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The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the
thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a
continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid
water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the
existence of singularities associated with diverging density fluctuations at low temperature. We show that the
increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not
contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic
analysis for an anomalous liquide., one that expands when coolédthe absence of a retracing spinodal and
show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis
suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental
observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular
behavior, while capturing qualitative aspects of the thermodynamics of W&tEH163-651X96)03406-X]

PACS numbeps): 64.70.Ja, 05.70.Ce, 64.60.My

[. INTRODUCTION liquid-gas spinodal that retraces to higher pressure values
below a temperature at which it intersects the locus of den-

At ambient pressures and temperatures, many propertiegity maximalor, temperature of maximum densi(fMD)]
of water exhibit anomalous behavior. These include the wellin the (P, T) plane. Speed}l,2] (and later, in a more general
known density maximum at 4 °C at atmospheric pressuregontext, Debenedetti and D’Antoni@—6]) showed that if
the rapid increase upon cooling of the isothermal compresg2ne assumes that the TMvhich at ambient conditions is
ibility and the constant pressure specific heat, and quantitiedegatively sloped in theR,T) plang remains negatively
related to the microscopic dynamics. These anomalies ar@oped at negative pressures, the inevitable intersection of the
strongly enhanced as the temperature is lowered below thEMD and the liquid-gas spinodal results in a retracing of the
melting temperature. Hence, a significant part of studiespinodal as a consequence of thermodynamic consistency
aimed at elucidating the anomalous behavior of water havélone. However, there is no clear argument necessitating
been conducted in the supercooled regime. such a retracing spinodal to reach positive pressures. An ex-

It is well established that the microscopic origin of the perimental verification of the SLC is difficult, since the
anomalies is related to increased hydrogen bonding betwedh!cleation of ice prevents measurements at low enough tem-
water molecules as the temperature is lowered. However, theeratures to obtain an unequivocal signature of the presence
thermodynamic properties that result from the microscopi®f the spinodal.
behavior, dictated by the hydrogen bonding interactions, are
not well established. Specifically, there are two different
thermodynamic scenarios that have been proposed for the
metastable behavior of water, which invoke distinct thermo-
dynamic mechanisms for an explanation of anomalous be-
havior (Fig. 1).

(i) Retracing spinodal scenarid he stability limit conjec- e point \] L
ture (SLC), proposed by Speedi,?2], attributes the anoma- Lo \TMD eriegypornt
lous behavior on supercooling to the presence of a spinodal critical point /o
instability at low temperatures, causing divergences in the revpERATURE / TEMPERATURE

TMD

PRESSURE
PRESSURE

response functions as the spinodal temperature is ap-
proached. In addition, the spinodal that is present at low Spinodal
temperaturegand positive pressurgss argued to be the

Spinodal

Retracing Spinodal Scenario Two-Critical-Point Scenario

FIG. 1. Schematic representation @) the retracing spinodal
*Present address: Department of Chemical Engineering, Princetaind (b) two-critical-point scenarios. Note that in the two-critical-
University, Princeton, NJ 08544. Electronic address:point scenario, apart from the usual liquid-ga&) critical point,
sastry@eyor.princeton.edu one has in addition a metastable liquid-ligyld.) critical point.
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(i) Critical-point scenarioPooleet al.[7,8] attempted to  tures of an anomalous fluid without a retracing spinodal. We
calculate the location of the liquid-gas spinodal in computeistudy a specific version of the model that does not permit any
simulations of water with commonly used model potentials.cooperativity between hydrogen bond forming regions. The
They failed to observe the retracing of the spinodal. Thenodel displays inflections if?(V) as observed in the mo-
slope of the TMD does not remain negative, but changes sigh’,‘CU|ar dynamics study of water. However, the inflections do
at negative pressures, thus removing the thermodynamic r&ot fully develop into a second critical point. Aside from the
quirement for the spinodal to retraf@]. In addition to the interest for_the .mod.ellng of .ﬂUIdS.WIth a TMD locus, the
absence of retracing of the spinodal, Poeteal. also ob- model studied in th|§ W_ork is of. inherent interest from a
served that the isotherms of the highly supercooled liquidorma! thermodynamic viewpoint in that the partition func-
calculated in simulation showed inflections at positive presfion evaluation needs to be carried out in theneralized
sures, with the inflections growing more pronounced at lowefNSemblespecified by thermodynamic variables that are all
temperatures, suggesting the possibility that the inflection&tensive[15]. _ _
may develop into a critical point at some low temperature, " S€c. IV, we discuss the conclusions that may be drawn
The scenario developed by Poaleal, based on an extrapo- from the present work and possible directions for future re-
lation of simulation datgcritical point scenarig, ascribes ~S€arch suggested by the results presented here.
the anomalous properties of metastable water to the presence
of a metastable, low-temperature liquid-liquid critical point, Il. THERMODYNAMIC ANALYSIS
associated with a phase transition between a low-density and In Sec. II A, we first derive a general relation between the
a high-density liquid phase. Further support for this interpre-slope of tﬁe T,MD locus and the isobaric temperature depen-
tation has been offered through an analysis of the experimerny;,

