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The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the
thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a
continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid
water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the
existence of singularities associated with diverging density fluctuations at low temperature. We show that the
increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not
contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic
analysis for an anomalous liquid~i.e., one that expands when cooled! in the absence of a retracing spinodal and
show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis
suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental
observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular
behavior, while capturing qualitative aspects of the thermodynamics of water.@S1063-651X~96!03406-X#

PACS number~s!: 64.70.Ja, 05.70.Ce, 64.60.My

I. INTRODUCTION

At ambient pressures and temperatures, many properties
of water exhibit anomalous behavior. These include the well-
known density maximum at 4 °C at atmospheric pressure,
the rapid increase upon cooling of the isothermal compress-
ibility and the constant pressure specific heat, and quantities
related to the microscopic dynamics. These anomalies are
strongly enhanced as the temperature is lowered below the
melting temperature. Hence, a significant part of studies
aimed at elucidating the anomalous behavior of water have
been conducted in the supercooled regime.

It is well established that the microscopic origin of the
anomalies is related to increased hydrogen bonding between
water molecules as the temperature is lowered. However, the
thermodynamic properties that result from the microscopic
behavior, dictated by the hydrogen bonding interactions, are
not well established. Specifically, there are two different
thermodynamic scenarios that have been proposed for the
metastable behavior of water, which invoke distinct thermo-
dynamic mechanisms for an explanation of anomalous be-
havior ~Fig. 1!.

~i! Retracing spinodal scenario. The stability limit conjec-
ture ~SLC!, proposed by Speedy@1,2#, attributes the anoma-
lous behavior on supercooling to the presence of a spinodal
instability at low temperatures, causing divergences in the
response functions as the spinodal temperature is ap-
proached. In addition, the spinodal that is present at low
temperatures~and positive pressures! is argued to be the

liquid-gas spinodal that retraces to higher pressure values
below a temperature at which it intersects the locus of den-
sity maxima@or, temperature of maximum density~TMD!#
in the (P,T) plane. Speedy@1,2# ~and later, in a more general
context, Debenedetti and D’Antonio@3–6#! showed that if
one assumes that the TMD@which at ambient conditions is
negatively sloped in the (P,T) plane# remains negatively
sloped at negative pressures, the inevitable intersection of the
TMD and the liquid-gas spinodal results in a retracing of the
spinodal as a consequence of thermodynamic consistency
alone. However, there is no clear argument necessitating
such a retracing spinodal to reach positive pressures. An ex-
perimental verification of the SLC is difficult, since the
nucleation of ice prevents measurements at low enough tem-
peratures to obtain an unequivocal signature of the presence
of the spinodal.

*Present address: Department of Chemical Engineering, Princeton
University, Princeton, NJ 08544. Electronic address:
sastry@eyor.princeton.edu

FIG. 1. Schematic representation of~a! the retracing spinodal
and ~b! two-critical-point scenarios. Note that in the two-critical-
point scenario, apart from the usual liquid-gas~LG! critical point,
one has in addition a metastable liquid-liquid~LL ! critical point.
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~ii ! Critical-point scenario.Pooleet al. @7,8# attempted to
calculate the location of the liquid-gas spinodal in computer
simulations of water with commonly used model potentials.
They failed to observe the retracing of the spinodal. The
slope of the TMD does not remain negative, but changes sign
at negative pressures, thus removing the thermodynamic re-
quirement for the spinodal to retrace@9#. In addition to the
absence of retracing of the spinodal, Pooleet al. also ob-
served that the isotherms of the highly supercooled liquid
calculated in simulation showed inflections at positive pres-
sures, with the inflections growing more pronounced at lower
temperatures, suggesting the possibility that the inflections
may develop into a critical point at some low temperature.
The scenario developed by Pooleet al., based on an extrapo-
lation of simulation data~critical point scenario!, ascribes
the anomalous properties of metastable water to the presence
of a metastable, low-temperature liquid-liquid critical point,
associated with a phase transition between a low-density and
a high-density liquid phase. Further support for this interpre-
tation has been offered through an analysis of the experimen-
tally observed apparent first order transitions between the
low density and high density forms of amorphous ice@10–
14#.

Extensive thermodynamic analysis for the retracting spin-
odal scenario has been carried out in the past@1–6#. It has
been shown by purely thermodynamic arguments that the
density maximum line, if negatively sloped in the (P,T)
plane, intersects the liquid-gas spinodal line in the negative
pressure region, causing the spinodal line to retrace toward
positive pressures@1#.

