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Crossover region in the aggregation of colloids
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We study by means of dynamic light scattering the region in between the diffusion and the re-
action limited regimes of cluster aggregation of colloidal solutions. We also study a simple model
based on a sunitably modified Smoluchowski equation for the intermediate regime. The comparison
of the experimental data with the predictions of the Smoluchowski equation allows a satisfactory
interpretation of the experimental data, a clarification of the crossing from the reaction to diffu-
sion aggregation regime, and an estimate of the parameters of the interaction potential between

monomers.
PACS number(s): 64.60.Cn, 05.40.+j, 82.70.Dd

The aggregation process of colloidal particles from an
initially stable suspension of monomers has been exten-
sively studied in the past years, both experimentally
and theoretically [1-8]. The existence of two distinct
regimes of aggregation of colloidal particles has been pro-
posed: (i) the slow or reaction limited cluster aggrega-
tion (RLCA) and (ii) the fast or diffusion limited clus-
ter aggregation (DLCA). The difference between the two
regimes is attributed to differences in the aggregation
probability: In RLCA only a small fraction of encounters
results in particles aggregation; a strong electrostatic re-
pulsion between colloidal particles creates a high (order of
tenth kpT') interparticle potential barrier. In DLCA, the
electrostatic repulsion is completely screened by salt and
the diffusion of the colloidal particles becomes the only
bottleneck in the aggregation process. The two regimes
give rise to clusters of different fractal dimension D, to
different cluster size distributions c(t), and to different
scaling law for the average cluster size s(t) as a function
of time ¢. In RLCA clusters of dimension D = 2.1 are
formed, while D = 1.8 in the DLCA case.. The concen-
tration of clusters containing k monomers c(t) obeys the
scaling cp(t) = [s(t)] 2 f(R%), where f(z) is a scaling
function of the scaled variable z = k/s(t). For DLCA
f(z) = e~ and s(t) scales with time according to a
power law, s(t) = t* with 2 close to 1, while for RLCA
f(z) ~ o~ "e™® with 7 = 1.5 and s(t) is an exponential
function of time. While for DLCA a good agreement is
observed between experimental results, theoretical pre-
dictions, and computer simulations, no clear consensus
has been established on the RLCA regime as well as
on the transition between the two extreme aggregation
regimes. In particular, it is not clear if a true RLCA
regime exists, i.e., if the RLCA is only an initial regime
which crosses {o DLCA after a certain aggregation time.
Deviations from pure RLCA have been observed recently
both in experiments [9,10] and in computer simulations
[11-13]. The results indicate a time dependence of the
cluster fractal dimension, a transition from the exponen-
tial to the power law for the growth of s(t) [9,12], with
exponents which depend on the salt concentration. In
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order to shed light on the crossing between RLCA and
DLCA we perform a series of experiments in a suspen-
sion of polystyrene particles where coagulation is induced
by the addition of NaCl electrolyte. Changing electrolyte
concentration allows us to modulate the height of the po-
tential barrier between monomers. Thus, by varying the
salt content we are able to cover the region in which the
crossing between RLCA and DLCA is observed [14]. To
measure s(t) during the aggregation kinetics we perform
dynamic light scattering experiments. We analyze the in-
tensity correlation function by using the same approach
as Lin et al. [7]. The time correlation function is written
as the sum over a set of polydisperse fractal clusters
* _peff 2
> cr(t)k?S(g)e~ v T AL
C(q, At,t) = *=2
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where At is the time difference in the correlations we are
measuring and ¢ the momentum transfer in the scatter-
ing experiment. The normalized cluster structure factor
Sk(q) is here given by [15]

sin[(D — 1) arctan(qR;;)_]1 , @

Sk(g) =
@ (D —1)qRi(1 + ¢*R}) "5

where R, = Ry kb is the radius of the cluster and R; the
monomer radius. In order to take into account rotations
of the clusters [7] we use the effective diffusion coeffi-
cient DS = Dy k=B (1 + %;), where D; characterizes
monomer diffusion and p is the ratio of the hydrodynamic
radius to the radius of gyration of the cluster, a quan-
tity of the order of one. The cluster distribution we use
is cx(t) =~ eXP[—F,EtSL which has been shown to be ap-
propriate for DLCA. In this case the form of the cluster
distribution essentially amounts to a cutoff at k = s, the
average number of particles in a cluster [16]. The param-
eter b is fitted from the experimental data. We measure
samples with NaCl concentration ¢ between 0.275M and
0.33M, which show deviations from DLCA, and in the
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FIG. 1. The measured s(T') for various concentration of the
added salt c. The lines are calculated from Eq. ( 11), using
€=14x107",2.0 x 107%,1.2 x 1075,1.6 x 107%,2.7 x 102,
0.155, and 1, as c increases. The fitted parameters are
Ps = (0.9£0.3) x 10~% and b = 0.9 + 0.4.