. o ence ofKy. This relation applies to all anomalous fluids,
tally observed apparent first order transitions between thsnd we discuss its importance in the case of water. In Sec
low density and high density forms of amorphous [t6&— ' '

14] Il B, we analyze the thermodynamic constraints on the be-

Extensive thermodynamic analysis for the retracting spin—havior of an anomalous fluid in the absence of a retracing
odal scenario has been carried out in the [fas®]. It has spinodal and derive the possible behaviors that satisfy these

been shown by purely thermodynamic arguments that th(e:onstramts.

density maximum line, if negatively sloped in th®,T) _ )

plane, intersects the liquid-gas spinodal line in the negative A. Relationship between temperature dependence

pressure region, causing the spinodal line to retrace toward of K and the TMD

positive pressurefl]. We begin by finding the constraint imposed on the iso-
Less effort has been devoted to the description of thehermal compressibility,

thermodynamic constraints imposed by the existence of a

negatively-sloped TMD in the absence of a retracing liquid- Koz — E 3_0

gas spinodal. In this paper we initiate such an analysis for the ™ ouloP T

retracing-TMD scenarigSec. I). We show that, indepen-

dently of any proposed scenario, the increase of the isothepy the existence of a TMD line. In the above equation,

mal compressibilitK+ on cooling below a negatively sloped y=V/N, the specific volume. We consider a path in the

TMD line is a requirement of thermodynamics. We therefore(p, T) projection along which the coefficient of thermal ex-

argue that the increase K on cooling, although consistent pansionap does not change, i.e.,

with both proposed scenarios, cannot be invoked to support

either the retracing spinodal or the existence of a critical 1

point. We also show that the retracing TMD observed in ap=7

molecular dynamics simulations arises as a necessary feature

of the phase diagram', when the spinodal is. not retracing. Th‘Fhus, the condition for this path is

locus of K; extrema in the P,T) plane, which we call the

“locus of temperatures of extremal compressibilityor dap dap

TEC locug, plays a significant role in this analysis, and may dap=0= (W) dT+ (ﬁ) dP. (1)

potentially offer a way of distinguishing between possible P T

metastable behaviors. However, no further constraints may,

be derived from a purely thermodynamic analysis on thqﬁI

behavior of an anomalous fluid at low temperatures.

Jv
oT

) =const.
P

ubstituting forap in the right-hand sidérhs) of Eq. (1) we
ave

Both scenarios described above have tacitly assumed that 1 &% 1 0%
some form of critical behavior is necessary to explain the 0=( —ad+ ~ o7 dT+| Krapt — m)dP, 2
v v

anomalous behavior of response functions in water. As we
shall argue below, anomalous properties and any critical ber-
havior that may occur in an anomalous fluid are independen{
issues. In the context of the retracing-TMD scenario, it is (dP) a,%—(l/v)(é’ZU/é’Tz)
thus important to understand thoroughly which observed — = ~ .
properties are necessarily related to critical behavior and dT dap=0 Krap+(1h)(970/9PIT)
which properties are not. Towards this goal, we develop in

Sec. Il a simple lattice model that displays the general feaAlong the TMD line, wherexp=0,

om which we obtain

()
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FIG. 3. Intersection of the TMD with the TEC locu&{ ex-
) _ ) _ trema locug Also shown is the liquid-gas spinodal line, starting at
FIG. 2. Figure showing the paths to consider for analyzing thethe critical point @, ,T.). The dashed line is the TEC locus, while
nonretracing scenario. The two asterisks indicate the pointrof the full line is the TMD line. PointE, with coordinates

minimum (along pathAB) andK; extremum(along pathCH). Prmaxs Tmaxo IS the point at which dP/dT)qyp is infinite.
dP dP sloped, while a zero sloped TMD implies
aT a7 ' (dK1/1dT)p tMp— (as is the case in the retracing spinodal
dery ™MD scenario.

and thus, the slope of the TMD locus is B. Analysis of the nonretracing spinodal scenario

9v We base our thermodynamic analysis on two assump-
dpP (&_TZ> tions: (i) the liquid under investigation has somewhere in the
(ﬁ =TT (4  (P,T) plane a TMD line with a negative slope, afid) the
TMD ( liquid-gas spinodal is not retracing.
IPIT We consider the general behavior of the TMD and TEC

lines, knowing that in a finite window of thé®(T) plane the
We next calculate the temperature dependenck-0Bt  T\MD locus is negatively sloped and that the liquid-gas spin-

constant pressure, odal is not retracing. We also assume that the TMD line lies
) in the liquid region, i.e., that all the temperatures at which
(‘?_KT> _ 15 N i(a_v) (‘9_0) (5) the TMD line is observed are less than the liquid-gas critical

dT ), v oPaT v\ dT) \oP) point.