Less effort has been devoted to the description of the
thermodynamic constraints imposed by the existence of a
negatively-sloped TMD in the absence of a retracing liquid-
gas spinodal. In this paper we initiate such an analysis for the
retracing-TMD scenario~Sec. II!. We show that, indepen-
dently of any proposed scenario, the increase of the isother-
mal compressibilityKT on cooling below a negatively sloped
TMD line is a requirement of thermodynamics. We therefore
argue that the increase inKT on cooling, although consistent
with both proposed scenarios, cannot be invoked to support
either the retracing spinodal or the existence of a critical
point. We also show that the retracing TMD observed in
molecular dynamics simulations arises as a necessary feature
of the phase diagram, when the spinodal is not retracing. The
locus ofKT extrema in the (P,T) plane, which we call the
‘‘locus of temperatures of extremal compressibility’’~or
TEC locus!, plays a significant role in this analysis, and may
potentially offer a way of distinguishing between possible
metastable behaviors. However, no further constraints may
be derived from a purely thermodynamic analysis on the
behavior of an anomalous fluid at low temperatures.

Both scenarios described above have tacitly assumed that
some form of critical behavior is necessary to explain the
anomalous behavior of response functions in water. As we
shall argue below, anomalous properties and any critical be-
havior that may occur in an anomalous fluid are independent
issues. In the context of the retracing-TMD scenario, it is
thus important to understand thoroughly which observed
properties are necessarily related to critical behavior and
which properties are not. Towards this goal, we develop in
Sec. III a simple lattice model that displays the general fea-

tures of an anomalous fluid without a retracing spinodal. We
study a specific version of the model that does not permit any
cooperativity between hydrogen bond forming regions. The
model displays inflections inP(V) as observed in the mo-
lecular dynamics study of water. However, the inflections do
not fully develop into a second critical point. Aside from the
interest for the modeling of fluids with a TMD locus, the
model studied in this work is of inherent interest from a
formal thermodynamic viewpoint in that the partition func-
tion evaluation needs to be carried out in thegeneralized
ensemble, specified by thermodynamic variables that are all
intensive@15#.

In Sec. IV, we discuss the conclusions that may be drawn
from the present work and possible directions for future re-
search suggested by the results presented here.

II. THERMODYNAMIC ANALYSIS

In Sec. II A, we first derive a general relation between the
slope of the TMD locus and the isobaric temperature depen-
dence ofKT . This relation applies to all anomalous fluids,
and we discuss its importance in the case of water. In Sec.
II B, we analyze the thermodynamic constraints on the be-
havior of an anomalous fluid in the absence of a retracing
spinodal and derive the possible behaviors that satisfy these
constraints.

A. Relationship between temperature dependence
of KT and the TMD

We begin by finding the constraint imposed on the iso-
thermal compressibility,

KT[2
1

v S ]v
]PD

T

by the existence of a TMD line. In the above equation,
v[V/N, the specific volume. We consider a path in the
(P,T) projection along which the coefficient of thermal ex-
pansionaP does not change, i.e.,

aP[
1

v S ]v
]TD

P

5const.

Thus, the condition for this path is

daP505S ]aP

]T D
P

dT1S ]aP

]P D
T

dP. ~1!

Substituting foraP in the right-hand side~rhs! of Eq. ~1! we
have

05S 2aP
21

1

v
]2v
]T2DdT1SKTaP1

1

v
]2v

]p]TDdP, ~2!

from which we obtain

S dPdTD
daP50

5
aP
22~1/v !~]2v/]T2!

KTaP1~1/v !~]2v/]P]T!
. ~3!

Along the TMD line, whereaP50,
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S dPdTD
dap50

5S dPdTD
TMD

,

and thus, the slope of the TMD locus is

S dPdTD
TMD

52

S ]2v
]T2D

S ]2v
]P]TD . ~4!

We next calculate the temperature dependence ofKT at
constant pressure,

S ]KT

]T D
P

52
1

v
]2v

]P]T
1

1

v2 S ]v
]TD

P
S ]v
]PD

T

~5!

52F1v ]2v
]P]T

1KTaPG . ~6!

Again, if we consider a point (P,T) with aP50,

S ]KT

]T D
P,TMD

52
1

v
]2v

]P]T
. ~7!

Comparing Eq.~4! and Eq.~7!, we find

S ]KT

]T D
P,TMD

5
1

v
]2v/]T2

~]P/]T!TMD
. ~8!

Equation~8! is a particularly interesting relation between
the temperature dependence ofKT and the slope of the TMD
line in theP,T plane. Indeed, Eq.~8! shows that along the
TMD line, the signs of (]KT /]T)P,TMD and (]P/]T)TMD are
the same~since]2v/]T2.0 at the TMD! and their magni-
tudes are inversely proportional. Where the TMD has nega-
tive slope in the (P,T) plane,KT increases on cooling. Thus,
in an anomalous liquid such as water, the increase in isother-
mal compressibility upon cooling is inseparably related to
the presence of a negatively sloped TMD. Moreover, if the
TMD intersects the TEC locus, the TMD becomes infinitely

sloped, while a zero sloped TMD implies
(]KT /]T)P,TMD→` ~as is the case in the retracing spinodal
scenario!.

