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The Raman spectrum of water in the translational frequency regime has been interpreted in terms of 
localized vibrational density of states and, in seeming contradiction, in terms of contributions of 
long-range dipole induced dipole (DID) reactions. We show that these interpretations can be 
consistently understood by obtaining the Raman spectrum from the normal modes of the inherent 
liquid structures. We calculate the DID contributions to the Raman spectra for each individual mode, 
and show that the aggregate spectrum obtained agrees well with both the DID spectrum obtained 
directly from a molecular dynamics simulation and the spectrum obtained by simulating harmonic 
dynamics (i.e., exciting all the modes at once and calculating the DID spectrum from the resulting 
dynamical trajectory of the system). 

1. INTRODUCTlON 

Raman spectra for water in the translational vibration 
region have been studied experimentally by many groups.1-4 
More recently, Raman spectra have been calculated 
numerically5-9 for water and for hexagonal ice.” The nu- 
merical calculations have been valuable in their ability to 
separate the various contributions to the spectra observed 
experimentally, thus leading to the identification of features 
in the spectra with specific mechanisms. 

In particular, the depolarized Raman spectrum in the low 
frequency region has been shown to be dominated by the 
DID (dipole induced dipole) collision contributions. The low 
frequency peaks around 60 and 180 cm-’ observed in 
experiments’-3 have been shown to arise principally from 
DID contributions.8 This observation, however, has been 
considered’ to be contrary to previous interpretations of 
these peaksrm3 in terms of localized vibrational excitations of 
molecules. 

In this paper, we present results showing that these two 
interpretations can be understood consistently by comparing 
the DID Raman spectra calculated from molecular dynamics 
(MD) simulations of the liquid state and of the corresponding 
harmonic quenched structures (inherent structures). Specifi- 
cally, we calculate from an MD simulation the depolarized 
DID spectrum. We then calculate the corresponding spec- 
trum from the normal modes of quenched configurations; 
i.e., from configurations obtained by minimizing the poten- 
tial energy of configurations equilibrated in the MD run (ap- 
plications of normal mode analysis to the study of simple 
liquids and water may be found in Refs. 11-14). We show 
that the significant features of the liquid spectrum are cap- 
tured in the spectrum obtained from the normal modes. Fur- 
ther, we show that the normal mode spectrum bears a close 
relation to the normal mode density of states (DOS). Hence, 
while the detailed mechanism for the scattering is the DID 
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interaction, the vibrational DOS determines the observed 
spectrum to a large extent. 

We use the TIP4P potential for water,15 which has been 
shown to be able to reproduce satisfactorily many thermody- 
namic properties of water. Further, simulation studies di- 
rected specifically at obtaining Raman spectra of water using 
TIP4P have shown TIP4P to be satisfactory.’ 

In Sec. II, we describe the details of the MD simulation, 
the procedure used for quenching and the method whereby 
the normal modes and the DOS are obtained. In Sec. III, we 
describe how we calculate the Raman spectra from the MD 
run and the normal modes respectively. In Sec. IV, we 
present and discuss the results. In Sec. V, we discuss the 
conclusions arising from our work. 

!I. COMPUTATIONAL DETAILS 

The MD simulation is performed for a system of 216 
molecules in a cubic box of side 1.89 nm, corresponding to a 
density of 1 gm/cm3. Molecules interact via the TIP4P 
potential,15 a two-body rigid-molecule potential previously 
used to study Raman spectra.8 After equilibrating the system 
in the NVT ensemble at 235 K using the Berendsen 
algorithm,16 the simulation was performed in the NVE po- 
tential for obtaining the configuration trajectory. The integra- 
tion time step was 1 fs and the equilibrated configurations 
were saved every 25 fs, for a total length of 400 ps. The 
stored coordinates are used to obtain the Raman spectra as 
described in the next section. 