We begin by noting that at any pressure there exists a
range of intermediate temperatuf@$] where @K+/dT)p is
(6)  positive (e.g., pointB in Fig. 2) [17]. Along the negatively-
sloped TMD line, such as poimk in Fig. 2, (0K{/dT)p is
negative. Hence, along the path froito B, excluding the
possibility of a discontinuity in {K+/dT)p, there must be a
(aKT) 1 62 point, denoted by an asterisk in Fig. 2, at whi€h is at a

1 %

Again, if we consider a pointK,T) with ap=0,

—_— =—— . (7) minimum.
IT | o 1mp v IPIT

We next consider the behavior Kf; along a path at con-
stant pressur¢e.g., GH in Fig. 2. BecauseK; diverges at
the spinodal, {K+/JT)p must be positive aH. At point
1 uloT? C, which is on the TMD, it follows from Eq.(8) that

R (8) (0K+1/dT)p is negative. Thus, excluding the possibility of a
prvp U (OP1dT)tmp discontinuity in @K+/JT)p, there must exist a point along
the pathCH at which (@K+/dT)p=0.

Equation(8) is a particularly interesting relation between  Given the assumptions that the TMD locus does not ex-
the temperature dependence<gaf and the slope of the TMD tend beyondr. (i.e., that the TMD line is observed only in
line in the P, T plane. Indeed, Eq8) shows that along the the liquid stat¢ and that there is no retracing behavior of the
TMD line, the signs of §K+/dT)p tmp and (@P/dT)yp are  spinodal, it is inevitable that the TMD locus and the locus of
the same(since 9°v/dT?>0 at the TMD and their magni- Ky extrema meetpoint E in Fig. 3). At this point, in accord
tudes are inversely proportional. Where the TMD has negawith Eqg. (8), the slope of the TMD locus is infinite. To
tive slope in the P, T) plane, K+ increases on cooling. Thus, obtain the local behavior ne&t, the point at which the TMD
in an anomalous liquid such as water, the increase in isotheline and the TEC locus meet, we study the Taylor series of
mal compressibility upon cooling is inseparably related tov —vg as a function oP — Pz andT—Tg, keeping the low-
the presence of a negatively sloped TMD. Moreover, if theest order terms inlP—Pg, T—Tg and their cross terms.
TMD intersects the TEC locus, the TMD becomes infinitely From such local analysis we obtain the three possibilities

Comparing Eq(4) and Eq.(7), we find

IK+
aT
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N with the predictions of the critical point scenario may be
p useful in distinguishing anomalous behavior that arises in
s TECcasel e . .

/ water specifically due to the presence of a critical point and

g anomalous behavior that is not intimately related to singular

behavior.

o // If we compare the configuration of a water molecule with

s strong hydrogen bon(HB) interactions with that of a water
molecule with weak interactions, we find that the former
defines a state of low local energy, entropy, and deristy-
responding in water, for example, to the formation of a
strong, linear, HB while the latter defines a state of high

> local energy, entropy, and densit20]. When a strong HB
forms, a lowering of energy arises due to the bonding inter-

FIG. 4. The three possible cases when the TEC locus intersec®Ctions, and there is a reduction of entropy since HB's can
the TMD line. The dashed part of each TEC locus indicatgs  form only when the interacting molecules are in specific ori-
maxima, while the dot-dashed part indicates point&efminima. entations relative to each other; in addition, HB interactions

lead to a loose packed geometric arrangement causing a low-
shown in Fig. 4, depending on whether the pdints aK;  ering of the local density. In the following we will refer to
minimum, aK; maximum, or an inflection. Thus, when the the low energy, density, and entropy state as the HB-state
spinodal is not retracing, the TMD line must change slope irand the high energy, density, and entropy state as the non-
the (P,T) plane upon intersecting the line &f; extrema. HB-state(NHB). Although the terminology is water-specific,
Further, in all cases, we obtain a locuskof maxima below the description has, in principle, broader validity.
the TMD, though in case [see Fig. 4, the temperature These features have in the past been incorporated in
where theK; extremum becomes l&; maximum could be lattice-gas modelg20—-22 defined in terms of conventional