B. Analysis of the nonretracing spinodal scenario

We base our thermodynamic analysis on two assump-
tions: ~i! the liquid under investigation has somewhere in the
(P,T) plane a TMD line with a negative slope, and~ii ! the
liquid-gas spinodal is not retracing.

We consider the general behavior of the TMD and TEC
lines, knowing that in a finite window of the (P,T) plane the
TMD locus is negatively sloped and that the liquid-gas spin-
odal is not retracing. We also assume that the TMD line lies
in the liquid region, i.e., that all the temperatures at which
the TMD line is observed are less than the liquid-gas critical
point.

We begin by noting that at any pressure there exists a
range of intermediate temperatures@16# where (]KT /]T)P is
positive ~e.g., pointB in Fig. 2! @17#. Along the negatively-
sloped TMD line, such as pointA in Fig. 2, (]KT /]T)P is
negative. Hence, along the path fromA to B, excluding the
possibility of a discontinuity in (]KT /]T)P , there must be a
point, denoted by an asterisk in Fig. 2, at whichKT is at a
minimum.

We next consider the behavior ofKT along a path at con-
stant pressure~e.g., GH in Fig. 2!. BecauseKT diverges at
the spinodal, (]KT /]T)P must be positive atH. At point
C, which is on the TMD, it follows from Eq.~8! that
(]KT /]T)P is negative. Thus, excluding the possibility of a
discontinuity in (]KT /]T)P , there must exist a point along
the pathCH at which (]KT /]T)P50.

Given the assumptions that the TMD locus does not ex-
tend beyondTc ~i.e., that the TMD line is observed only in
the liquid state! and that there is no retracing behavior of the
spinodal, it is inevitable that the TMD locus and the locus of
KT extrema meet~pointE in Fig. 3!. At this point, in accord
with Eq. ~8!, the slope of the TMD locus is infinite. To
obtain the local behavior nearE, the point at which the TMD
line and the TEC locus meet, we study the Taylor series of
v2vE as a function ofP2PE andT2TE , keeping the low-
est order terms inP2PE , T2TE and their cross terms.
From such local analysis we obtain the three possibilities

FIG. 2. Figure showing the paths to consider for analyzing the
nonretracing scenario. The two asterisks indicate the points ofKT

minimum ~along pathAB) andKT extremum~along pathCH).

FIG. 3. Intersection of the TMD with the TEC locus (KT ex-
trema locus!. Also shown is the liquid-gas spinodal line, starting at
the critical point (Pc ,Tc). The dashed line is the TEC locus, while
the full line is the TMD line. Point E, with coordinates
Pmax,Tmax, is the point at which (]P/]T)TMD is infinite.
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shown in Fig. 4, depending on whether the pointE is aKT
minimum, aKT maximum, or an inflection. Thus, when the
spinodal is not retracing, the TMD line must change slope in
the (P,T) plane upon intersecting the line ofKT extrema.
Further, in all cases, we obtain a locus ofKT maxima below
the TMD, though in case I~see Fig. 4!, the temperature
where theKT extremum becomes aKT maximum could be
T50.

To analyze the behavior of the specific heat at constant
pressure, we consider the relation

cP~T,v !2cP
0 ~T!5T ÈvS ]2P

]T2D
v

dv2T
~]P/]T!v

2

~]P/]v !T
2kB ,

~9!

wherecP
0 is the ideal gas specific heat. The second term in

the rhs of the above expression is proportional toKT . Hence,
as demanded by thermodynamic consistency,cP would di-
verge if KT diverges, as at the liquid-gas spinodal. Even
whenKT is not divergent, anomalous increases incP upon
cooling, such as are observed in water@18#, can result simply
from the anomalous temperature dependence ofKT .

In summary, our analysis in this section indicates that
without any assumptions about singular behavior, the shape
of the TMD dictates the behavior of the compressibility in
the vicinity of the TMD and that for a negatively sloped
TMD, the compressibility necessarily increases on lowering
temperature. In the absence of a retracing spinodal, we
showed that the TMD has to retrace and that at temperatures
sufficiently below the TMD, a locus ofKT maxima exists.
Thus, broad thermodynamic features of anomalous behavior
can neither be used to support singular behavior nor to dis-
tinguish between scenarios involving singularities and those
that do not.

III. LATTICE MODEL

We present in this section a lattice model that exhibits
behavior qualitatively similar to that observed in molecular
dynamics simulations of water@7#. The model, however,
does not exhibit any low temperature singular feature@19#.
Thus, it serves as a demonstration of a nonsingular thermo-
dynamic scenario that is consistent with observed properties
of water. At the same time, a comparison of its properties

with the predictions of the critical point scenario may be
useful in distinguishing anomalous behavior that arises in
water specifically due to the presence of a critical point and
anomalous behavior that is not intimately related to singular
behavior.