Sixteen equally spaced configurations from the MD run 
were then selected and quenched to their closest local 
minima by decreasing the temperature gradually to 0 K.17 
This procedure has been tested to ensure that the initial con- 
figuration loses kinetic energy gradually and reaches the 
closest potential energy minimum. That the resulting con- 
figuration is a potential energy minimum can be verified by 
the absence of any negative eigenvalues when the normal 
mode calculation is performed. 
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In the configurations thus obtained, which are referred to 
as quenched configurations henceforth, each coordinate ex- 
periences a harmonic potential for small oscillations. Then, 
the potential energy is well described by keeping only terms 
of quadratic order in the Taylor expansion, 

In a molecular system, P” can be written as a sum of point 
polarizabilities over all the N molecules in the sczttering vol- 
ume. For each component of the tensor P we have 
P,p=ZffC,P’,B, where 

1 J2V 
V(Xi,..., XN)=V(XOi,....,XON)+Z ~ XiXj+“‘, 

l i I 1 0 
(2.1) 

where the subscript 0 refers to the equilibrium positions of 
all the coordinates xi. 

To obtain the normal modes, we diagonalize the Hessian 
matrix of second derivatives, 

(2.2) 

For the TIP4P potential, the Hessian matrix is defined for the 
set of 6N coordinates of the N water molecules, with 3N of 
the coordinates being center of mass coordinates and 3N 
coordinates being rotational coordinates. The normalized co- 
ordinates xF2M of the center of mass (COM) are given in 
terms of actual COM coordinates Xi, by 

Xia 
COM,~ll2X, 

ra F (2.3) 

where i labels the molecule and Q labels the Cartesian com- 
ponent. A4 is the molecular mass. Similarly, the normalized 
rotational coordinates xaoT are given in terms of the angular 
position fiiL1 with respizt to the cvth principal axis by 

Xf(OT, 1’/2fi 
10 n iay (2.4) 

where I, is the momentum of inertia for that principal axis. 
The principal axes for the TIP4P water molecule are (i) per- 
pendicular to the plane of the molecule, (ii) the bisector of 
the H-O-H angle and, (iii) the axis perpendicular to the first 
hV0. 

The Hessian matrix is calculated numerically, by making 
small displacements along each of the normalized coordi- 
nates xF:M and xy:‘,“‘. The matrix thus obtained is diagonal- 
ized using a standard numerical diagonalization package. 
The resulting eigenfunctions and eigenfrequencies are stored 
for further calculations of the “configuration-averaged” DOS 
and of the Raman spectrum. 

III. RAMAN SPECTRA 

The Raman spectra can be calculated from the Fourier 
tAansform of the time-dependent macroscopic polarizability 
P which is decomposed into the isotropic part Pi, and the 
depolarized part Pdep, given by 

3 

riso(~~~~~ Paa (3.1) 
a=1 

and 

zdep(t)=~ 5 [Pa/3-Sa@iso(t)l~ 
ap=1 

(3.2) 

(3.3) 

is the crfl component of the polarizability tensor of molecule 
i, E“ is the electric field of the incident laser beam, and pi is 
the effective dipole moment on molecule i (i.e., sum of the 
permanent, pi’, and of the induced dipole). Taking into ac- 
count only the molecular polarizabilities and following Refs. 
7-9 pi can be expressed in terms of the local electric field on 
the ith molecule, i.e., the sum of the electric field of the 
incident laser beam plus the electric field generated by all the 
other molecules in the system, as 

/&=pi,o+ n&&+f A&,E&r+ + ..a, (3.4) 

where E, and E& stand for the Cartesian components of the 
electric field and its gradient, a is the molecular bare polar- 
izability, and A is the dipole-quadrupole polarizability. 

