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Structure Factor Scaling during Irreversible Cluster-Cluster Aggregation
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We present a simple model to describe the evolution of the structure factor during irreversible

diffusion limited cluster-cluster aggregation.

For growing compact clusters, the scattered intensity is

predicted to scale as in spinodal decomposition(,j i.e., as q%1(q/qn). For fractal clusters, the scattered
intensity is predicted to apparently scale in gn I(q/q.) only in late stages. We find an excellent
agreement with the experimental results of Carpineti and Giglio [Phys. Rev. Lett. 68, 3327 (1992)] and

with novel data from a dynamic simulation.
PACS numbers: 64.60.Cn, 05.40.+j, 82.70.Dd

Recently, very low angle static light scattering [1] and
direct imaging [2] experiments on solutions of polystyrene
spheres have addressed the issue of the spatial distribution
of clusters during diffusion limited cluster-cluster aggre-
gation (DLCA) [3]. Two unpredicted and puzzling results
of these experimental works have stimulated a resurgence
of interest in the cluster aggregation field and new connec-
tions with the dynamics of phase separation. Indeed, the
results of [1] and [2] show that an (unexpected) spatial
correlation among clusters arises as a result of an irre-
versible DLCA process, as revealed by the presence of
a peak at a finite wave vector g, in the scattered inten-
sity 1(q,t). Even more interestingly, they also show that
1(q,t) at different late times can be superimposed if plot-
ted as g ()% I(q/qm(t)) VS q/qm, i.e., in a form similar
to the one observed in late stage spinodal decomposition
once the space dimensionality d is substituted by the frac-
tal dimension dy, suggesting the presence of common ele-
ments between DLCA and phase separation.

In this Letter, we present a simple theory to explain the
origin and the evolution of the experimentally detected
cluster-cluster correlation during DLCA and discuss the
relation with the late stage of spinodal decomposition.
The two quantities we focus on are (i) the average number
of clusters per unit volume n(r,¢) at distance r from
the origin, knowing that one cluster is at the origin, and
(ii) the size of the average cluster of mass M (z) and radius
R(t) [4]. The time dependence of these two quantities is
given by the following two coupled differential equations
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M(t) = M(O)[R(t)/R(0)]¥,

(2)
with boundary conditions n(R,t) = 0 and n(w,1) =
noM(0)/M(¢) and initial conditions n(r,0) = ng for r =
2R(0). D is the diffusion coefficient which we assume
to be mass dependent (D ~ M~7) and S; is 2, 27 R,
47R? in d = 1,2,3, respectively. Equation (1) indicates
that n(r,7) may change due to (i) diffusion in the pres-
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ence of a concentration gradient or (ii) increase of the
average cluster size (i.e., aggregation of clusters) [5].
Equation (2) reveals that the cluster radius increase is
controlled by the mass flux at the boundary [6]. The
moving boundary position is at r = 2R(t), i.e., at the sum
of the radii of the two coalescing clusters. The boundary
conditions indicate that the cluster boundary R(r) is
sticky, in agreement with the assumption of irreversible
aggregation, and that very distant clusters are randomly
distributed in space. The initial conditions indicate that
the system is homogeneous in space.

In the case of compact cluster structure (i.e., dy = d),
n(r,t) and M(z) can be calculated exactly, by writing
ds = D(M)dt and noting the analogy with the so-called
moving boundary Stefan problem [7]. The solution is a
function of the scaled variable r/2s'/2 [8],

M(0) - F(r/2s'?)
O M(s) F(A)
for r = 2R(s) and n(r,s) = 0 for r = 2R(s), where A is

a constant to be determined [9]. For d = 1, 2, and 3,
respectively, F(x) is given by

n(r,s) = n

3
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The associated solution for the boundary motion is
R(s) = As'/2. (5)

Two important considerations are in order: (i) In all
dimensions, n(r,s) monotonically increases from zero at
the sticky boundary to n(e,¢). Thus, a depletion region
exists around each cluster. Since the nucleus growth is
controlled by the same exponent as the growth of the
depletion region, scaling in time is expected. (ii) From
the relation between s and 7 we find M(r) ~ 9/@*vd) the
same exponent predicted by the Smoluchowski approach
for compact clusters [3].

n(r,t) is by definition the product of the average
number density times the radial distribution function [10].
The associated cluster structure factor is [10]

S(g,s) =1+ f[n(r,s) — n(oo, 5)]e!4T dr . 6)
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At small g, S(g,s) goes as g?, as imposed by mass
conservation. Moreover, being n(r,s) a function of the
scaled variable r/2s'/2, also S(g, s) scales in time in gs'/?
or, by Eq. (§), in gR(s). The experimentally measured
total scattered intensity /(q, t) can be approximated as the
product of the cluster form factor P(q,t), well known for
any d, and of the previously calculated S(q,). P(q,t) is
also a function of gR, i.e., of the same scaled variable
of S(g,t). This implies that the total scattered intensity
will also be a scaled function of gR. Moreover, since
P(g, ) is proportional to the mass of the scatterer, a plot
of I1(gR(2))/M(t) vs qR(t) will show a remarkable data
collapse, of the same kind as the one observed in late
stage spinodal decomposition [11].