/
I/ // TEC case I1

e
\\\\ -~ "TEC case Il

T

T=0. occupancy variablesn=0 or n=1) representing the mol-
To analyze the behavior of the specific heat at constarfecules and Potts variables representing the orientational
pressure, we consider the relation states of the molecules. These models have been solved ap-
proximately, the approximations arising from the manner in
0 v 9?P (aP/&T)f which the Potts variables are handled and from the mean
CP(T'U)_CP(T):TLO 72 dv_Tm_ B field approximation used for obtaining the free energy. The
v 0 different volumes for HB and NHB configurations have been

taken into account by defining nearest and next-nearest

wherec} is the ideal gas specific heat. The second term ifneighbor interactions, corresponding to NHB and HB inter-
the rhs of the above expression is proportiona{a Hence, ~actions, respectively. _ _ _

as demanded by thermodynamic consistergywould di- One of the serious problems in adapting lattice-gas mod-
verge if K; diverges, as at the liquid-gas spinodal. Even€ls to studying anomalous fluids lies in the treatment of vol-
whenKj is not divergent, anomalous increasescinupon ~ Umes. For a simple system, configurations icandensed
cooling, such as are observed in wgte8], can result simply state(in the sense of maximal interactions between atoms or

from the anomalous temperature dependendé-af molecule$ and configurations vyith high density are synony-
In summary, our analysis in this section indicates thatMous- However, the charactensuc feature of gnomalous flu-
without any assumptions about singular behavior, the shapé$ is the very fact that in theondensecphase(i.e., when
of the TMD dictates the behavior of the compressibility in Molecules interact strongly with each othethe arrange-
the vicinity of the TMD and that for a negatively sloped Ments of molecules arkessdense. This fact is usually at-
TMD, the compressibility necessarily increases on Ioweringte”ded to by defining stronger interactions for neighbors that
temperature. In the absence of a retracing spinodal, weér€ farther away from each other than the closest possible
showed that the TMD has to retrace and that at temperaturé®acing. However, in doing so one introduces additional or-
sufficiently below the TMD, a locus oK, maxima exists. dered states which may or may not be desirable. Specifically,
Thus, broad thermodynamic features of anomalous behavid€vious lattice models with waterlike properties typically
can neither be used to support singular behavior nor to disbave low-density ordered phases which are identified with

tinguish between scenarios involving singularities and thosé€[20]. While the presence of this phase is a desirable prop-
that do not. erty, if one wants to model disordered but low-density, low

energy structures, the presence of a phase with long range
order poses a problem. It is of considerable interest to model
such energetically favorable disordered states.

We present in this section a lattice model that exhibits Here we present a simple model, which defines the corre-
behavior qualitatively similar to that observed in molecularlations between bonding energy and local volumes in a fash-
dynamics simulations of watdf7]. The model, however, ion well-suited to studying disordered, energetically favor-
does not exhibit any low temperature singular feafure. able states. In addition, the present model also avoids the
Thus, it serves as a demonstration of a nonsingular therma@omplicated geometries and the approximations of previous
dynamic scenario that is consistent with observed propertiesiodels. This is achieved by making the volumes of sites on
of water. At the same time, a comparison of its propertieghe lattice variabldthese volumes are usually held constant

lIl. LATTICE MODEL
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in lattice models and the volume of the system is simply Clearly, one cannot represent arbitrary configurations

given by the number of sitgs with variable neighbor separations on a simple cubic lattice
Consider a simple cubi¢square lattice in two dimen- in a consistent fashion. Thus, we use the lattice geometry

siong lattice. At each sité we define occupancy variables simply as a reference topology for defining interacting neigh-

n; such thatn;=0 if site i is unoccupiedn;=1 if sitei is  bors and calculate the volume of the system as the expecta-

occup|ed In order to distinguish between the energies ofion value of variablesh; ;. For simplicity we define two

strong HB's we first define an interaction termenn; be-  possible values fob; | () b —Db for NHB states and when
tween occupied neighbors, regardless of any requirement fqf. o n;=0; (ii) by -—b+ Sb for HB states. Thus

HB formation. Thus we write the Hamiltonian as

7'527'KNHB"‘7'5HB:_G;:> ninj+Hyg, (10 V= E b= > (b+ sbryn; )

