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Harmonic Dynamics in Supercooled Liquids: The Case of Water
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We present an analysis of the molecular motion in supercooled liquid states, based on the topol
of the configurational phase space and using the instantaneous normal mode technique. We ai
characterizing the harmonicity of the dynamics and evaluating its role in the short-time dynamics. F
supercooled water, we find that modes with frequency higher than40 cm21 have a very strong harmonic
character and control, in the low-T regime, the fast process of exploration of phase space around th
local minima. The fast decay of correlation functions for time shorter than 1 ps is attributed mainly
a dephasing (as opposed to a relaxation) process. [S0031-9007(97)02742-7]

PACS numbers: 61.20.Lc, 61.20.Ja, 63.50.+x, 64.70.Pf
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Deep supercooled liquids present a clear separation
tween the microscopic and structural relaxation dynam
[1]. At very short times (ps scale) molecules move in
almost frozen energy landscape, exploring a finite reg
of phase space around a local minimum (basin). At lon
times, the system visits different basins exploring larg
and larger phase-space regions [2,3]. On cooling, the
trabasin motion becomes more and more separated in
from the slow interbasin motion. As a result, memory
the initial configuration is often lost in a two-step proce
[4,5]. The time dependence of any normalized corre
tion function fstd is affected by the presence of the
two time scales. At short timesfstd goes from one to a
plateau valuefp (fast relaxation), while on a longer tim
scalefstd decays fromfp to zero (a relaxation). During
the fast relaxation, the system explores the original ba
while during thea-relaxation process, the system vis
larger and larger regions of phase space, restoring erg
city. The last process controls molecular diffusion.

The nature of the fast relaxation process is the m
point of this Letter. Two extreme scenarios can
depicted to describe the dynamics in this regime, a
the trivial very short-time ballistic motion. In the firs
scenario, the potential confining the molecules is stron
anharmonic and oscillatory motions are overdamped.
system performs a diffusional process in the basin
which it is trapped andfstd decays tofp following an
exponential law [6,7]. In the second extreme scena
the confining potential is highly harmonic and molecu
perform oscillatory motion. Again, correlation function
decay (in a nonexponential way) to the plateau value,
this time the fast decay offstd reflects the dephasing o
all superimposed independent oscillations controlling
dynamics of the system [8–11].

In real systems, it would be very valuable to ass
to which extent the observed decay to the plateau
due to a relaxation (as opposed to a dephasing) pro
[12]. This Letter is an effort in this direction for th
case of supercooled liquid water, using the instantane
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normal mode (INM) technique [13] to calculate the
local curvature of the potential along all independent
directions in phase space and to estimate the degree o
harmonicity along each of these directions [14]. INM are
calculated diagonalizing numerically the Hessian matrix,
from equilibrated configurations at finiteT [15]. Because
the T is finite, the system is not sitting in a local
minimum of the phase space and the curvature along
a few directionsev is negative, implying that along
these directions the potential is anharmonic. The negative
curvature directions may lead to basin change as well a
to confined anharmonic oscillations [16,17]. For these
negative directions, the frequency is imaginary.

Figure 1 shows the INM spectrum at twoT , both for
positive and imaginaryv. Following the notation of
Ref. [18] we display the imaginaryv as 2sjv2jd1y2, to
remind us of, with the presence of the minus sign, the
negative curvature of the potential. The spectrum of rea
v can be decomposed in two regions, above and below
400 cm21, which separate the mainly translational modes
from the mainly rotational modes [19,20]. On cooling
the system, translational and rotational modes become
better resolved. The spectrum of imaginaryv is alsoT