To test the model in detail for compact clusters we
performed a Brownian dynamics (BD) simulation of a
one-dimensional coagulating system [12]. We calculate
the structure factor Spp(q,?), the cluster form factor
Pgp(q,1), and the total scattered intensity Igp(q,?) from
the simulation, according to the following equations [13]:

1/| & 2
Isp(g,1) = N< D eian® > (7

i=1
1 n(2) 2
Seplg,1) = PONE , (®
ne(t) 2
>, ©)]

mpe
k=1
1 <
Pgplq.t) = ‘“<Z etari®
N\&G | =
where r;(¢) is the position of the ith monomer, r.y,(¢)
and m, are, respectively, the center of mass and mass of
cluster &, and n.(¢) is the number of clusters at time ¢.
Figure 1 shows Sgp compared with the theoretical pre-
dictions, Eqgs. (3)—(6). The inset shows the comparison
in real space. As predicted by Eq. (3) the data from the
simulation collapse on the same curve once plotted as

iglremg ()]

n(t/2R)/n(%)

/2R

2gR

FIG. 1. S(q,t) as a function of the scaling variable 2¢gR(z).
The full line is the analytical prediction of Eq. (4), while the
symbols are from the 4 = 1 BD simulation. The time interval
spans 107 integration steps. Polydispersity has been taken into
account increasing the cluster density in the analytical solution
by (M?)/(M)*. The inset shows the corresponding profile of
n(r,t) in the scaled variable r/2R(t).

a function of the scaled variable gR(t) or r/R(t). The
agreement is excellent, especially if one considers that
there are no adjustable parameters. Symbols in Fig. 2
are Igp/M(t) as a function of the scaled variable 2gR(z),
while the full line is the product of S(g, 7) shown in Fig. 1
times P(q,t). P(q,t) is calculated averaging the form
factor of a d = 1 compact cluster over the polydisper-
sity obtained from the BD simulation. The experimental
data and the analytical solutions for S(g, ¢) and P(q,t) are
shown in a log-log scale in the inset. It is worth noting
that P(q, t) controls the behavior of the scattered intensity
to the right of the peak, while S(q,t) is responsible for
the low g limit. Another important consideration stems
from the fact that the scaled P(q,¢) is independent from
the initial number density no. Instead, the ratio between
the cluster density and rny does change the scaled S(q,?).
Thus the scaling function for /(g, ) will depend on »nyg.
When the growing cluster is a fractal dM/dr ~
R4 ~VYdR/dt and does not cancel any longer the surface
term on the right-hand side of Eq. (2). The addition of the
extra R% 4 term changes the time dependence of the clus-
ter growth compared to the time dependence of the growth
of the depletion region. As a consequence, the n(r,?)
profile does not scale anymore with R(z) (see the inset of
Fig. 3), and we are forced to analyze the model solving
numerically Egs. (1) and (2). Before doing so, we note
that while in the nonfractal case the average density of
the cluster does not change during the aggregation, in the
case of fractal clusters the density decreases with R% ¢,
Thus, there is a time 77, and an associated radius Ry, at
which the average density reaches the value of the initial
density. When R = Ry clusters fill the space completely,
and the growth process stops. We also note that the
structure of Egs. (1) and (2) does not change when written
in terms of the dimensionless variable r/R;. Thus, the
model predicts that at constant R(z)/R; one should ob-
serve the same scattering pattern, independently from ng

2gqR

FIG. 2. Scaled intensity as a function of the scaling variable
2gR(t). Full line is the theoretical prediction while the symbols
are from the BD simulation. The inset shows Igp in log-log
scale. The dotted line is P(2qR(t),t)/M(t) while the long-
dashed line is S(2qgR(t),1).
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FIG. 3. Scaled I(g,t) at different times during the aggregation
process in the nonscaling regime. Symbols are redrawn from
[1]. The full lines are the prediction of the model. The
inset shows the corresponding n(r, r) functions, to highlight the
absence of scaling in r/2R. Note also that the last n(r/2R(z))
can be well approximated with a step function centered at
r = 2R.