! i @) T

where (ij) refers to nearest neighbors. In order to define B

Hug, We introduce variables; ; for each occupied site, =Nvo+ 5b<i§j:> nin; 50i,,-ffj,i' (13
wherej refers to any of the neighbors with which a molecule ’

at sitei can interact. Thusg; ; defines the orientation of

moleculei with respect to moleculg. The full orientational  \hereN is the number of lattice sites,,=yb/2, andy is

state of moleculé is given by o 07, ...,0i; Where the coordination number. Thus we can write the system
j1:J2+ - ..., are the neighbors af Hamiltonian1 and “enthalpy” W (quotes because the en-
In principle, o j.,0j,, - - . .0 j, are correlated quanti- thalpy is the equilibrium average of the function bejoxe

ties, because the orientation of a molecule along one arbi-
trary direction partially defines the orientation along all the
other directions. Two extreme possibilities are as follows: _
(1) oy, is an independent variabléor giveni), i.e., the N 6<IE]> nin; J% nin; 5” %5 (14
orientation of a molecule alonyg is not correlated with the
orientation along, .
(2) 0,00, - i are fully correlated variables, in Nyb
which case we cannot change, eg;,;, without changing W=H+PV= _52 ninj+P——
i j,- IN this limit we may represent the orientational state of

molecule i with just one variable oy, i.e, —-(J- P5b)2 nin; 8, o (15)
a-i,jlzo-i,jzz"':O-i,jy:(ri' (i) W

From a physical or geometric point of view, the situation
is mixed. We make the former idealization in order to define,

our model Hamiltonian, keeping in mind that the behavior ofIn order to evaluate the partition function for this model, we
the system is dependént on the idealization chosen. must sum the appropriate Boltzmann weight over all values

We defineo; j=o;; to be the condition that andj are of n; andgy;. In doing so, however, the number of r_nol-
properly oriented for HB formation. If the; ; have a range _(;:-_ck:‘ulesthas e as tthe I;/ olltume of the_ ?{S.t?gzﬁrfvfﬂfi bles.
of possible values£1,2,...,q), itis clear that the relative gs the apgroprlze i 0 Zmirl‘” We:,g th95 bl
entropy(in terms of the available numbey of microstates a; T € '{_‘h eptig en dvarla €S Ot i IIS der}_sen; € _tﬁre
for HB's is lower than the number of microstates for NHB (P.p.T). e thérmodynamic potential denined wi

P,u,T) is however, identically zero, since
by a factor In¢j). Thus, defining the energy change on HB( e '
foyrmation to b(l)—J we write g 9y g U—-TS+PV—uN=0. Nevertheless, it is possible to carry

out the partition function evaluation and derive equilibrium
properties in this ensemble. The fact that the partition func-

Huyg=— JE nin; 5 Lo (11 tion I is identically equal to 1 simply provides the additional
(i) H relationship we require in order to evaluate dependent vari-

ables in this ensemble. We demonstrate the partition function

Finally we must _quant|fy the <_:hange_|n local density as evaluation for the exactly solvable one-dimensional case in
result of HB formation. To do this, we first express the totalAppendix A. In what follows, we shall show that the parti-

"_O'U”.‘eV of the sys_tem as the sum Of specific VOIUM@C_ tion function evaluation is easily reduced to that of a simple
sitesi. The spemﬂc volumes/; are in furn exp'ressed.m lattice gas, and perform the evaluation of thermodynamic
terms of contributions; ; that depend on the interaction ,.oneries in the mean field approximation, which is suffi-
state between sitésand]. Thus, ciently accurate for our purposes and further yields well-

defined spinodals, which are significant elements of the

V= 2 V= 2 by - (12) phase behavior we wish to anglyze. _
i i Before performing a mean field calculation, we perform a
trace of the partition function over the variables. In this
Wheni has a HB interaction with), the local volumeb; ; model it is possible to perform an exact trace since the rel-

increases, leading to a larger specific voluwhe evant variables for each bond are independent. Thus
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(16)

FEle exp{—ﬁ(w—,uz n;

n,o

=g APV exp( Be>, n;”ﬁ'ﬁﬂz ”i)
m () !

X D ex;{,BJPE nn;d, o ) 17
4 (ij)

[N Rl

with Jp=J—Péb andV,=N+vyb/2. Defining
Bi'j(e,,u)=ex;{,86<2> nianr,B,u,Ei ni), (18)
i
we can write

efPVo=>" B, i(e,u)
n

<11 >

[1+(ePP—1)nin;8, ., ]
(i,j) oij.0ji i

(19
=2 Bij(ew]] o 1+§<eﬁJP—1>ninj :
n (ij)
| 20

Since we have a factar”’? for each occupied site, we get

eBPVo="D" gBe'Z(i j)nin; + Bu' Zini= g AL
n

(21)

with €' =e+8Jp;
p'=p+ ykgTIn(g).