FIG. 1. Instantaneous density of states for SPCyE water at the
lowest and highest studied temperatures.
© 1997 The American Physical Society 2385
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dependent [21]. As stated above, negative eigenmod
correspond to two different types of curvature of th
phase space. Some negative eigenmodes give rise
double well type of structures (unstable modes), i.e., can
be associated with saddle points in phase space, wh
other negative eigenmodes arise from anharmonic ter
in the potential energy (shoulder modes). An example
of the profile of the potential energy along the directio
ev for both types of negative eigenmodes is show
in Fig. 2. When the system moves along an unstab
mode direction, it may overcome the barrier and mov
to an adjacent distinct local minimum of the potentia
energy hypersurface. Motion along these directions
associated with global displacement (i.e., to diffusion) an
to loss of coherence of the motion along direction wit
positive curvature of the potential [18,22]. Motion along
all positive v and along shoulder eigenmodes describ
the confined motion around one local minimum of th
potential energy hypersurface.

The association of the unstable modes with diffusivit
has been proposed and studied in some details in the
decade [18,21,23]. To corroborate the interpretation
diffusion as a result of the motion along the unstab
directions, we show theT dependence of the fraction
of negative, shoulder, and unstable modes in Fig.
Consistently with what is found in Ref. [17] for soft
spheres, the fraction of unstable modes becomes v
small close to the ideal kinetic glass transitionTc [24].
The fraction of shoulder modes decreases withT but
remains finite atTc. Thus, the switch of local minima
becomes a rare event at lowT and the system becomes
confined in a finite region of phase space around
minimum.

To estimate the degree of harmonicity of positiv
curvature modes we calculate the potential energy alo
eachev and locate the local minimum. We then evaluat
the curvature of the potential at the minimumv2

min.

FIG. 2. V sX 1 levd for two selected eigenmodesev at
T ­ 207 K. X indicates the translational and rotational de
grees of freedom. The left panel shows double-well unstab
eigenmodes, while the right panel shows anharmonic should
eigenmodes.
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For a truly harmonic potential, the ratio between th
instantaneous curvaturev2

inst andv
2
min is one. The result

is shown in Fig. 4. All rotational modes are essentiall
harmonic as well as all translational modes withv

larger than about40 cm21 [25]. Lower v modes are
instead progressively more and more anharmonic and a
together with the shoulder eigenmodes, as damping ter
of the harmonic oscillating modes. Thus, we may view
the dynamical evolution of all correlation functions as
collection of harmonic modes with frequency higher tha
40 cm21, whose coherence is destroyed by the presence
a small fraction of shoulder (both positive and negative
modes, and on a longer time scale by basin hopping. F
sufficiently short times, the harmonic modes will retain
their coherence and any correlation function will decay t
a plateau value (thefp nonergodicity factor) simply due
to the dephasing associated with the finite width of th
density of states.

To estimate to which extent at lowT the short-time
dynamics is controlled by the harmonic dynamics, w
compare the dynamical behavior of the fictitious harmon
system, obtained by exciting withkBT all stable modes
with v larger than10 cm21, with the exact dynamics
calculated solving the Newton equation for the sam
system. Figure 5 shows the self-density autocorrelatio
function fsstd as a function of time for the harmonic
and the Newtonian systems. We note thatfsstd decays
to a q-dependent plateau value [the Lamb-Mössbau
factor (LMF)] after a few oscillations. In the case of
Newtonian dynamics,fsstd relaxes to zero with the
two-step process characteristic of supercooled liquid
The LMF, shown in the inset, is very similar for both
systems. We note also that bothfsstd show an oscillatory
character at short times, due to the superposition of ma
independent modes. All independent undamped mod
weighted by the density of states, add coherently for sho
times and incoherently for large times, resulting in th

FIG. 3. Fraction of negative (circles), shoulder (triangles), an
unstable (squares) eigenmodes as a function ofT . The arrow
locatesTc, the T at which the diffusivity extrapolate to zero
(see Ref. [24]).
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FIG. 4. Ratio of the instantaneous curvature (v
2
inst) and the

curvature at the associated minimum (v
2
min) as a function of

vinst for T ­ 207, 238, 285 K. Inset shows the lowv part of
the spectrum. Note that modes withv lower than40 cm21 are
highly anharmonic. NoT dependence is observed.

oscillatory behavior offsstd. The different position of the
oscillations between Newtonian and harmonic dynamic
related to both having neglected the confined anharmo
oscillations (which show up in the negativev region)
and to the nonharmonicity of modes below40 cm21

which have been considered harmonic for computatio
purposes [26]. We note on passing that such oscillat
behavior infsstd is also predicted in the Debye model fo
harmonic crystals [27].

