{b}
\end{gathered}
$$

To improve substitute $F_{i g}$ with $F_{H S}$
keeping the same $F_{\text {bonding }}$

An alternative route to the ideal gas of clusters free energy

$$
\begin{gathered}
\frac{\beta F}{V}=\sum_{i}\left(\rho_{i} \ln \left[\Lambda^{3} \rho_{i}\right]-\rho_{i}\right)+\sum_{i} \beta \mathcal{F}_{b}(i-1) \rho_{i} \\
\mathcal{F}_{b} \approx u_{0}-k_{B} T \ln \frac{V_{b}}{\Lambda^{3}}
\end{gathered}
$$

Substituting the known cluster size distributions

$$
\begin{aligned}
& \frac{p_{b}}{\left(1-p_{b}\right)^{2}}=\Lambda^{3} \rho e^{-\beta \mathcal{F}_{b}} \\
& \frac{p_{b}}{\left(1-p_{b}\right)^{2}}= \frac{f N V_{b} e^{-\beta u_{0}}}{V} \\
& p_{b}(\rho, T)!!!!!!
\end{aligned}
$$

Some additional (potentially useful) relations

$$
\begin{gathered}
\frac{\beta F}{V}=\sum_{i}\left(\rho_{i} \ln \left[\Lambda^{3} \rho_{i}\right]-\rho_{i}\right)+\sum_{i} \mathcal{F}_{i} \rho_{i} \\
\beta \mu_{i}=\frac{\partial \beta F}{\partial N_{i}}=\frac{\partial(\beta F / V)}{\partial \rho_{i}}=\ln \left(\Lambda^{3} \rho_{i}\right)+\beta \mathcal{F}_{i} \\
\beta \mu_{i}=i \beta \mu_{1} \\
\ln \left(\Lambda^{3} \rho_{i}\right)+\beta \mathcal{F}_{i}=\ln \left(\Lambda^{3} \rho_{1}\right)^{i}+i \beta \mathcal{F}_{1} \\
\rho_{i}=\rho_{1}^{i} e^{\beta\left(i \mathcal{F}_{1}-\mathcal{F}_{i}\right)} \frac{\Lambda^{3 i}}{\Lambda^{3}} \\
\left(i \mathcal{F}_{1}-\mathcal{F}_{i}\right)=k_{B} T \ln \left(\frac{\rho_{i} \Lambda^{3}}{\rho_{1}^{i} \Lambda^{3 i}}\right) \quad \text { ढ○f }
\end{gathered}
$$

Case $\mathrm{f}=2$

$$
\begin{aligned}
& \frac{\beta F}{V}=\sum_{i}\left(\rho_{i} \ln \left[\sigma^{3} \rho_{i}\right]-\rho_{i}\right)+\sum_{i} \mathcal{F}_{b}(i-1) \rho_{i} \\
& \rho_{i}=\rho\left(1-p_{b}\right)^{2} p_{b}^{i-1} \\
& \frac{N_{c}}{N}=\frac{\rho_{c}}{\rho}=\left(1-p_{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\beta F}{V}=\sum_{i} \rho_{i}\left(\ln \left[\sigma^{3} \rho\left(1-p_{b}\right)^{2}\right]-1\right)+\sum_{i}\left[\mathcal{F}_{b}+\ln p_{b}\right](i-1) \rho_{i} \\
& \frac{\beta F}{V}=\left(\ln \left[\sigma^{3} \rho\left(1-p_{b}\right)^{2}\right]-1-\mathcal{F}_{b}-\ln p_{b}\right) \sum_{i}^{i} \rho_{i}+\left[\mathcal{F}_{b}+\ln p_{b}\right] \sum_{i} i \rho_{i} \\
& \frac{\beta F}{V}=\left(\ln \left[\sigma^{3} \rho\left(1-p_{b}\right)^{2}\right]-1-\mathcal{F}_{b}-\ln p_{b}\right) \rho_{c}+\left[\mathcal{F}_{b}+\ln p_{b}\right] \rho \\
& \frac{\beta F}{V}=-\rho p_{b}\left(\ln \left[\sigma^{3} \rho\left(1-p_{b}\right)^{2} e^{-\beta \mathcal{F}} / p_{b}\right]-1\right)+\rho\left(\ln \left[\sigma^{3} \rho\left(1-p_{b}\right)^{2}\right]-1\right) \\
& \frac{\beta F}{V}=-\rho p_{b}\left(\ln \left[\sigma^{3} \rho\left(1-p_{b}\right)^{2} e^{-\beta \mathcal{F}} / p_{b}\right]\right)+\frac{\beta F_{i g}}{V}+\rho \ln \left[\left(1-p_{b}\right)^{2}\right]-\rho p_{b} \\
& \frac{p_{b}}{\left(1-p_{b}\right)^{2}}=\sigma^{3} \rho e^{-\beta \mathcal{F}_{b}}
\end{aligned}
$$