8Jp=KkgT In[1+1/q(e?P—1)] and

The rhs in the previous equation is identical to the gran
canonical partition function for a simple lattice gas. Hence

we can evaluate the mean field “free energ{”’in the usual

way in the mean field approximation. Defining the number

6149

which is identical in form to the mean field equation of state
of a simple lattice gas. Howevee, = €"(P,T). Further we
need an additional equation relatimgto the volume per
molecule,y=V/M(=V/Nn). To this end, we use the equa-
tion for u’ (which is the Gibbs free energy per molegule
and write

o ou' € an
TP P TP o (@0

From Eg.(25) we obtain

N votn?(9€"ldP) 1 votn?(d€"IP)
JP  kgT/(1—n)—2€'n  nkgT/(n—n?)—2€""
(27)

Thus,

Uo
v=—-—n
n

(96”) 28
JP T
It must be noted that given a value @ (T) Eq. (25) has at
most three solutionge” is a constant for fixedR,T)]. Fur-
ther, Eq.(28) yields a unique value af for a given value of
n. Hence, at givenR, T) we find at most three solutions for
v, which implies that there is no more than one van der
Waals—like loop for each isotherf23].

Equations(25) and (28) together define the equation of
state for this model. Equatiof28) may be inverted to write
n in terms ofv as follows:

+[v2+4vy(d€"l oP)]Y?
rl:v [v vo(’ € )] . 29
—209€"l9P

In addition to the thermodynamic quantities that may be
calculated from the implicit equation of state above, we can

c]aIso straightforwardly calculate a “microscopic” quantity of

interest, namely the hydrogen bond probability. Considering
Eq. (13) for the total volume of the system and noting that
the sumX; ;n;n; O, o is equal to the total number of hy-

density n=M/N, where the number of occupied sites drogen bonds present, we can write the hydrogen bond prob-

M=3;n;, we obtain

Q 2
—=—€"n“—u'n+kgT[nIn(n)—(1—n)in(1—n)]

N
(22)

with €’= ye'/2. Minimizing /N with respect to density
we obtain

'=—-2€"n+kgTlI n 23

p'=—2en+kgTInT—. (23)

Thus, withn as an implicit function of P,«,T), we have

QO
—=¢€"n’—kgT In(N(1—n)).

N (24
SinceQ/N is equal to—PVy/N=—Puv,, we have
Puvo=—€'n?—kgTIn(1—n) (25)

ability p, as

E<i'j>ninj8¢_g..

— L] )0 —

(vn—vg).  (30)

The ratio of the number of HB’s present to the mean field

estimate of the number of bonds actually present is given by
Pus(P, T)=Py(P,T)/n? (3D

While p, is the more appropriate quantity in reference to

percolation propertieqyg is a better indicator of the degree
of hydrogen bonding in the system.

IV. RESULTS

We have studied the equation of state derived above for a
variety of parameters. For all parameter values, the generic
behavior produced is very similar in that we always find a
retracing TMD. Associated with the retracing TMD is the
locus of compressibility extrema, TEC, which we find inter-
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FIG. 5. Phase diagram for the lattice model showing the TMD  FIG. 7. High temperature isotherms which display no inflec-
line, spinodal, and the TEC line. The TEC meets the TMD at thetions. Volume is expressed in units of and pressure in units of

retracting point. Note that below the at which theK; extrema  e/vy. Temperature values labeling curves are in unite/ég .
locus displays a minimum, the extrema are maxima, while above

they are minima. Also shown is thg,=0.795 locus. Temperature cys at that temperature, we find that the compressibility is
is expressed in units affkg and pressure in units affv,. indeed a decreasing function of press(edy., atT = 0.2 in

. . ) ) Fig. 6), consistently with the behavior of water. Further, the
sects the TMD with positive slope. The spinodal in the sysyepayior seen of the compressibility maxima is consistent
tem is not retracing. The data shown are for the choice O-\?/ith the behavior seen in computer simulatidis
parameterssb/b=0.953, J/€=0.25, g=100. The overall In making a qualitative comparison with simulation re-
behavior is summarized in Fig. 5. Note that the TEC has &5 of water, the behavior of isotherms is particularly inter-
minimum in pressure at which point it changes from being %sting. Thus, we show two sets of isotherms, at relatively
locus of compressibility minima to a locus of compressibility high temperatures in Fig. 7 and for very low temperatures in

maxima. Thus, at low temperatures, one finds compressibil,:ig_ 8. Note that along the high isotherms, the<, extre-
ity maxima along isobars. Also shown in the figure is the ' T

mum crossed is a compressibility minimum, while along the
locus wherep,=0.795.

_low T isotherms, theK; extremum crossed is a compress-

_ The compressibilities along various isobars are shown ifji, maximum (see Fig. 5. It is interesting to note that the
Fig. 6. Note that the compressibility values at the maxim

. L . ) igh temperature isotherms cross each other at two points
increase as the pressure is increased, with the maxima 0CCfich is an indication that there are two density maximum
ring at lower temperatures at higher pressures. However, at &« along an isothermal pathe., retracing TMD. These
fixed temperature, considering pressures above the TEC Igsotherms, however, do not exhibit any inflections. Thus,
these high temperature isotherms display the simplest pos-

3.0 - ' ‘ sible behavior of isotherms which may still be consistent
. S with the retracing TMD scenario.
l‘| __ p;;)% Next we consider the low temperature isotherms shown in
|'I| ——-P=025
I| 1.0
2.0 [ ‘
1
1
\
-
x 1
1
10 + g
7]
&
Q.
J ]
%900 0.10 0.20 0.30 0.40
Temperature

FIG. 6. Isobaric behavior oKy for different pressures. At
P=-1.0,K; diverges asT approaches the spinodal temperature.
Note thatK; remains finite at low temperatures. Temperature is

expressed in units of/kg, pressure in units o&/vy, and Ky in
units ofvg/e.

