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Abstract

Cluster aggregation limited by cluster diffusion is one of the possible pathways leading to
aggregation phenomena as different as phase separation or colloidal gelation. The imprinting
of the irreversible diffusion-limited aggregation is observable in the evolution of the scattered
intensity /(g,!) and in its dynamical scaling relations. We discuss a recent model for describing
the evolution of the scattered intensity both for growing eucledean and fractal clusters.

1. Introduction

Diffusion is one of the possible mechanisms limiting the process of aggregation in
unstable systems. The irreversible aggregation in colloidal systems under high salt con-
centration, the kinetics of phase separation under deep quench conditions, or the growth
of crystalline phases from a supercooled melt, are different examples of diffusion-limited
growth [ 1-3].

All these aggregating systems are characterized by the developement during the ag-
gregation time of a peculiar correlation among clusters, which manifests itself in a ring
in the scattered intensity /(qg,¢), whose intensity and size change continuously in time.
The shape of /(g,t) and its evolution during the aggregation process convey infor-
mation on the leading aggregation mechanism [4]. The scattered intensity at different
times can sometimes be scaled on a common master curve by plotting ¢%7(g/qn) as
a function of the scaled wave vector g/qn, gn being the peak position [4], suggesting
an underlying scaling in space and time of the ordering process.

We review here a simple mean field theory [5] which has been proposed to describe
the growth of clusters under diffusion-limited cluster aggregation (DLCA). We discuss
how the fractal nature of the growing clusters affects the scaling properties in space
and time,
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2. Theory

Fig. I shows three snapshots, at different times, of a two-dimensional Brownian
dynamics simulation of the phase separation in a Lennard-Jones fluid after a deep
quench. The insets in the panels show enlarged portions of the same configurations,
to visualize the cluster structure. The system is quenched at time ¢ = 0O from a high
T (120K for Argon) to a T (24 K) significantly below the critical temperature (about
60 K). Under such deep quench conditions, atoms never evaporate from an already
formed cluster, so that the phase separation proceeds via irreversible diffusion-limited
aggregation. In contrast to the simple models of cluster—cluster diffusion, links between
different atoms are not frozen in, so clusters can change shape during the growth. This
produces, at the early stage of the separation shown in Fig. 1, the formation of rather
compact clusters. At later times, not documented in Fig. 1, a cluster fractal structure
develops.

The simple process of diffusion and aggregation is able to account for the cluster—
cluster correlation which develops in time and which shows up in a growing peak in
the scattered intensity. In Ref. [5] we have shown that the mass concentration c(r,t) at
distance r > 2R(¢) from the origin, knowing that one cluster of mass M(¢) and radius
R(t) 1s at the origin, evolves in time (for compact clusters) as [6]

o(r,s) = c, [1 —-F%S;z))] r22R(s) (1)
o(r,s) = 0, r <2R(s). (2)

F(x) is given by
F(x) =erfe(x), d=1; (3)
F(x) =Ei(—x?), d=2; 4)
Fx) = e merfe(x), d =3. (5)

Fig. 1. Three snapshots at different times during the phase separation of a Lennard-Jones fluid following a
quench from the stable to the unstable region.
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The associated solution for the boundary motion is
R(s) = 75", (6)

/. depends only on the ratio between the initial solution density and the density of the
growing cluster. The scaled time s = D,r****)_ accounting for the dependence of the
diffusion coefficient D with the cluster mass (D = 2D,M 7). We have assumed that
the initial conditions are given by c(r >2R(0),0) = ¢, and ¢(oc,t) = ¢,, reflecting the
initial homogeneous state and the absence of correlation between very distant clusters.

The growing cluster acts as a trap for the nearby clusters, decreasing the probability
of finding clusters close to its sticky boundaries. The scaling properties of the solution
show that plots of c(r,s) vs. r/s*>, or by virtue of Eq. (6) vs. r/R(s), for different s
values will collapse on a single master curve. The master curve depends only on ¢,. The
size of the depletion region will be larger, the smaller the initial density. The analytic
solution of the model also shows that the growth of the radius of the average euclidean
cluster is controlled by the same exponent as the growth of the depletion region. The
fact that the same scaled variable controls both radius and size of the depletion region
already suggests that the system is characterized by only one characteristic length.

The Fourier transform of Eq. (1) gives the structure factor, whose leading term in the
small g expansion is ¢°, as imposed by mass conservation. c(r,s) being a function of
the scaled variable r/25'2, S(g.s) also scales in time as gs'/® or, by Eq.(6), as gR(s).
The total scattered intensity /(g,¢) measured experimentally can be approximated as
the product of the previously calculated S(g,¢) and of the so-called cluster form factor
P(g,t), a well-known function for any & [7]. P(g,¢) is proportional to the mass of
the scatterer, i.e. in our case to the mass of the average cluster and it is a function
of gR only, i.e. of the same scaled variable of S(g,7). At high g, where S(g,t) ~ 1,
P(q.t) goes as (R(t)q)~““*!. This implies that the total scattered intensity will also be
a scaled function of gR, with a ¢° behavior at small ¢ and a g~ behavior at high q.
Moreover, a plot of I(gR(¢))/M(t) vs. gR(t) will show a remarkable data collapse. The
scaling form depends only on the initial concentration ¢,. On lowering ¢, the I(g,t)
maximum will eventually move out from the finite experimental window [8]. Fig. 2(a)
shows the scaling form for the total scattered intensity /(gR(¢))/M(t) vs. qR(t) for
three different initial monomer concentrations. /(gR(¢))/M(t) has been evaluated as a
product of S(q,t) and P(q,t), where S(q,t) is the Fourier transform of Eq. (1) and
P(q,t) is the form factor calculated for a slightly polydisperse (dR/R = 0.2) assembly
of spheres [9]. The power-law growth of the mass is given by M(z) ~ ¥+ In
three dimensions and with the y = 1/d value for Stokes—Einstein diffusion we recover
the Smoluchowski result z = 1 [10].