If we compare the configuration of a water molecule with
strong hydrogen bond~HB! interactions with that of a water
molecule with weak interactions, we find that the former
defines a state of low local energy, entropy, and density~cor-
responding in water, for example, to the formation of a
strong, linear, HB! while the latter defines a state of high
local energy, entropy, and density@20#. When a strong HB
forms, a lowering of energy arises due to the bonding inter-
actions, and there is a reduction of entropy since HB’s can
form only when the interacting molecules are in specific ori-
entations relative to each other; in addition, HB interactions
lead to a loose packed geometric arrangement causing a low-
ering of the local density. In the following we will refer to
the low energy, density, and entropy state as the HB-state
and the high energy, density, and entropy state as the non-
HB-state~NHB!. Although the terminology is water-specific,
the description has, in principle, broader validity.

These features have in the past been incorporated in
lattice-gas models@20–22# defined in terms of conventional
occupancy variables (n50 or n51) representing the mol-
ecules and Potts variabless representing the orientational
states of the molecules. These models have been solved ap-
proximately, the approximations arising from the manner in
which the Potts variables are handled and from the mean
field approximation used for obtaining the free energy. The
different volumes for HB and NHB configurations have been
taken into account by defining nearest and next-nearest
neighbor interactions, corresponding to NHB and HB inter-
actions, respectively.

One of the serious problems in adapting lattice-gas mod-
els to studying anomalous fluids lies in the treatment of vol-
umes. For a simple system, configurations in acondensed
state~in the sense of maximal interactions between atoms or
molecules! and configurations with high density are synony-
mous. However, the characteristic feature of anomalous flu-
ids is the very fact that in thecondensedphase~i.e., when
molecules interact strongly with each other!, the arrange-
ments of molecules arelessdense. This fact is usually at-
tended to by defining stronger interactions for neighbors that
are farther away from each other than the closest possible
spacing. However, in doing so one introduces additional or-
dered states which may or may not be desirable. Specifically,
previous lattice models with waterlike properties typically
have low-density ordered phases which are identified with
ice @20#. While the presence of this phase is a desirable prop-
erty, if one wants to model disordered but low-density, low
energy structures, the presence of a phase with long range
order poses a problem. It is of considerable interest to model
such energetically favorable disordered states.

Here we present a simple model, which defines the corre-
lations between bonding energy and local volumes in a fash-
ion well-suited to studying disordered, energetically favor-
able states. In addition, the present model also avoids the
complicated geometries and the approximations of previous
models. This is achieved by making the volumes of sites on
the lattice variable~these volumes are usually held constant

FIG. 4. The three possible cases when the TEC locus intersects
the TMD line. The dashed part of each TEC locus indicatesKT

maxima, while the dot-dashed part indicates points ofKT minima.
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in lattice models and the volume of the system is simply
given by the number of sites!.

Consider a simple cubic~square lattice in two dimen-
sions! lattice. At each sitei we define occupancy variables
ni such thatni50 if site i is unoccupied,ni51 if site i is
occupied. In order to distinguish between the energies of
strong HB’s we first define an interaction term2eninj be-
tween occupied neighbors, regardless of any requirement for
HB formation. Thus we write the Hamiltonian as

H5HNHB1HHB52e(̂
i j &

ninj1HHB , ~10!

where ^ i j & refers to nearest neighbors. In order to define
HHB , we introduce variabless i , j for each occupied sitei ,
wherej refers to any of the neighbors with which a molecule
at site i can interact. Thus,s i , j defines the orientation of
moleculei with respect to moleculej . The full orientational
state of moleculei is given bys i , j 1

,s i , j 2
, . . . ,s i , j g

where

j 1 , j 2 , . . . ,j g are the neighbors ofi .
In principle, s i , j 1

,s i , j 2
, . . . ,s i , j g

are correlated quanti-
ties, because the orientation of a molecule along one arbi-
trary direction partially defines the orientation along all the
other directions. Two extreme possibilities are as follows:

~1! s i , j is an independent variable~for given i ), i.e., the
orientation of a molecule alongj 1 is not correlated with the
orientation alongj 2 .

~2! s i , j 1
,s i , j 2

, . . . ,s i , j g
are fully correlated variables, in

which case we cannot change, e.g.,s i , j 1
without changing

s i , j 2
. In this limit we may represent the orientational state of

molecule i with just one variable s i , i.e.,
s i , j 1

5s i , j 2
5•••5s i , j g

5s i .
From a physical or geometric point of view, the situation

is mixed. We make the former idealization in order to define
our model Hamiltonian, keeping in mind that the behavior of
the system is dependent on the idealization chosen.

