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Harmonic Dynamics in Supercooled Liquids: The Case of Water
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We present an analysis of the molecular motion in supercooled liquid states, based on the topology
of the configurational phase space and using the instantaneous normal mode technique. We aim at
characterizing the harmonicity of the dynamics and evaluating its role in the short-time dynamics. For
supercooled water, we find that modes with frequency higher4bazm™' have a very strong harmonic
character and control, in the loW-regime, the fast process of exploration of phase space around the
local minima. The fast decay of correlation functions for time shorter than 1 ps is attributed mainly to
a dephasing (as opposed to a relaxation) process. [S0031-9007(97)02742-7]

PACS numbers: 61.20.Lc, 61.20.Ja, 63.50.+Xx, 64.70.Pf

Deep supercooled liquids present a clear separation beormal mode (INM) technique [13] to calculate the
tween the microscopic and structural relaxation dynamic$ocal curvature of the potential along all independent
[1]. At very short times (ps scale) molecules move in andirections in phase space and to estimate the degree of
almost frozen energy landscape, exploring a finite regiomarmonicity along each of these directions [14]. INM are
of phase space around a local minimum (basin). At longecalculated diagonalizing numerically the Hessian matrix,
times, the system visits different basins exploring largeifrom equilibrated configurations at fini®[15]. Because
and larger phase-space regions [2,3]. On cooling, the irthe T is finite, the system is not sitting in a local
trabasin motion becomes more and more separated in tinminimum of the phase space and the curvature along
from the slow interbasin motion. As a result, memory ofa few directionse, is negative, implying that along
the initial configuration is often lost in a two-step processthese directions the potential is anharmonic. The negative
[4,5]. The time dependence of any normalized correlacurvature directions may lead to basin change as well as
tion function ¢(¢) is affected by the presence of theseto confined anharmonic oscillations [16,17]. For these
two time scales. At short timeg(z) goes from one to a negative directions, the frequency is imaginary.
plateau valuep, (fast relaxation), while on a longer time  Figure 1 shows the INM spectrum at twig both for
scale¢ (1) decays fromp, to zero @ relaxation). During positive and imaginaryw. Following the notation of
the fast relaxation, the system explores the original basirRef. [18] we display the imaginarw as —(Jw?[)!/2, to
while during thea-relaxation process, the system visitsremind us of, with the presence of the minus sign, the
larger and larger regions of phase space, restoring ergodiegative curvature of the potential. The spectrum of real
city. The last process controls molecular diffusion. ® can be decomposed in two regions, above and below

The nature of the fast relaxation process is the maid00 cm™!, which separate the mainly translational modes
point of this Letter. Two extreme scenarios can befrom the mainly rotational modes [19,20]. On cooling
depicted to describe the dynamics in this regime, aftethe system, translational and rotational modes become
the trivial very short-time ballistic motion. In the first better resolved. The spectrum of imaginasyis alsoT
scenario, the potential confining the molecules is strongly
anharmonic and oscillatory motions are overdamped. The 8
system performs a diffusional process in the basin in 60— O T=207K
which it is trapped andp(r) decays tog, following an
exponential law [6,7]. In the second extreme scenario,
the confining potential is highly harmonic and molecules &
perform oscillatory motion. Again, correlation functions 2 4
decay (in a nonexponential way) to the plateau value, but &
this time the fast decay ap (¢) reflects the dephasing of
all superimposed independent oscillations controlling the

dynamics of the system [8—11]. no &

In real systems, it would be very valuable to assess 0 Bl B : : : :
to which extent the observed decay to the plateau is -200 0 200 400_1 600 800 1000
due to a relaxation (as opposed to a dephasing) process ©(cm )

[12]. This Letter is an effort in this direction for the FIG. 1. Instantaneous density of states for $P@vater at the
case of supercooled liquid water, using the instantaneouswest and highest studied temperatures.
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dependent [21]. As stated above, negative eigenmoddr a truly harmonic potential, the ratio between the
correspond to two different types of curvature of theinstantaneous curvaturel,,, andw?;, is one. The result
phase space. Some negative eigenmodes give rise i® shown in Fig. 4. All rotational modes are essentially
double well type of structuresuifistable moddsi.e., can harmonic as well as all translational modes wiih
be associated with saddle points in phase space, whilarger than abou#0 cm™' [25]. Lower » modes are
other negative eigenmodes arise from anharmonic termastead progressively more and more anharmonic and act,
in the potential energystioulder modgs An example together with the shoulder eigenmodes, as damping terms
of the profile of the potential energy along the directionof the harmonic oscillating modes. Thus, we may view
e, for both types of negative eigenmodes is shownthe dynamical evolution of all correlation functions as a
in Fig. 2. When the system moves along an unstableeollection of harmonic modes with frequency higher than
mode direction, it may overcome the barrier and movet0 cm™!, whose coherence is destroyed by the presence of
to an adjacent distinct local minimum of the potentiala small fraction of shoulder (both positive and negative)
energy hypersurface. Motion along these directions isnodes, and on a longer time scale by basin hopping. For
associated with global displacement (i.e., to diffusion) andsufficiently short times, the harmonic modes will retain
to loss of coherence of the motion along direction withtheir coherence and any correlation function will decay to
positive curvature of the potential [18,22]. Motion along a plateau value (the, nonergodicity factor) simply due
all positive w and along shoulder eigenmodes describeso the dephasing associated with the finite width of the
the confined motion around one local minimum of thedensity of states.
potential energy hypersurface. To estimate to which extent at loW the short-time