We now turn to the case where the aggregation process produces fractal clusters
[11]. It is known that the growth of fractal clusters is limited in time and space. Fractal
clusters tend to fill the space, being characterized by an average density which decreases
with the cluster size. When clusters reach a space-filling configuration, gelation occurs.
One single cluster fills up all the available space. When the growing cluster is a
fractal, a new length scale related to the average cluster size at the gelation point Ry
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Fig. 2. (a) Scaling form for the total scattered intensity, /{qR(¢))/M(¢) vs. qR(¢) for three different initial
monomer concentrations, for D = d = 3. (b) I(gR(1))/M(t) as a function of gR(¢) for four different times
in the case of D = 1.9 and 4 = 3. Dashed and dotted lines show the structure factor and form factor
contributions, respectively.

is expected to arise. The model proposed in Ref. [5] shows that in the fractal cluster
case, the tadius growth is faster than 5172 so that the size of the depletion region shrinks
on increasing time, and becomes zero at gelation, when the fractal clusters fill the space
completely. The change in the time dependence of the cluster growth compared to the
time dependence of the growth of the depletion region brings as a consequence that the
c(r,t) profile does not scale anymore with R(t). ¢(r,¢) progressively approximates a
step function. As a consequence, the scattered intensity at geletion becomes independent
of the initial concentration. This prediction has recently been confirmed for irreversible
colloidal aggregation [12]. Fig. 2(b) shows the time evolution of the total scattered
intensity as a function of gR(#). As for the compact cluster case, the scattered intensity
scaled by the cluster mass, i.e. by RP(¢), is shown as a function of gR(¢). Data collapse
is observed only for P(qR(t),t)/M(¢), while S(qR(¢),t) moves to smaller and smaller
qR(t) values. As shown in Ref. [13], the shape of the depletion region depends only
on the ratio between R(t) and R.

The growth of the mass is not a pure power-law, diverging very close to gelation. For
early time, we showed in Refs. [S, 13] that M ~ (2/IPU+1)—@d=2)] the same exponent
predicted by the Smoluchowski approach for fractal clusters.

3. Conclusions

In summary, we have discussed a simple model [5] to describe the origin and the de-
velopment of the spatial correlatations among clusters during DLCA. The origin of the
correlation is ascribed to the formation of a depletion zone around the growing clusters
{3]. From the model we have calculated the dynamic exponents controlling the time
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dependence of the average mass and of the radius of the aggregates, obtaining the same
exponents predicted by the Smoluchowski equations [10]). We have also calculated the
scattered intensity and its evolution during the aggregation process. We have shown
that a peak in /(q,?) arises as a manifestation in Fourier space of the existence of a
depletion zone around the growing clusters. The model shows that /(g,¢) truly scales,
during the whole aggregation process, only for compact growing clusters where corre-
lations have the same scaling behavior as the size of the growing cluster. /(g, ) can be
scaled as I(gR,t) ~ M(t)F(qR) ~ R¥(t)F(qR). The function F(gR) is not universal,
but depends on the difference in density of the cluster compared to the bulk density.

When the growing cluster is a fractal, the theory predicts an absence of scaling in the
time development of the scattered intensity. The reason for such a difference is shown to
arise from the different time scales of R(¢) and ¢(r, ). While cluster growth is controlled
by the fractal dimension, the mass diffusion is still controlled by the dimensionality
of the space in which diffusion takes place. Only close to gelation, when clusters are
very close, the growth of the cluster takes over the diffusional process and an apparent
scaling may be observed. Samples with different initial monomer concentration are
predicted to show the same scattering pattern if compared at the same R/R; value.

Before concluding, we note that irreversible aggregation in the compact cluster case
is strongly related to the phase separation problem. As seen in Fig. 1, irreversible
aggregation can be seen as a phase separation process in deep quench limit, when
separation proceeds only along a path of decreasing total energy and cluster breaking
is very rare. In such conditions, mechanisms like the evaporation—condensation are less
effective than diffusion and coalescence of the entire clusters. The M(r) dependence
we find is the same as that obtained from the Binder—Stauffer diffusion-reaction mech-
anism for droplet coarsening [14]. The ¢* and ¢~* limit in /(g,) in the late stage
decomposition in the deep quench coincides with the /(g,¢) behavior during aggre-
gation predicted by our model when d = 3. Our exact results support the view that
the scaling function is not universal and depends strongly on the initial conditions and
coarsening process.
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