From these equations, P& can be written as the sum of 
the bare polarizability, a$, p lus an interaction induced con- 
tribution, which depends only on (i) the electronic properties 
of each isolated molecule and (ii) the relative distance ]Rii( 
of all the pairs ij of molecules in the system. The electric 
field on molecule i produced by the n pole of molecule j [see 
Eq. (3.4)] is a function of ]Rij] given in terms of the n-pole 
propagator, 

T(n) a, ,....a, (ij)=( - l)“V,r “‘V,,IRijl-‘. (3.5) 

Keeping only the first order term in T(“)(ij) for the dipole 
induced dipole, we have, 

P$=cY,~+~ a’,,T!$(ij)ct&+~~* . (3.6) 
j#i 

The first term in Eq. (3.6) describes the response to the 
external field on i. It gives rise to a depolarized contribution, 
strictly related to the single-molecule rotational motion, i.e., 
mainly in the region above 400 cm-‘. 

The second term describes how the changes induced by 
the external field on molecule j propagate to molecule i via 
the polarizability of molecule j. This term, related to the 
collective molecular modes, has been shown to be the lead- 
ing contribution in the translational frequency region we are 
interested in. For this reason, we consider only the DID [sec- 
ond term in Eq. (3.6)] in the present work. Further, we treat 
only the isotropic part of the polarizability tensor cr, since 
the inclusion of the nondiagonal components does not pro- 
duce significant contributions in the depolarized spectrum.18 

The DID polarizabilities of isotropic scatterers (IDID) 
are thus given by 

Pap= a22 c T$(ij), (3.7) 
i j#i 

where CY= ((or r + cu,,+ a,,)/3 and 
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$~(ij)=3RijJ?ij~/I Rijl’. (3.8) 

We use the molecular polarizabilities given in units of 
Am3 by (urr=1.47, a,,=1.528, and a3,=1.468 (from 
Refs. 19 and 20). Equation (3.7) is the basic equation for the 
results described below. The time evolution of the IDID po- 
larizabilities is obtained from the time evolution of intermo- 
lecular distances through Eq. (3.8). 

Note that the structure of the propagator T$(ij) is a 
nonlinear function of the intermolecular distance. Thus, even 
for a system with oscillations at a single frequency w, the 
spectrum of the polarizability will contain contributions at w, 
2w, 3w,... . In the case of a system undergoing harmonic 
motion with many frequencies, the polarizability spectrum 
will have a contribution from each of the excited modes plus 
all the overtones and all the couplings between the modes. 
The IDID Raman spectrum can be stated to have a strong 
relationship to the DOS only if the contribution from over- 
tones and couplings can be neglected compared to the single 
mode contribution. 

We describe here how the spectrum is calculated from 
normal modes. We start by writing the time-dependent posi- 
tion Xia of a given molecule i along the Cartesian axis (Y as, 

Xia(f)=Xra+C Uia,ntn(t)=;Xra+ SXia, (3.9) 
n 

where uicr,n is the component of the normal mode II along 
ia. From the above expression, one obtains the components 
of the time-dependent distance Rij separating molecules i 
and j, as, 

Rij,( t) = (~h-xi”,) + ( ~xY~- 8~7~) “Ryj,+ 6Rij, + 
(3.10) 

The amplitude and time variation of each normal mode 5, is 
given by, 

i%f)=&o CoS(w+ 4); t/lo= 
(2kgT)l” 

% 
> (3.11) 

where o, is the frequency of the mode, kB is the Boltzmann 
constant, and S,, is a random phase shift for the mode n and 
T is the temperature, chosen in the following calculations to 
be the same as the temperature of the MD simulation. The 
amplitude t,, is chosen so as to satisfy the equipartition 
theorem for the average energy per degree of freedom. 

From Eqs. (3.10 )and (3.8), we obtain Paa [given by 
Eq. (3.7)] from which the total normal mode spectrum is 
calculated numerically. 