[14]. From the numerical solution we find the following:
(1) During the initial stage of the growth process (when
the inter cluster distance is much bigger than the cluster
size), the flux of matter at R is proportional to R¢ 72, as in
the Euclidean case. Under such conditions, from Eq. (2)
one has R¥'dR/ds ~ R*2, or R going as s!/(&r=d+2)
and M ~ (4/ld(1+7)=(@=2)] the same exponent predicted
by the Smoluchowski approach for fractal clusters [3].
(i1) On increasing the time the inter cluster distance be-
comes comparable with the cluster size. In this late-stage
regime, the profile of n(r) becomes very similar to a
step function centered at r = 2R, and the cluster radius
appears as the relevant length. Thus, an apparent scaling
in gR(t) is again expected close to freezing.

We now compare the predictions of our model with
the experimental results of Carpineti and Giglio [l]
on aggregation of polystyrene spheres in water. They
observe the formation of clusters with dy = 1.9 for d =
3. The scattered intensity shows a well defined peak that
moves in time. The kinetic process is separated in three
regions: an initial region where no scaling in qifS(q/qm)
is observed (symbols in Fig. 3), an intermediate region
where scaling is observed (symbols in Fig. 4), and a satu-
ration region where no further change in the dynamical
structure factor is observed. To calculate S(gq,t) we
numerically solve Egs. (1) and (2) for df = 1.9. For
P(q,t) we use a standard Fisher-Burford form [15].
The total scattered intensity, I(g,t) = S(q,t)P(q,t), at
selected times is shown in Fig. 3 and compared with
the data from Ref. [1]. The corresponding n(r/R(z),1)
functions, to be compared with the inset of Fig. 1, are
reported in the inset to show the progressive evolution
toward a step function. Indeed, in these late stages
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FIG. 4. Scaled I(q, r) at different times during the aggregation
process in the scaling regime. Symbols are redrawn from
[1]. The full line is the prediction of the model when the
n(r) function can be approximated via a step function. The
inset shows I(g), S(g), and P(g) in log-log scale. Squares
are experimental data in the scaling regime (courtesy of
M. Carpineti and M. Giglio).

the final qf,{ I1(q/qm) are coincident within a few percent
with the qifl(q/q,,,) obtained approximating n(r,t) with
a step function. The final qfl,{l(q/q,,,) is shown with the
experimental data [1] for the late stage scaling region in
Fig. 4 [16]. In the inset the decomposition of the /(q,t)
in its structure and form factor parts is presented.

In conclusion, we have proposed a simple model for
the cluster spatial correlation during DLCA. A peak in
I(g,t) is shown to arise from the formation of a deple-
tion zone around the growing clusters [17]. The exponents
z controlling the time dependence of the mass are also
obtained. Differently from the Smoluchowski equations
[18], no a priori evaluation of the reaction rates kernels is
required, but only information on dy. The model shows
that true scaling, during the whole aggregation process, is
observed only for compact growing clusters where corre-
lations have the same scaling behavior as the size of the
growing cluster. In both quantities, distance scales with re-
duced time s as s'/2. Under such conditions, the /(g, ) can
be scaled as I(gR,t) ~ M(t)F(gR) ~ R(t)?F(gR). The
function F(gR) is not universal, but depends on the differ-
ence in density of the cluster compared to the bulk density.
For growing fractal clusters, no true scaling is predicted.
The reason for such difference is shown to arise from the
different time scale of R(z) and n(r,t). Only close to gela-
tion, the growth of the cluster takes over the diffusional
process, and an apparent scaling is observed. In this limit
I(gR,t) ~ R(t)¥ F(qR).

The theory we propose here only allows us to study
processes where a typical cluster size does exist, and it is
not thus immediately extended to cluster aggregation in
reaction limited regime (RLCA). This notwithstanding,
we do expect that the presence of an activation energy
for aggregation, which would reflect in our model in the
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modification of the boundary conditions from sticky to
partially reflecting, will cause the squeezing of S(q,1)
toward ¢ = 0. On moving from DLCA toward RLCA
the I(qg) peak position will thus shift toward smaller
and smaller g values, eventually moving out from the
available experimental window. Such behavior has been
recently observed [2,19].

In the end, it is worth pointing out the relations between
irreversible coagulation and phase separation. Irreversible
aggregation can be seen as a phase separation process
in deep quench limit (from infinite to zero temperature),
when separation proceeds only along a path of decreasing
total energy and cluster breaking is very rare. In such
conditions, mechanisms like the evaporation-condensation
are less effective than diffusion and coalescence of the
entire clusters. Indeed, the M(r) dependence we find is the
same obtained from the Binder-Stauffer diffusion-reaction
mechanism for droplet coarsening [20], without imposing
any ad hoc requirement of self-similarity in the droplet
configuration. The ¢? and ¢~* limit in 7(g,?) in the late
stage decomposition in deep quench also coincides with
the I(g,t) behavior during aggregation predicted by our
model in three dimensions. Our exact results suggest
that the scaling function depends strongly on the initial
conditions and coarsening process.
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