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We model the dynamics of a molecular network with two distinct energy scales £, << E>. A novel crit-
ical bond dynamics is shown to arise due to screening. We identify an order parameter and determine
the related exponent at the critical temperature 7.. Above T., the dynamics is characterized by a
power-law distribution of bond lifetimes with an exponential cutoff at a time that diverges at 7.. Our

picture is applied to liquid water.

PACS numbers: 61.20.—p

A variety of molecular networks are found in nature.
Usually, the bonds have a single characteristic energy
scale. However, in liquid water' the hydrogen binding
energy (20 kJ/mol) is much larger than k7. Still, the
network of hydrogen bonds is changing on a time scale of
picoseconds. Recent studies? suggest that this reorgani-
zation locally is mediated by a fifth molecule inside the
first coordination shell—in the presence of this “excess”
molecule the local strain weakens the nearby hydrogen
bonds slightly. Motivated by this work we consider here
a simple model of a network characterized by two dis-
tinct energy scales E| and E,, where £\ < E,. We shall
think of F, as a “pure” molecular binding energy, while
E\ is a slight change in energy (per molecular bond) in
the presence of a “defect.” Remarkable features are
found for the model, particularly a critical behavior in
space and time in the limit of infinite E,/E .

To describe the dynamics we carefully distinguish be-
tween regions where at least one defect is present, and
pure regions where there are no defects. In the former
case, the creation of a new defect only involves energies
of order £, while in the pure regions a defect only origi-
nates from removing a bond of energy E;. Regarding a
defect as a missing bond, these considerations lead us to
study the following dynamics on a lattice with coordina-
tion number z.

(i) Let, at time ¢, n=n(b) be the total number of
bonds coming out of the two sites connected by a bond b.
At time ¢ + 1 the bond b is removed with a probability p,
given by

exp(—nE\/kT), if n <2z,
Pr=1o. if n=2z. ()

(ii) Bonds missing at time ¢ are added at time ¢ +1
with a fixed probability A.

In the presence of a defect, the total energy change is
assumed to be nE, when a bond is removed. The zero
probability for removing a bond when n=2z represents
the screening; here we assume F to be infinite—a bond
inside a pure region cannot be removed. Furthermore,
we assume for simplicity that A is independent of the lo-
cal connectivity. Any temperature dependence of the

bonding rate A4 will define a different path in the phase
diagram (T, A4).

We have simulated the model in two dimensions on
hexagonal (z=3), square (z=4), and triangular (z=6)
lattices with 128 x 128 unit cells, and in three dimensions
on cubic ice (z=4) and cubic (z=6) lattices with
32x32x32 unit cells (periodic boundary conditions).
Very long runs (up to 10° updatings per bond) have been
performed near the critical line as discussed below. We
shall refer to the cubic ice lattice unless otherwise stated.

From an initial random distribution of bonds, the sys-
tem reaches (after a transient period) a stationary state
characterized by the fraction p of bonds per lattice
bond.® Let T=kT/E,. If T>1, then p,=1. At equi-
librium, the fraction of bonds that are removed [pp, =p]
equals the fraction of bonds that are added [(1 —p)Al;
ie,p=(—p)A,or

p(T— ) =A/(1+4). )

In general, the system seeks a stationary state where the
competing terms (the bond removal and the bond add-
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FIG. 1. -(7-“,A) phase diagram for the dynamics given by (i)
and (ii). T=kT/E\. The critical line separates the fully con-
nected configuration with p=1 (top left) and a stationary be-
havior with p < 1.
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ing) are equal. However, when the temperature is
lowered below a certain critical temperature 7., we find
that the adding of bonds dominates, and the system is
driven to the fully connected configuration with p=1.
The critical temperature 7, at which p becomes 1 de-
pends on A. _

Figure 1 shows the (T,4) phase diagram—the line
separates the fully connected regime (top left) from the
regime of incomplete bonding. At the critical line we
find a ““second-order” transition from p <1 to p =1, and
1 —p can be considered as an order parameter. In par-
ticular, the transition is not a percolation transition (in

the usual sense).* The critical exponent $ for the order
parameter,

1—p~(T—T)?, (3a)

is calculated to be $=0.67 + 0.02 independent of 4 (Fig.

from when the bond is added to when the bond is re-
moved. Figure 3(a) shows P(t) for various tempera-

tures at A=0.5. The data suggest a scaling form for the
distribution

P(t)=1"°f(z/7*),
with 9=1.0%0.1, and

(4a)

™~ (T—T.) 7. (4b)
Figure 3(b) shows that to a good approximation f(z/r*)
is given by a simple exponential function f(x)~e ~* (¢*
is defined by the inverse slope). The inset shows that
t*(T) obeys the scaling form (4b) with y=1.0+0.1.°

If we consider the time evolution of a cluster of miss-

0
2). We also considered the first correction to the order- 10
parameter dependence by changing A4 for fixed 7. We . (a)
find 10‘2 -
" ““ .
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Thus, for a path 4(T) we have close to the critical line r Wy ‘-.‘ Y
(4, —A)=|A"TH(T—-T,)] 108k . A \
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For paths A(T) crossing the critical line (at T.) we find 0 L v
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To describe the bond dynamics further, we have also . .
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FIG. 2. Order parameter 1 —p vs T-T. (lgwer scale) for
fixed A: 0, 4A=0.9, T.=4.230; O, 4=0.5, T.=3.288; and