Volume

FIG. 8. Low-temperature isotherms displaying inflections. Vol-
ume is expressed in units aof, and pressure in units o/vg.
Temperature values labeling curves are in unite/tg .



53 SINGULARITY-FREE INTERPRETATION OF THE. .. 6151

1.0 : . V. DISCUSSION

We have presented thermodynamic arguments which re-
sult in two statements relevant to the behavior of any anoma-
lous liquid, such as water, for which the density decreases on
cooling below the TMD{i) If an anomalous liquid exhibits a
negatively sloped TMD, then the isothermal compressibility

08

3 06 at constant pressure increases on decreasing the temperature.
§ Thus, increases in compressibility are agpriori an indica-

2 o tion of any singular behavior, as has been implicitly accepted

[*3 a4

23]

in thermodynamic analyses of supercooled watier.When
the liquid does not exhibit a retracing spinodal, the TMD
retraces to lower temperatures upon intersecting with the lo-
cus of compressibility extrema. Generally, the resulting
phase diagram exhibits a locus of compressibility maxima
: along isobars. Hence, in the simplest interpretation of simu-
0.00 0.10 0.20 0.30 0.40 lation data for supercooled water, one expects a line of com-
Temperature pressibility maxima at low temperatures. Indeed, recent

FIG. 9. Hydrogen bond probability as a function of temperatureSMall angle x-ray scattering measurements of t'he |0V\{ tem-
at various pressures. Temperature is expressed in unikkgfand ~ Perature structure factof&5] point to such behavior, which
pressure in units oé/v,. has been observed for other anomalous liqis-28. The

proposed metastable critical point scenario forms a special

Fig. 8. These isotherms do indeed show inflections which ge?‘fise’ where the compfgssmmt_y at points of _the TEC locus
either divergegat the critical point or is discontinuougfirst

more pronounced as the temperature is lowered. However, Ber ling
mentioned in the preceding section, these inflections do not Additioﬁally we presented a lattice model that demon-

develop into a critical point in this model. Thus, the low . . .
. . . .strates some observations of the thermodynamic analysis, ex-
temperature isotherms provide the second simplest behavigr

consistent with the retracing TMD scenario. The presence o ibiting_behavior free of .IOW temperature sipgulgrities._ A
a critical point is a special case of the abO\I/e comparison of the behaw_qr of th_ls model wnh smulatlon
Figure 9 shows the variation of the hydrogén bond prob_data for water and the cr|.t|cal point interpretation imposes
constraints on what experimental results may be viewed as

ability p, with temperature at three different pressures. Thesupporting the critical point scenario.

?ydr(;age_rtlh bhqnﬁefr%?a:;“%r'; S:renr;gs arzzro_?ﬁg L;?.'Z.O?]t It is interesting to note that the model described may be
—0 W 9 valu Wer p ures. Vanation, ;o\ved as a thermodynamic realization of some basic fea-

with pressure is seen more clearly in Fig. 10, whpgels tures of the percolation model of Stanley and Teix¢24],
plotted for three different temperatures. From_ tRe ) de- which does indeed predict the presence of compressibility
pendence ofp,, we may also calculatg Ioc_:l of constant maxima at low temperaturdge., no thermodynamic singu-
Py We show one such locupg=0.795) in Fig. 524] larities). The interpretation of thermodynamic properties in
this model in terms of percolation quantities remains to be

10 studied; in particular, the relevant percolation threshold is
not known. It would be interesting to study the relation be-
tween the compressibility increase, which in our model is
related to the transformation of weak bonds to strong bonds,
and the approach of the appropriate percolation transition
[30].

The scenario described in this paper is the simplest one
that is consistent with experimental observations. The sig-
nificance of our work is not to have proved a particular sce-
nario, but rather to provide a simpler explanation of experi-
mental observations than those recently emphasized, and to
suggest experimenf81] that are needed to validate or refute
this interpretation.