We defines i , j5s j ,i to be the condition thati and j are
properly oriented for HB formation. If thes i , j have a range
of possible values (51,2, . . . ,q), it is clear that the relative
entropy~in terms of the available numberq of microstates!
for HB’s is lower than the number of microstates for NHB
by a factor ln(q). Thus, defining the energy change on HB
formation to be2J, we write

HHB52J(̂
i j &

ninjds i , j ,s j ,i
. ~11!

Finally we must quantify the change in local density as a
result of HB formation. To do this, we first express the total
volumeV of the system as the sum of specific volumesVi of
sites i . The specific volumesVi are in turn expressed in
terms of contributionsbi , j that depend on the interaction
state between sitesi and j . Thus,

V5(
i
Vi[(

^ i , j &
bi , j . ~12!

When i has a HB interaction withj , the local volumebi , j
increases, leading to a larger specific volumeVi .

Clearly, one cannot represent arbitrary configurations
with variable neighbor separations on a simple cubic lattice
in a consistent fashion. Thus, we use the lattice geometry
simply as a reference topology for defining interacting neigh-
bors and calculate the volume of the system as the expecta-
tion value of variablesbi , j . For simplicity we define two
possible values forbi , j . ~i! bi , j5b for NHB states and when
ni or nj50; ~ii ! bi , j5b1db for HB states. Thus

V5(
^ i , j &

bi , j5(
^ i , j &

~b1dbninjds i , j ,s j ,i
!

5Nv01db(
^ i , j &

ninjds i , js j ,i
, ~13!

whereN is the number of lattice sites,vo[gb/2, andg is
the coordination number. Thus we can write the system
HamiltonianH and ‘‘enthalpy’’W ~quotes because the en-
thalpy is the equilibrium average of the function below! as

H52e(̂
i j &

ninj2J(̂
i j &

ninjds i , js j ,i
, ~14!

W5H1PV52e(̂
i j &

ninj1P
Ngb

2

2~J2Pdb!(̂
i j &

ninjds i , js j ,i
. ~15!

In order to evaluate the partition function for this model, we
must sum the appropriate Boltzmann weight over all values
of ni and s i , j . In doing so, however, the number of mol-
ecules as well as the volume of the system are variables.
Thus the appropriate Boltzmann weight ise2b(H1PV2mN)

and the independent variables of this ensemble are
(P,m,T). The thermodynamic potential defined with
(P,m,T) is, however, identically zero, since
U2TS1PV2mN50. Nevertheless, it is possible to carry
out the partition function evaluation and derive equilibrium
properties in this ensemble. The fact that the partition func-
tion G is identically equal to 1 simply provides the additional
relationship we require in order to evaluate dependent vari-
ables in this ensemble. We demonstrate the partition function
evaluation for the exactly solvable one-dimensional case in
Appendix A. In what follows, we shall show that the parti-
tion function evaluation is easily reduced to that of a simple
lattice gas, and perform the evaluation of thermodynamic
properties in the mean field approximation, which is suffi-
ciently accurate for our purposes and further yields well-
defined spinodals, which are significant elements of the
phase behavior we wish to analyze.

Before performing a mean field calculation, we perform a
trace of the partition function over thes variables. In this
model it is possible to perform an exact trace since the rel-
evant variables for each bond are independent. Thus
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G[15(
n,s

expF2bSW2m(
i
ni D G ~16!

5e2bPV0(
n

expS be(̂
i j &

ninj1bm(
i
ni D

3(
s

expS bJP(̂
i j &

ninjds i , js j ,i D ~17!

with JP5J2Pdb andV05Ngb/2. Defining

Bi , j~e,m!5expS be(
^ i , j &

ninj1bm(
i
ni D , ~18!

we can write

ebPV05(
n

Bi , j~e,m!

3)̂
i , j &

(
s i , j ,s j ,i

@11~ebJP21!ninjds i , j ,s j ,i
#

~19!

5(
n

Bi , j~e,m!)̂
i j &

q2S 11
1

q
~ebJP21!ninj D .

~20!

Since we have a factorqg/2 for each occupied site, we get

ebPV05(
n

ebe8(^ i , j &ninj1bm8( i ni[e2bV ~21!

with e85e1dJP ; dJP5kBT ln@111/q(ebJP21)# and
m85m1gkBT ln(q).

The rhs in the previous equation is identical to the grand
canonical partition function for a simple lattice gas. Hence
we can evaluate the mean field ‘‘free energy’’V in the usual
way in the mean field approximation. Defining the number
density n[M /N, where the number of occupied sites
M[( ini , we obtain

V

N
52e9n22m8n1kBT@nln ~n!2~12n!ln~12n!#

~22!

with e95ge8/2. Minimizing V/N with respect to densityn
we obtain

m8522e9n1kBT ln
n

12n
. ~23!