1=p vs A.—A (upper scale) for fixed 70 +, 7 =3.288,
A.=0.5; X, T=1.876, A- =0.1.
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FIG. 3. (a) Distribution P(r) of bond lifetimes for 4=0.5
and various values of T close to T. =3.288. From right to left:
T=3.29,3.3,3.33, 3.4, 3.6, 3.9, and 4.2. (b) zP(7) vs 7 (semi-
logarithmic) for the same temperatures as in (a). The corre-

sponding times t* are defined by the inverse slopes. Inset: z*
vs T—T..
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ing bonds (defects), the dynamics close to the critical
point is burstlike. Some of the clusters ‘““die,” and some
of them grow and burst into a number of clusters, some
of which die, some of which again grow. The critical
point can be viewed as the point where a burst barely
reaches infinity. To analyze this picture, we have studied
the evolution below the critical point of a fully connected
configuration, except for one bond. Since the process
defined by (i) and (ii) is stochastic, the time 7 needed to
reach the stable, fully connected configuration varies
from run to run. Correspondingly, the cluster of bonds
affected before the final state is reached varies in size s.
We find that both the distribution D(z) of times 7 and
the distribution D(s) of cluster sizes s follow a power
law at the critical point. Moreover, D(t) ~P(7) (same
exponent ¢).

The critical dynamics described in the simple model
given by (i) and (ii) relies on the screening effect defined
by (1).7 In the mean-field (or infinite-dimensional) limit
where all sites are interconnected there is no screening.
Using e =zE, as the energy scale in the large-z limit we
have

(1—p)A=pexp(—2pe/kT) ; (5)

the rate at which bonds are added [left-hand side of (5)]
balances the rate at which bonds are removed [right-
hand side of (5)]. We immediately observe that p <1
for any positive T (T.=0). Nevertheless, a closer in-
spection of (5) shows that some remnant of the lower-
dimensional behavior persists. For instance, the p value
(2) at high temperatures is valid in all dimensions. Also,
p(T) given implicitly by (5) has an inflection point at 7}
defined by

p(T))=kTe, (6a)
or
Ti=e’Ae/(1+e’A)k . (6b)

The behavior of p(T) at this temperature is particularly
noticeable when e24 1. In this case, p(T) increases
rapidly at 7, from the value (6a) to the low-temperature
behavior?

p(T)=1—A 'exp(—2¢/kT). @)

A rapid increase of p is indeed seen for lower-di-
mensional systems at 7., and (6b) (replacing 7; with
T.) gives a good approximation to the critical line below
kT.=zE\/2.

More realistically, the zero probability in (1) for re-
moving a bond when n=2z should be replaced by
p-=exp(—2zE,/kT). However, when E,>E, the
effect of E, on the dynamics is negligible. For 7 < T,
p(T) will behave according to (7) with e replaced by
zE», but this has no physical significance since E,>> kT,.

For liquid water, the defects (or missing bonds) corre-
spond to so-called bifurcated bonds*® that are associated

with the presence of excess molecules inside the first
coordination shell, and the probability 4 may be viewed
as a local expansion rate. The presence of a critical dy-
namics at a nonzero temperature, here shown to arise
from the underlying mechanism of screening, is in accord
with the experimentally observed power-law increase of
characteristic times, suggesting an unattainable critical
temperature at 7=T.= —46°C.! In addition, recent
molecular-dynamics (MD) simulations® yield a distribu-
tion of hydrogen-bond lifetimes that is described by a
wide power-law region, followed by a fast decay above a
characteristic time t*. The value of t* increases with
decreasing temperature, and appears to diverge at a tem-
perature 7, consistent with that suggested by experimen-
tal studies.

When bonds and bond defects are associated with
different energies, densities, and local compressibilities,
the critical behavior of the order parameter 1 —p at T,
gives rise to a critical behavior of the thermodynamical
properties (specific heat, expansion coefficient, compres-
sibility, etc.). For example, the correspondence between
a missing bond and the presence of an “‘extra” molecule
in the first coordination shell relates the order parameter
1 —p to the density p.'® In particular, the decrease in
the density of liquid water with decreasing temperature
(T <4°C) is caused by the rapid decrease of the order
parameter 1 —p. We emphasize that we have only con-
sidered the liquid phase of water; the model does not
separate a “‘glassy” fully connected liquid phase from a
crystalline ice structure.'!

We notice that from an experimental point of view the
presence of a genuine phase transition in supercooled
liquid water is somewhat unclear due to the onset of
homogeneous nucleation of ice at about —40°C; also it
seems impossible at the present time to extend MD simu-
lations closer to 7, due to diverging relaxation times in
the system. From the model we find E;=kT,./4=500
J/mol, 40 times smaller than the hydrogen bonding ener-
gy E,. Based on this result the effect of a finite £, on
the critical behavior near 7. can be estimated from (7)
(with € replaced by zE,;). At T=T, we find 1 —p
=10 "% hence the changes due to a finite value of E,
are physically irrelevant.

The realization of a critical dynamics and thermo-
dynamics from an underlying and basically simple
screening mechanism raises the interesting possibility of
seeing an anomalous behavior similar to that of water in
other materials, and we urge studies in that direction.
One might consider materials like Ge, Si, GaSb, and
InSb, where the coordination number increases by melt-
ing.'? Other candidates are materials like S, Se, and Te,
where molecular chains are present in the liquid state.'3

In conclusion, we have shown that a critical bond dy-
namics arises due to screening in molecular networks
with two energy scales, £ < F,. We have identified an
order parameter as the fraction 1 —p of missing bonds.
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At the critical temperature 7, this fraction approaches
zero [cf. (3)]. The transition at T, is characterized by a
power-law distribution of bond lifetimes. As an exam-
ple, we have considered liquid water where experiments'
as well as MD simulations have suggested the presence
of an (unattainable) critical temperature.
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