For low temperatures, treating the displacements SRij as 
small compared to the equilibrium distances Rij, the de- 
nominator in (3.8) can be Taylor expanded and P,, in turn 
can be written as a sum of successive contributions arising 
from couplings of different number of normal modes: 

P,B(t)=P~~+P(dB(t)+P~~(t)+... , (3.12) 

with 

P$= 3cr2 2 R;j$;jsfR;;, 
i,j#i 

(3.13) 

P$( t) = c P$, cos( o,t + S,), 
n 

and 

(3.14) 

P$( t) = c F$,, ,[cos((w,+o,,)f+ s;,,> 
lf,nt 

+COS((O,-wO,,)t+S”,,t)]. (3.15) 

Here, 

i;(l) .+, ,,=3a2 c R; -’ R~~SR~jB,n+R~iBSR~j,,, 
i,j#i i 

(3.16) 

and, 

32) ap.nnp=3ff2 c 
~R~ja,n~R~j~,nt 5 

i,j#i R; ’ -w 
R&R& c Ryj,2 SR& 8RFjy,+,- y= 1.3 2~:; 1,: 3 R~j~i)ySR~j&naR~y,n’ 

-~ C 
ij y=1,3 

R~rR~j~SR~jy.nSR~j?,,) * 
Y. 77=1,3 I 

(3.17) 

Of the above contributions, P$ is time independent and 
does not contribute to the spectrum. Each term with a differ- 
ent frequency in P$(t) and PC&t) contributes separately 
to the power spectrum (i.e., no cross terms) since the 
cosines are orthogonal functions. Further, even terms 
in P$( t) and P$(t) which have the same frequency 
contribute independently since each normal mode has a 
random phase which lead to the cancellation of products 
between such terms when the phases are averaged. Thus, 

the terms in Eq. (3.12) contribute additively to the power 
spectrum of Pap(t) when averaged over phases of 
the modes. In particular, considering only P$, we can 
calculate the contributions to the total spectrum wherein 
no couplings between normal modes are present. The 
single-mode spectrum is calculated in this fashion, 
using only P$(t) (or, equivalently, binning P$ in 
frequency). The second order spectrum is calculated 
using P$( t). 
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FIG. 1. The full line shows the IDID spectrum from the MD simulation at 
235 K; two finite-frequency peaks are seen, at 50 and 230 cm-‘. The dashed 
line shows the IDID total normal mode spectrum obtained by exciting one 
normal mode at a time; two finite-frequency peaks are seen, at 60 and 270 
cm-‘. The temperature used in the normal mode calculation is the same as 
that of the MD simulation. The y scale is arbitrary. 

IV. RESULTS AND DISCUSSION 

As shown in the previous section, only the power spec- 
trum of P$(t) is proportional to the DOS,‘with an w depen- 
dent proportionality factor which controls the Raman activity 
of the mode. Analogously, the power spectrum of P’,J(t) can 
be seen as a o-weighted convolution of the DOS with itself. 
If, and only if the contributions of order higher than 1 can be 
neglected, can the interpretation of the total Raman spectra 
in the translational region in terms of collective modes be 
justified. 

To study if this is the case for liquid water, we first 
compare the spectrum when the time evolution of the inter- 
molecular distance is calculated from (a) the MD simulation 
and (b) from the harmonic dynamic using as reference state 
each of the quenched configurations [i.e., calculating the 
time evolution of the intermolecular distances according to 
Eq. (3.10)]. 

Figure 1 shows the MD spectrum along with the total 
normal mode spectrum. The MD spectrum exhibits two 
clearly visible finite frequency peaks. The lower peak is at 
roughly 50 cm- ’ and is fairly sharp. The higher peak at 
roughly 230 cm- ’ is considerably broader. 