Thus, withn as an implicit function of (P,m,T), we have

V

N
5e9n22kBT ln„n~12n!…. ~24!

SinceV/N is equal to2PV0 /N52Pv0 , we have

Pv052e9n22kBT ln~12n! ~25!

which is identical in form to the mean field equation of state
of a simple lattice gas. However,e95e9(P,T). Further we
need an additional equation relatingn to the volume per
molecule,v[V/M (5V/Nn). To this end, we use the equa-
tion for m8 ~which is the Gibbs free energy per molecule!
and write

v5
]m

]P
5

]m8

]P
522n

]e9

]P
1F22e91

kBT

n2n2G ]n

]P
. ~26!

From Eq.~25! we obtain

]n

]P
5

v01n2~]e9/]P!

kBT/~12n!22e9n
5
1

n

v01n2~]e9/]P!

kBT/~n2n2!22e9
.

~27!

Thus,

v5
v0
n

2nS ]e9

]P D
T

. ~28!

It must be noted that given a value of (P,T) Eq. ~25! has at
most three solutions@e9 is a constant for fixed (P,T)#. Fur-
ther, Eq.~28! yields a unique value ofv for a given value of
n. Hence, at given (P,T) we find at most three solutions for
v, which implies that there is no more than one van der
Waals–like loop for each isotherm@23#.

Equations~25! and ~28! together define the equation of
state for this model. Equation~28! may be inverted to write
n in terms ofv as follows:

n5
v6@v214v0~]e9/]P!#1/2

22]e9/]P
. ~29!

In addition to the thermodynamic quantities that may be
calculated from the implicit equation of state above, we can
also straightforwardly calculate a ‘‘microscopic’’ quantity of
interest, namely the hydrogen bond probability. Considering
Eq. ~13! for the total volume of the system and noting that
the sum(^ i , j &ninjds i , js j ,i

is equal to the total number of hy-
drogen bonds present, we can write the hydrogen bond prob-
ability pb as

pb~P,T![
(^ i , j &ninjds i , js j ,i

~Ng/2!
5

2

gdb
~vn2v0!. ~30!

The ratio of the number of HB’s present to the mean field
estimate of the number of bonds actually present is given by

pHB~P,T!5Pb~P,T!/n2. ~31!

While pb is the more appropriate quantity in reference to
percolation properties,pHB is a better indicator of the degree
of hydrogen bonding in the system.

IV. RESULTS

We have studied the equation of state derived above for a
variety of parameters. For all parameter values, the generic
behavior produced is very similar in that we always find a
retracing TMD. Associated with the retracing TMD is the
locus of compressibility extrema, TEC, which we find inter-
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sects the TMD with positive slope. The spinodal in the sys-
tem is not retracing. The data shown are for the choice of
parametersdb/b50.953, J/e50.25, q5100. The overall
behavior is summarized in Fig. 5. Note that the TEC has a
minimum in pressure at which point it changes from being a
locus of compressibility minima to a locus of compressibility
maxima. Thus, at low temperatures, one finds compressibil-
ity maxima along isobars. Also shown in the figure is the
locus wherepb50.795.

The compressibilities along various isobars are shown in
Fig. 6. Note that the compressibility values at the maxima
increase as the pressure is increased, with the maxima occur-
ring at lower temperatures at higher pressures. However, at a
fixed temperature, considering pressures above the TEC lo-

cus at that temperature, we find that the compressibility is
indeed a decreasing function of pressure~e.g., atT 5 0.2 in
Fig. 6!, consistently with the behavior of water. Further, the
behavior seen of the compressibility maxima is consistent
with the behavior seen in computer simulations@7#.

In making a qualitative comparison with simulation re-
sults of water, the behavior of isotherms is particularly inter-
esting. Thus, we show two sets of isotherms, at relatively
high temperatures in Fig. 7 and for very low temperatures in
Fig. 8. Note that along the highT isotherms, theKT extre-
mum crossed is a compressibility minimum, while along the
low T isotherms, theKT extremum crossed is a compress-
ibility maximum ~see Fig. 5!. It is interesting to note that the
high temperature isotherms cross each other at two points
which is an indication that there are two density maximum
points along an isothermal path~i.e., retracing TMD!. These
isotherms, however, do not exhibit any inflections. Thus,
these high temperature isotherms display the simplest pos-
sible behavior of isotherms which may still be consistent
with the retracing TMD scenario.