A chemical reaction approach: Focus on the reactive site

$$
\begin{aligned}
& \mathrm{O}+\mathrm{O}<=\mathrm{C} \\
& F=N_{O} \mu_{O}+N_{C} \mu_{C} \\
& d F=0=d N_{O} \mu_{O}+d N_{C} \mu_{C}=d N_{C}\left(-2 \mu_{O}+\mu_{C}\right)
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Ideal gas } \\
\beta \mu=\frac{\partial \beta F}{\partial N}=-\ln \frac{Q}{N} \quad \frac{N_{C}}{N_{O}^{2}}=\frac{Q_{C}}{Q_{O}^{2}} \\
Q_{O}=V \quad Q_{C}=\frac{1}{2!} V_{b} V e^{-\beta u_{0}} \\
\frac{N_{C}}{N_{O}^{2}}=\frac{\frac{f N}{2} p_{b}}{\left[f N\left(1-p_{b}\right)\right]^{2}}
\end{array} \frac{p_{b}}{\left(1-p_{b}\right)^{2}}=\frac{f N V_{b} e^{-\beta u_{0}}}{V}
\end{gathered}
$$

$$
\begin{gathered}
p_{b}(\rho, T) \\
\frac{p_{b}}{\left(1-p_{b}\right)^{2}}=\frac{f N V_{b} e^{-\beta u_{0}}}{V}
\end{gathered}
$$

Wertheim TPT for associated liquids

$$
\begin{gathered}
\frac{\beta F_{b o n d}^{\text {(particles with } \mathrm{f} \text { identical sticks sites })}}{N}=f \ln \left(1-p_{b}\right)-\frac{f}{2} p_{b} \\
\frac{p_{b}}{\left(1-p_{b}\right)^{2}}=f \rho \Delta \\
\Delta=4 \pi \int g_{H S}\left(r_{12}\right)\langle f(12)\rangle_{\omega_{1}, \omega_{2}} r_{12}^{2} d r_{12}
\end{gathered}
$$

At low densities and low \mathbf{T} (for SW).....

$$
\begin{array}{ll}
g_{H S}(r) \approx 1 & f(r) \approx e^{\beta u_{0}} \\
\Delta=V_{b} \exp \left[\beta u_{0}\right] & 0 \quad(\text { (otherwise volume })
\end{array}
$$

Wertheim in a nutshell

Appendix A: Bianchi et al
J. Chem. Phys. 128, 144504 (2008)

Equilibrium chains

$$
\begin{gathered}
\frac{p_{b}}{\left(1-p_{b}\right)^{2}}=\frac{f N V_{b} e^{-\beta u_{0}}}{V} \\
\frac{E}{N}=-u_{0} \frac{N_{b}}{N}=-u_{0} p_{b} \frac{f}{2}
\end{gathered}
$$

Energy per particle

La Sapienza
Università degli Studi di Roma

$$
\begin{aligned}
& N_{c}=N-N_{b}=N\left(1-\frac{f}{2} p_{b}\right) \\
& <L>=\frac{N}{N_{c}}=\frac{1}{1-p_{b}} \\
& \frac{p_{b}}{\left(1-p_{b}\right)^{2}}=\frac{f N V_{b} e^{-\beta u_{0}}}{V} \\
& \frac{1}{\left(1-p_{b}\right)^{2}}\left(1-p_{b}+1\right)=\frac{1}{1-p_{b}}+\frac{1}{\left(1-p_{b}\right)^{2}}=-\frac{f N V_{b} e^{-\beta u_{0}}}{V}
\end{aligned}
$$

Specific Heat Maxima.....

$\zeta \varnothing \mathrm{ft}$

A line in the phase diagram.......

Università degli Studi di Roma

Branching: Mixtures of two and three....

Binary Mixture of $\mathrm{f}=2$ and 3

A snapshot
of
$<\mathrm{f}>=2.025$

(9) La Sapienza

Università degli Studi di Roma
$\mathrm{T}=\mathbf{0 . 0 5}, \phi=\mathbf{0 . 0 1}$
ζf_{t}

p_{b} predicted extremely well (in this model) !

"Time" dependence of the potential energy $\left(\sim p_{b}\right)$ around the predicted Wertheim value

Università degli Studi di Roma

Connectivity properties and cluster size distributions: Flory and Wertheim

percolation line

No bond-loops in finite clusters !

Generic features of the phase diagram Branching introduces percolation and phase-separation!

Why is there a phase separation?

$$
\beta P=\rho\left(1-\frac{f}{2} p_{b}\right)
$$

Phase Diagram - Theory and Simulations

E. Bianchi, J. Largo, P. Tartaglia,
E. Zaccarelli, FS

Phase diagram of patchy colloids:
towards empty liquids
Phys. Rev. Lett. 97, 168301, 2006

How does the valence affect the phase diagram?

Further reduction with $\mathrm{f}<3$ (mixtures)

Cmplingliqulidsliquids without phase separating!

Possibility to reach (in homogeneous conditions) states where $\beta u \gg 1$ and the bond lifetime is large

A DIFFERENT final fate to the liquid state. Arrested states at low ϕ !!!

Message:

\square
density
In the newly available density region (whose with is controlled lby the vallence), at low T the system forms a "equilibrium" gel