One suggestion for future work that arises from the
present results concerns dynamical properties. The apparent
divergence of certain dynamical quantities has been used in
tandem with the more ambiguous apparent divergences of
thermodynamic quantities as indicatitfgermodynamicsin-
gularities at low temperatures in water. However, if a

FIG. 10. Hydrogen bond probability as a function of pressure asingularity-free scenario is capable of explaining satisfacto-
various temperatures. Temperature is expressed in unitkgfand  rily the behavior of thermodynamic quantities, the dynamical
pressure in units oé/vy. phenomena then need an explanation that is independent of
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08
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the thermodynamic anomalies. Such an explanation has re- If for a giveni, nj=n;, =1, the sun®
cently been suggested by Gal al. [32] who, based on
molecular dynamics evidence, propose to interpret the ex- 1

trapolated vanishing of the diffusion coefficient in super- [a%+a(efP—1)nin;,,]1=0? 1+_(eBJP_1)nini+l>-
cooled water as due to an ideal glass transition as in the d (A8)
mode coupling theory33] for supercooled liquids. A study

of the dynamics of the lattice model presented h@nea For the full productll;, then, we can factor ou?>i".
more convenient reformulatipmmay help in addressing this Thus we can write

issue.

yields

Tii+1%i+1
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APPENDIX A: ONE-DIMENSIONAL LATTICE:
THE HAMILTONIAN AND THE ENTHALPY FUNCTIONS

where 8Jp=TIn[1+1/q(efP—1)]. Thus,

TefPVo=> ef’e Simniiotu'22ini+ni0°  (A10)

For the one-dimensional lattice, the Hamiltonian and the n

enthalpy functions in Eq14) and Eq.(15) become

H:_GZ r1ini+1—JEi NiNi18, 1o, (AL
W=H+PV=—e>, nin;;1+PV,
|

(A2)

ii+1%i+1,’

—(J—P8b)X, nini, 16,
1

where Vo=Nvy=Nb’. We also define J—Pdb)=Jp. In
the (P,u,T) ensemble, the partition function is

I=e Pi=1=3 e AW szim) (A3)
n,o
so that

[efPYo=> e Aeinini 1t BuDZi(ni+ni )

no
X @BIPsNiNi+1%,  oiiy;, (A4)
Defining
By j+a(e,u) =€ ANt AWML, (AB)
we have

FEBPVO:E Bi,i+l(611u“)2 H e‘B‘]PEinini*16"i,i+1"i+1,i (AG)
n [oa I

[1+(ePP—1)

:; Bi,i+l(fuu)1_i[ >

Tii+1:0i+1;

Xnini+15 ] (A?)

ii+1%i+1

wheree' = e+ 8Jp and ' = p+ 2T In(q). Defining

H U, i+1:eﬁ[f'zi“ini+1+ﬂ'/22i(”i+“i+l)], (A11)
; ,

we obtain
I'efPVo=TruN, (A12)
where
1 ebu'l2
U:(eﬁ/ﬂ/Z eﬁ(é'+u’))' (AL3)

If we defineh, and A _ to be the larger and the smaller
eigenvalues ofJ, respectively, we can write

TruN=\"+\N, (A14)

which for N—o givesTruN=\" . SinceI'=1, we have

efPVo=\N | (A15)
from which we getBPb’=In(\,). The subscript- on A ;.

will be suppressed in the following. This relation defines, in
contrast to usual partition function evaluations, a relationship
between variablesR, u,T). We shall use the above relation
to define u=u(P,T), which then defines the equilibrium
Gibbs free energy per molecule. Thus, the volume per mol-
eculev is given by

O du' _Tﬁln(y)
TP P 9P

v (Al16)

wherey=e?*'. Definingx=e?¢’, we have
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_Tlﬁya)\+1ﬁy(9x AL7
VY ON 9P Ty ax aP| (AL7)

From expBPb’)=\, we find

N
ﬁ:ﬁb exp(BPb’). (A18)
From
__ M A19
Y= —Dx+1 (AL9)
we have, after some algebra,
dy x[expBPb’)—1]?+2exgBPb')—1
== ; 2 . (A20)
AN {[exp(BPb")—1]x+1}
Thus
19y
y N

6153

x[exp(BPb’)—1]%+2 exg BPb')—1

~ exp(BPD)[exp BPD) — 1]{[exp( BPD)) — 1]x+ 1}
(A21)

Similarly,

19 1—expBPb’
Ly 1-exppPl) (A22)
y ax (Bb'P—1)x+1

From 8Jp=TIn[1+1/q(e?P—1)], €' =€+ 6Jp, we obtain

ax _ —pel sb
P q

1 -1
1+ a(eﬁJP— 1)} . (A23)

Substituting from Eqs(A18), (A21), (A22), and(A23) in
Eq. (A17), we have the equation of state for the system.
Hence, we recover exact results for the one-dimensional lat-
tice by using the property of the generalized ensemble,
namely that the corresponding thermodynamic potential is
identically zero.
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