Next we consider the low temperature isotherms shown in

FIG. 5. Phase diagram for the lattice model showing the TMD
line, spinodal, and the TEC line. The TEC meets the TMD at the
retracting point. Note that below theT at which theKT extrema
locus displays a minimum, the extrema are maxima, while above
they are minima. Also shown is thepb50.795 locus. Temperature
is expressed in units ofe/kB and pressure in units ofe/v0 .

FIG. 6. Isobaric behavior ofKT for different pressures. At
P521.0, KT diverges asT approaches the spinodal temperature.
Note thatKT remains finite at low temperatures. Temperature is
expressed in units ofe/kB , pressure in units ofe/v0 , andKT in
units of v0 /e.

FIG. 7. High temperature isotherms which display no inflec-
tions. Volume is expressed in units ofv0 and pressure in units of
e/v0 . Temperature values labeling curves are in units ofe/kB .

FIG. 8. Low-temperature isotherms displaying inflections. Vol-
ume is expressed in units ofv0 and pressure in units ofe/v0 .
Temperature values labeling curves are in units ofe/kB .
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Fig. 8. These isotherms do indeed show inflections which get
more pronounced as the temperature is lowered. However, as
mentioned in the preceding section, these inflections do not
develop into a critical point in this model. Thus, the low
temperature isotherms provide the second simplest behavior
consistent with the retracing TMD scenario. The presence of
a critical point is a special case of the above.

Figure 9 shows the variation of the hydrogen bond prob-
ability pb with temperature at three different pressures. The
hydrogen bond probability is seen to approach unity at
T→0, with higher values for lower pressures. The variation
with pressure is seen more clearly in Fig. 10, wherepb is
plotted for three different temperatures. From the (P,T) de-
pendence ofpb , we may also calculate loci of constant
pb . We show one such locus (pb50.795) in Fig. 5@24#.

V. DISCUSSION

We have presented thermodynamic arguments which re-
sult in two statements relevant to the behavior of any anoma-
lous liquid, such as water, for which the density decreases on
cooling below the TMD:~i! If an anomalous liquid exhibits a
negatively sloped TMD, then the isothermal compressibility
at constant pressure increases on decreasing the temperature.
Thus, increases in compressibility are nota priori an indica-
tion of any singular behavior, as has been implicitly accepted
in thermodynamic analyses of supercooled water.~ii ! When
the liquid does not exhibit a retracing spinodal, the TMD
retraces to lower temperatures upon intersecting with the lo-
cus of compressibility extrema. Generally, the resulting
phase diagram exhibits a locus of compressibility maxima
along isobars. Hence, in the simplest interpretation of simu-
lation data for supercooled water, one expects a line of com-
pressibility maxima at low temperatures. Indeed, recent
small angle x-ray scattering measurements of the low tem-
perature structure factors@25# point to such behavior, which
has been observed for other anomalous liquids@26–28#. The
proposed metastable critical point scenario forms a special
case, where the compressibility at points of the TEC locus
either diverges~at the critical point! or is discontinuous~first
order line!.

Additionally, we presented a lattice model that demon-
strates some observations of the thermodynamic analysis, ex-
hibiting behavior free of low temperature singularities. A
comparison of the behavior of this model with simulation
data for water and the critical point interpretation imposes
constraints on what experimental results may be viewed as
supporting the critical point scenario.

It is interesting to note that the model described may be
viewed as a thermodynamic realization of some basic fea-
tures of the percolation model of Stanley and Teixeira@29#,
which does indeed predict the presence of compressibility
maxima at low temperatures~i.e., no thermodynamic singu-
larities!. The interpretation of thermodynamic properties in
this model in terms of percolation quantities remains to be
studied; in particular, the relevant percolation threshold is
not known. It would be interesting to study the relation be-
tween the compressibility increase, which in our model is
related to the transformation of weak bonds to strong bonds,
and the approach of the appropriate percolation transition
@30#.

The scenario described in this paper is the simplest one
that is consistent with experimental observations. The sig-
nificance of our work is not to have proved a particular sce-
nario, but rather to provide a simpler explanation of experi-
mental observations than those recently emphasized, and to
suggest experiments@31# that are needed to validate or refute
this interpretation.

One suggestion for future work that arises from the
present results concerns dynamical properties. The apparent
divergence of certain dynamical quantities has been used in
tandem with the more ambiguous apparent divergences of
thermodynamic quantities as indicatingthermodynamicsin-
gularities at low temperatures in water. However, if a
singularity-free scenario is capable of explaining satisfacto-
rily the behavior of thermodynamic quantities, the dynamical
phenomena then need an explanation that is independent of

FIG. 9. Hydrogen bond probability as a function of temperature
at various pressures. Temperature is expressed in units ofe/kB and
pressure in units ofe/v0 .