The normal mode spectrum; shown on the same scale, 
again exhibits two well-defined peaks, centered at slightly 
higher frequencies respect to the MD spectrum. As expected, 
the intense signal close to zero frequency observed in the 
MD spectrum is not found in the normal mode spectrum due 
to the absence of diffusional processes in the quenched sys- 
tem from which the normal mode spectrum is obtained. This 
difference, however, does not affect our analysis which is 
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FIG. 2. The full line shows the IDID single-mode spectrum obtained by 
exciting all the normal modes; two finite-frequency peaks are seen, at 60 and 
270 cm-‘, as in Fig. 1. The single-mode spectrum shown here is almost the 
same as the total normal mode spectrum shown in Fig. 1. The dashed line 
shows the second-order spectrum which is the leading correction to the 
single-mode spectrum. Note that the second order spectrum makes a negli- 
gible contribution. The y scale is arbitrary, and the same as in Fig. 1. 

focused on the physical origin of the 50 and 230 cm-’ 
peaks. 

Note also that the peak positions in the normal mode 
spectrum are shifted to slightly higher frequencies compared 
to the MD case.21 This shift is also expected and arises (i) 
due to the difference in temperature (finite temperature in the 
MD simulation as compared with the zero temperature of the 
quenched state); and (ii) due to the damping of underlying 
oscillations in the case of the liquid (i.e., MD simulation) 
related to hopping between potential energy minima. Such 
damping of the underlying normal mode oscillations pro- 
duces a broadening of the frequency distribution and a low 
frequency shift. For details see, e.g., Ref. 13. 

The fact that the spectrum calculated in the harmonic 
approximation (i.e., from quenched configurations) main- 
tains the same spectral feature of the liquid state we are 
interested in allows us to apply the powerful formalism of 
the normal modes to the problem. As described in the previ- 
ous section, for quenched configurations it is possible to cal- 
culate exactly the contributions from different orders. Spe- 
cifically, by comparing the single mode spectrum and the 
DOS, we can estimate the influence of vibrational modes on 
the depolarized Raman spectrum. 

Figure 2 shows the first order approximation to the Ra- 
man spectrum. It is clear from Figs. 1 and 2 that the total 
normal mode spectrum is essentially the same as the single- 
mode spectrum. To illustrate this point further, we also show 
in Fig. 2 the second order spectrum, which is the leading 
correction to the single-mode spectrum in the full expression 
of the total normal mode spectrum. The correction due to the 
second order spectrum is quite negligible for most of the 
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FIG. 3. The configuration averaged DOS for the quenched configurations, 
averaged over 16 equilibrium configurations obtained by minimizing the 
potential energy of instantaneous MD configurations. The DOS contribu- 
tions below 400 cm-’ arise from the COM degrees of freedom (transla- 
tional) while the contributions above 400 cm-’ are from rotational degrees 
of freedom (librational). Only the translational frequency range is shown 
here. 

frequency range shown. Hence, we see that the single-mode 
spectrum is a very accurate estimate of the full spectrum in 
the harmonic approximation. 

To further illustrate the relation between the Raman 
spectrum and the DOS (shown in Fig. 3), we show in Fig. 4 
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FIG. 4. IDID single-mode spectrum in Fig. 2 divided by the quenched den- 
sity of states (Fig. 3). Note that the ratio between the spectrum and the DOS 
is not constant but shows a broad “bump” around 270 cm-‘. The y scale is 
arbitrary. 
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FIG. 5. The full line shows the configuration averaged DOS for finite tem- 
perature configurations at 235 K, obtained from instantaneous configurations 
MD configurations. The dashed line shows the translational part of the DOS 
at finite temperature 235 K, obtained by calculating the contribution of the 
COM coordinates to each mode. The zero temperature DOS is also shown 
for comparison (dot-dashed line). Note the absence of a peak at 280 
cm-’ in the finite temperature DOS. Also note that there is no clear sepa- 
ration between translational and rotational (librational) parts. 

the ratio of the calculated single mode Raman intensity and 
the DOS. We see that the ratio is not constant and has a 
broad bump centered around 270 cm- ‘. Thus, different 
modes are “Raman-active” to different degrees, and hence 
the frequency position of peaks may be different between 
DOS and Raman spectra. However, the peaks present in the 
normal mode spectrum arise directly from the features of the 
DOS. In other words, although the intensity at various fre- 
quencies is not directly proportional to the DOS, the depo- 
larized IDID Raman spectrum is still closely related to the 
DOS. 