The assumption that the harmonic dynamics is resp
sible for a large part of the delocalization of the syste
in phase space is not restricted to self-density. Figur
shows theq-vector dependence of the Debye-Waller fa

FIG. 5. Self-density autocorrelation functionfsstd evaluated
from the Newtonian dynamics (symbols) (from Ref. [24]) an
from the harmonic dynamics (lines), both atT ­ 207 K. Three
different q vectors are shown.q ­ 6.6 (diamonds),q ­ 18
(squares), andq ­ 30 (circles) nm21. Inset shows theq
dependence of the plateau value (Lamb-Mössbauer fac
calculated asfss`d for the harmonic and asfss10 psd for the
Newtonian dynamics.
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tor (DWF) for simulated water, i.e., theq dependence of
the value of the density-density autocorrelation functio
after the fast dynamics. In the harmonic case, the DW
is defined as the long time limit of the density autocorr
lation function in Fourier space and it gives informatio
on the shape of the confining potential. In the Newtonia
case, the DWF is estimated from the value of the dens
autocorrelation function at the plateau. The strong sim
larity between the two curves supports the view that t
exploration of the basins in phase space is achieved s
nificantly via harmonic dynamics.

In summary, we have presented an analysis of the IN
in supercooled water, performed on the same configurat
studied in Ref. [24] and previously analyzed in terms
mode coupling theory [5]. The vanishing in the number
directions leading to a different local basin in phase spa
appears to be the leading contribution to the vanishing
the diffusion constant. At the lowest temperature studie
T ­ 207 K, the fraction of unstable modes is about0.6%.
At this low temperature, the motion of the system
confined in a finite part of its phase space for long tim
and the harmonicity of the INM dictates how well respons
functions can be interpreted as a sum of harmonic motio
A measure of the remaining anharmonicity in the motio
around Tc can be obtained by the fraction of shoulde
modes atTc. Water is characterized by a rather sma
number of imaginary modes compared, for example,
liquid argon [17], suggesting that motion over short-tim
scales can be approximated rather well with a harmon
dynamics. It is worth investigating in a future work th
possibility that the fraction of imaginary modes correlate
with the fragility of the liquid and with spectral signature
obeying boson statistics [1]. In the case of water, th
strong harmonic character of molecular motion forv

higher than40 cm21 suggests also a reconsideration of th
high-frequency sound phenomena [28,29].

FIG. 6. q dependence of the plateau value for the densit
density autocorrelation functionkrqstdr2qs0dl (Debye-Waller
factor) calculated askrqs`dr2qs0dl for the harmonic and as
krqs10 psdr2qs0dl for the Newtonian dynamics, both atT ­
20 K.
2387



VOLUME 78, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 24 MARCH 1997

i
n
o
s
o
m

s
io

r

s

s.

i,

b

o

ig
in

a

e
M

n

.

r

in
ns
-

ys.
y,

tt,

nd
h-

r,

s.

t
the
of

l,
a

,
,

The presence of a significant fraction of harmon
modes affects the behavior of the correlation functio
at short times. The coherent motion of the harmonic
cillators leaves its imprinting in the correlation function
which can be rather well described by the sum of the c
relation function of each independent mode. This see
to suggest that, in water, the exploration of the pha
space around the local minima in supercooled state
controlled by a dephasing, as opposed to a relaxat
process.

We thank C. A. Angell, W. Kob, and S. Sastry fo
useful discussions.
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