FIG. 10. Hydrogen bond probability as a function of pressure at
various temperatures. Temperature is expressed in units ofe/kB and
pressure in units ofe/v0 .
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the thermodynamic anomalies. Such an explanation has re-
cently been suggested by Galloet al. @32# who, based on
molecular dynamics evidence, propose to interpret the ex-
trapolated vanishing of the diffusion coefficient in super-
cooled water as due to an ideal glass transition as in the
mode coupling theory@33# for supercooled liquids. A study
of the dynamics of the lattice model presented here~or a
more convenient reformulation! may help in addressing this
issue.
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APPENDIX A: ONE-DIMENSIONAL LATTICE:
THE HAMILTONIAN AND THE ENTHALPY FUNCTIONS

For the one-dimensional lattice, the Hamiltonian and the
enthalpy functions in Eq.~14! and Eq.~15! become

H52e(
i
nini112J(

i
nini11ds i ,i11s i11,i

, ~A1!

W5H1PV52e(
i
nini111PV0

2~J2Pdb!(
i
nini11ds i ,i11s i11,i

, ~A2!

whereV05Nv0[Nb8. We also define (J2Pdb)[JP. In
the (P,m,T) ensemble, the partition function is

G5e2bD[15(
n,s

e2b~W2m( i ni !, ~A3!

so that

GebPV05(
n,s

e2be( i nini111b~m/2!( i ~ni1ni11!

3ebJP( i
nini11ds i ,i11s i11,i. ~A4!

Defining

Bi ,i11~e,m!5e2be( i nini111b~m/2!( i ~nini11!, ~A5!

we have

GebPV05(
n

Bi ,i11~e,m!(
s

)
i
ebJP( i nini11ds i ,i11s i11,i ~A6!

5(
n

Bi ,i11~e,m!)
i

(
s i ,i11 ,s i11,i

@11~ebJP21!

3nini11ds i ,i11 ,s i11,i
#. ~A7!

If for a given i , ni5ni1151, the sum(s i ,i11 ,s i11,i
yields

@q21q~ebJP21!nini11#5q2S 11
1

q
~ebJP21!nini11D .

~A8!

For the full product) i , then, we can factor outq2( i ni.
Thus we can write

GebPV05(
n

Bi ,i11~e,m!q2( i ni

3)
i

S 11
1

q
~ebJP21!nini11D

5(
n

Bi ,i11~e,m!eb2T ln~q!( i niebdJP( i nini11,

~A9!

wheredJP5T ln@111/q(ebJP21)#. Thus,

GebPV05(
n

eb0e8( i nini111m8/2( i ~ni1ni11!0, ~A10!

wheree85e1dJP andm85m12T ln(q). Defining

)
i
Ui ,i115eb@e8( i nini111m8/2( i ~ni1ni11!#, ~A11!

we obtain

GebPV05TrUN, ~A12!

where

U5S 1 ebm8/2

ebm8/2 eb~e81m8!D . ~A13!

If we define l1 and l2 to be the larger and the smaller
eigenvalues ofU, respectively, we can write

TrUN5l1
N1l2

N , ~A14!

which for N→` givesTrUN5l1
N . SinceG51, we have

ebPV05l1
N , ~A15!

from which we getbPb85 ln(l1). The subscript1 on l1

will be suppressed in the following. This relation defines, in
contrast to usual partition function evaluations, a relationship
between variables (P,m,T). We shall use the above relation
to definem5m(P,T), which then defines the equilibrium
Gibbs free energy per molecule. Thus, the volume per mol-
eculev is given by

v5
]m

]P
5

]m8

]P
5T

] ln~y!

]P
, ~A16!

wherey[ebm8. Definingx[ebe8, we have
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v5TF1y ]y

]l

]l

]P
1
1

y

]y

]x

]x

]PG . ~A17!

From exp(bPb8)5l , we find

]l

]P
5bb8exp~bPb8!. ~A18!

From

y5
l22l

~l21!x11
, ~A19!

we have, after some algebra,

]y

]l
5
x@exp~bPb8!21#212 exp~bPb8!21

$@exp~bPb8!21#x11%2
. ~A20!

Thus

1

y

]y

]l

5
x@exp~bPb8!21#212 exp~bPb8!21

exp~bPb8!@exp~bPb8!21#$@exp~bPb8!21#x11%
.

~A21!

Similarly,

1

y

]y

]x
5

12exp~bPb8!

~bb8P21!x11
. ~A22!

From dJP5T ln@111/q(ebJP21)#, e85e1dJP , we obtain

]x

]P
5

2bebe8db

q F11
1

q
~ebJP21!G21

. ~A23!

Substituting from Eqs.~A18!, ~A21!, ~A22!, and~A23! in
Eq. ~A17!, we have the equation of state for the system.
Hence, we recover exact results for the one-dimensional lat-
tice by using the property of the generalized ensemble,
namely that the corresponding thermodynamic potential is
identically zero.
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