The preceding discussion is based on DOS obtained 
from zero temperature configurations of the system, since the 
normal modes and frequencies were calculated at a potential 
energy minimum. We discuss briefly below the effect of tem- 
perature on the DOS and on the related effect on the Raman 
spectra. 

As described earlier, when we consider a system in a 
potential energy minimum configuration, normal mode 
analysis of dynamics is straightforward. At finite tempera- 
ture, however, the notion of normal modes is not very obvi- 
ous. In spite of this, there has been much progress recently in 
understanding liquid state dynamics in terms of finite tem- 
perature DOS. In particular, the presence of imaginary fre- 
quencies (corresponding to the negative curvature of the po- 
tential energy surface along some directions at the phase 
space point defining the system) has been used to obtain 
information regarding such quantities as diffusion and the 
velocity autocorrelation function.13 

Hence, we proceed to calculate the DOS for our system 
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at finite temperature. The resulting DOS is shown in Fig. 5. 
The imaginary frequencies are shown on the negative axis, 
following the convention of Ref. 13. The important feature to 
notice is that there is no longer a discernible peak around 280 
cm-‘. Further, there is no clear separation between the trans- 
lational DOS below 400 cm-’ and the librational DOS 
above. To separate the translational and librational contribu- 
tions to the DOS, we use the procedure of assigning each 
mode partially to the translational DOS and librational DOS, 
based on the squared amplitudes of the corresponding coor- 
dinates (all COM coordinates for the translational and all 
rotational for the librational). The resulting translational 
DOS is also shown in Fig. 5. Even though there is still no 
clear peak, we see a broad shoulder to the 80 cm-’ peak on 
the higher side which we interpret to be a largely diminished 
but still present peak corresponding to the 280 cm-’ peak in 
the quenched DOS. Indeed, even in the Raman data shown in 
Fig. 1 the peak in the finite temperature MD spectrum is 
much smaller than in the spectrum calculated from normal 
modes. 

By comparing the zero and finite temperature DOS in 
Fig. 5, we see that, while the low frequency peak does not 
change much with temperature, the 280 cm-’ peak is signifi- 
cantly altered at finite temperature. We interpret the dimin- 
ishing of the 280 cm- ’ peak at finite temperature as due to 
significant changes on the potential energy surface along nor- 
mal modes with frequencies in the 280 cm-’ region. It will 
be great interest to study in detail this characteristic change 
in the potential energy surface and its relation to transitions 
between potential energy minima that occurs at finite tem- 
peratures. In addition to its intrinsic interest, it shouId shed 
light on the problem addressed in this paper, namely, the 
relationship between Raman spectra and the vibrational den- 
sity of states. A complete understanding of this relationship 
can only be achieved when one is able to construct the finite- 
temperature spectrum directly from the finite-temperature 
DOS. A method for such a calculation has not yet been fully 
developed, though progress has been made in that direction 
recently.22’23 

V. CONCLUSIONS 

We have calculated depolarized DID Raman spectra 
from MD simulations and from the analysis of normal modes 
of quenched configurations. The normal mode calculations 
allow us to make comparisons of the spectra with the inher- 
ent vibrational states of the liquid. Such a comparison in the 
present case reveals that the density of vibrational states de- 
termines the IDID spectrum to a large extent. The intensity 
of the 230 cm- ’ peak in the MD spectrum is smaller than 
that of the 270 cm-’ normal mode peak. We suggest that this 

discrepancy may be accounted for by the decrease in ampli- 
tude of the 280 cm-’ peak in the DOS with temperature, 
which compensates the enhanced “Raman activity” of 
modes in this frequency range observed in the Raman spec- 
trum for quenched modes. Further study may be needed to 
fully elucidate the detailed quantitative relationship between 
the finite temperature DOS and dynamic correlations such as 
correlations of polarizability studies here. 
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