vicinity of the pure DLCA behavior (¢ varying from 1M
to 2M) [17]. Some typical results for the average clus-
ter size as a function of time are reported in Fig. 1 in a
double logarithmic plot. We note that (i) s(t) displays a
region with clear power law behavior for all the concen-
trations, with a well defined exponent z; (ii) the onset of
the aggregation is strongly concentration dependent; and
(iii) the value of the exponent z is concentration depen-
dent. The scaling exponent z decreases toward the DLCA
value on increasing the salt concentration, as shown in
Fig. 2. The time dependence of s(t) as well as the range
of z values reported in Fig. 2 are in perfect agreement
with the values obtained in a recent simulation of aggre-
gation in RLCA regime (see Fig. 2 in Ref. [12]). In these
simulations, the power law region is preceded by a re-
gion of exponential growth, not seen in experiment due
to the low scattering during the initial stage of the ag-
gregation process. The experimental evidence we quoted
together with the present measurements strongly suggest
a crossover from RLCA at short times to DLCA asymp-
totically.

In the rest of this paper we solve the Smoluchowski rate
equations [18] for a simple aggregation kernel and com-
pare the prediction of the model with our data as well
as with previously published data. The chosen kernel,
despite its simplicity, allows us to describe theoretically
the crossover from exponential to power law in the ag-
gregation process and to shed light on the aggregation
regimes at late stages. The rate equations take into ac-
count the creation of clusters from collisions of smaller
ones and their annihilation due to the interactions lead-
ing to larger ones and are written

d 1 ~
%ck(t) = 5 Z Ci Ki,j c; —

oo
ck » Knjci, (3)
i+i=k j=1

where K ; are the rate constants of the processes of cre-
ation and destruction of clusters; their scaling proper-
ties give rise to the scaling behavior of the cluster dis-

FIG. 2. The scaling exponent z as a function of the salt
concentration c. The solid line is derived from the solution of
our model.

tration of the monomers initially present in the suspen-
sion and D; the diffusion coefficient of a size i cluster.
The function p; ; is the sticking probability, or inverse of
the so-called stability ratio, defined by [19]

1 oo e Uesi(f')
= (R; + Rj) dr P (4)
1,5 R;+R; r

where U;(r) is the interaction potential of two clusters
a distance r apart. In the original treatment the inter-
action was considered to be present only during the col-
lisions, leading to p;; = 1, and the rate of aggregation
turned out to be, to a first approximation, equal for any
pair of clusters and given by the constant 16w R;D;N.
More generally, lacking the knowledge of the interclus-
ter potential, one can take into account the interaction
between aggregates by introducing an average sticking
probability p,.

In order to describe the transition region discussed
above, we assume the following aggregation kernel:

K;j=ep, for i=j=1, K;;=p, for i,j # 1. (5)

Such a kernel is meant to represent in a simple way the
fact that small clusters (here described by i = j = 1)
must meet several times before aggregating while larger
clusters have a larger aggregation probability [20,21]. We
are led to this assumption for energetic as well as kinetic
reasons: (i) The monomer-monomer potential is the re-
sult of a short range screened electrostatic interaction
plus an attractive dipole-induced dipole term. The effec-
tive cluster-cluster potential can be calculated by sum-
ming up all the pairs of interacting monomers of the two
clusters. Such summing produces a potential with a pro-
gressively smaller activation energy barrier (Fig. 3). (ii)
Large clusters have smaller diffusion coefficients. This
slows down the process of coming in contact, but in-
creases the number of attempts to overcome the barrier.
Although the number of contact points between clusters
remain small, due to the fractal nature of the aggregates,

tribution. For DLCA Smoluchowski originally assumed
a diffusive motion of the clusters, from which he derived
K;j =4nN(R; + R;)(D; + D;) p; ; with N the concen-

once two monomers meet, they stay close by for a time
with scale with the inverse 3/2 power of the diffusion con-
stant. (iii) Fractal clusters tend to fill the space quickly,
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FIG. 3. Cluster-cluster potential energy as a function of
the cluster distance, for the two clusters shown in the in-
set (full line). Each cluster is composed by 32 monomers
and the potential energy is built summing all the intercluster
monomer-monomer pair interactions. The dashed line shows
the corresponding DLVO potential energy.

significantly reducing the mean free path between en-
counters.

Transforming the time ¢ into the scaled adimensional
time T = 16mp, Ry Dy Nt, and using the kernel in Eq. (5),
the rate equation for the number of clusters containing k
particles cx(T") becomes

d
Z7oR(T) = (B2 — 30k,2) (1 — €)et

1 k—1 oo
+§(1 - 6}¢,1) Jzzl CjCk—j — Ck J=Zl cj (6)

for £ = 1,2,...,00, where ;1 is the Kroenecker delta.
The condition Y 4o, kcx = 1 holds and the time is scaled
according to the original Smoluchowski equation. In par-
ticular the equation for ¢, (T) is

d
a—fcl(T) = (1 —¢€)c? — 1N, )
where the total number of clusters is given by N, =
> a2, ck, and satisfies
4
dT
Equations (7) and (8) can be solved to give

.mu3=—§ﬁ+%u—qg. (8)

4 4(1+ £T)
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e(T) = 4+ 4eT + T2’ a

8(T) = Y 4o, k%ck(T) is the average number of particles
and is easily shown to satisfy
d
ar(
with the solution
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FIG. 4. The average number of particles in a cluster s(t) vs
scaled time. The parameter o of Ref. [11], related to the stick-
ing probability, has the values 1,0.1,0.025,0.005,0.002,0.001. €
is 1,107%,107%,1078, and 10™1°,

The same method of solution can be applied to the dis-
tribution of clusters ¢x(T'), as we will report elsewhere.

The solution for s(T'), a function of the scaling time
and of the parameter ¢, is shown in Fig. 1 (compared
with our experimental data) and in Fig. 4 (compared
with simulated data in RLCA regime by Meakin [11]).
The agreement between the exact solutions of the rate
equations and the experimental data support the sound-
ness of the assumption made in writing the kernel [21].
We also note the following. (i) In the limit e = 0, i.e.,
no interaction among the monomers, we find s(T") = 1
and in the limit € = 1, i.e., the same interaction be-
tween monomers and clusters, s(T') = 1+ T, the classical
Smoluchowski result for DLCA. (ii) The Smoluchowski
equation has been modified only through the change of
the monomer-monomer aggregation rate. (iii) Indepen-
dent from the value of ¢, for long times, s(T') =~ T, i.e., the
same asymptotic behavior of DLCA. (iv) The onset of the
power law region is ¢ dependent, as well as the value of
the exponent z. (v) The comparison between the experi-
mental and theoretical curves shown in Fig. 1 can be used
to relate the salt concentration to the value of € or, by
using an effective potential and Eq. (4), to relate the salt
concentration to the activation energy. Points (ii) and
(iii) show that the scaling properties in the asymptotic
time regime of the solution have not been changed. In
other words, the long time properties of the equations are
the same as those observed for DLCA. Thus our analysis
suggests that the slow RLCA regime is only a transient
regime, which crosses to the fast DLCA regime in the long
time limit. Point (v) is expanded in the following for the
case in which the monomer-monomer interaction poten-
tial is given by the classical Deriaguin-Landau-Verwey-
Overbeek expression [22] for monovalent ions

emR102 In1 + e—lee,/fT"gA.,N;(z—l)]
2KpT

—_4 L+ liam(i-2
12KgT |22 —~1 x2 o z2 ||’

(12)

U(z) =
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Here z is the interparticle distance in units of Ry, €,, is
the dielectric constant of the medium, ¢4 is the double
layer diffusion potential, 4 is the Hamacker constant,
N4 is the Avogadro number, and Kp is the Boltzmann
constant. Once the potential is fixed it is possible to
evaluate p; ; and obtain € in terms of c. The comparison
between the measured values of z and the ones derived
from the theory is shown in Fig. 2 for A = (0.47+0.02) x
1072 and ¢4 = (0.2604-0.005) x 103, both in cgs units,
values characteristic of colloidal systems of this type.

In conclusion, we investigate the approach to the fast
DLCA regime of colloidal aggregation when starting from
a situation in which the kinetics is slow. The parameter
used to describe the crossover is the exponent z, which
relates the average number of particles in a cluster to

the aggregation time. We introduce a modified Smolu-
chowski equation that takes into account the fact that
the reaction rate between small clusters is slower than the
large cluster-cluster rate of aggregation. The exact solu-
tion of the equation shows, in a reasonable way, that the
slowed-down monomer interaction is sufficient to explain
the anomalously large values of the exponent z observed
in some situations. Last but not least, the model suggests
that the RLCA regime is a transient regime characteris-
tic of the initial stages of aggregation. It exists only up to
a certain time, which depends on the monomer-monomer
sticking probability. Finally, it is possible to relate the
driving parameters of the crossover z and € to the pa-
rameters characterizing the interparticle potential.
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