The association of the unstable modes with diffusivitydynamics is controlled by the harmonic dynamics, we
has been proposed and studied in some details in the lastmpare the dynamical behavior of the fictitious harmonic
decade [18,21,23]. To corroborate the interpretation ofystem, obtained by exciting withz7T all stable modes
diffusion as a result of the motion along the unstablewith » larger than10 cm™!, with the exact dynamics
directions, we show thg dependence of the fraction calculated solving the Newton equation for the same
of negative, shoulder, and unstable modes in Fig. 3system. Figure 5 shows the self-density autocorrelation
Consistently with what is found in Ref. [17] for soft function ¢,(¢) as a function of time for the harmonic
spheres, the fraction of unstable modes becomes vegnd the Newtonian systems. We note tigfr) decays
small close to the ideal kinetic glass transitiép [24]. to a g-dependent plateau value [the Lamb-Mdssbauer
The fraction of shoulder modes decreases withbut factor (LMF)] after a few oscillations. In the case of
remains finite atf,.. Thus, the switch of local minima Newtonian dynamics,¢,(r) relaxes to zero with the
becomes a rare event at |olvand the system becomes two-step process characteristic of supercooled liquids.
confined in a finite region of phase space around &he LMF, shown in the inset, is very similar for both
minimum. systems. We note also that bath(z) show an oscillatory

To estimate the degree of harmonicity of positivecharacter at short times, due to the superposition of many
curvature modes we calculate the potential energy alongndependent modes. All independent undamped modes,
eache,, and locate the local minimum. We then evaluateweighted by the density of states, add coherently for short
the curvature of the potential at the minimumy;,. times and incoherently for large times, resulting in the
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FIG. 2. V(X + Xe,) for two selected eigenmodes, at 0

T =207 K. X indicates the translational and rotational de- FIG. 3. Fraction of negative (circles), shoulder (triangles), and
grees of freedom. The left panel shows double-well unstableinstable (squares) eigenmodes as a functiofi.ofThe arrow
eigenmodes, while the right panel shows anharmonic shoulddocatesT,, the T at which the diffusivity extrapolate to zero
eigenmodes. (see Ref. [24]).
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10 s tor (DWF) for simulated water, i.e., thg dependence of
al :f; the value of the density-density autocorrelation function
8 r after the fast dynamics. In the harmonic case, the DWF
= is defined as the long time limit of the density autocorre-
6k <, 0 lation function in Fourier space and it gives information
g 8 & L on the shape of the confining potential. In the Newtonian
;E 4 E case, the DWF is estimated from the value of the density
0 ‘ ‘ autocorrelation function at the plateau. The strong simi-
2 i 0 40 80 larity between the two curves supports the view that the
PRI exploration of the basins in phase space is achieved sig-
0 ; nificantly via harmonic dynamics.
Y (500_1) 1000 In summary, we have presented an analysis of the INM
(Dinst cm

in supercooled water, performed on the same configuration
studied in Ref. [24] and previously analyzed in terms of

mode coupling theory [5]. The vanishing in the number of

directions leading to a different local basin in phase space
appears to be the leading contribution to the vanishing of
the diffusion constant. At the lowest temperature studied,
T = 207 K, the fraction of unstable modes is ab@ui%.

oscillatory behavior ofs, (). The different position of the At this low temperature, the motion of the system is
oscillations between Newtonian and harmonic dynamics i§onfined in a finite part of its phase space for long time,

related to both having neglected the confined anharmonignd the harmonicity of the INM dictates how well response
oscillations (which show up in the negative region) functions can be interpreted as a sum of harmonic motions.

and to the nonharmonicity of modes belo#® cm! A measure of the remaining anharmonicity in the motion

which have been considered harmonic for computationgi’ound 7. can be obtained by the fraction of shoulder
purposes [26]. We note on passing that such oscillatorjnodes atl.. Water is characterized by a rather small
behavior iné, (1) is also predicted in the Debye model for NUMber of imaginary modes compared, for example, to
harmonic crystals [27]. liquid argon [17], suggesting that motion over short—tlmeT
The assumption that the harmonic dynamics is responS_cales_can be_ approxmated' rat_her_well with a harmonic
sible for a large part of the delocalization of the systemdynamics. Itis worth investigating in a future work the
in phase space is not restricted to self-density. Figure gossibility that the fraction of imaginary modes correlates

shows theg-vector dependence of the Debye-Waller fac-with the fragility of the liquid and with spectral signatures
obeying boson statistics [1]. In the case of water, the

strong harmonic character of molecular motion fer
higher thard0 cm™~! suggests also a reconsideration of the

FIG. 4. Ratio of the instantaneous curvatuzazn(l) and the
curvature at the associated minimumZ(,) as a function of
winge for T = 207,238,285 K. Inset shows the low» part of
the spectrum. Note that modes withlower than40 cm™! are
highly anharmonic. N& dependence is observed.

1.0
high-frequency sound phenomena [28,29].
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FIG. 5. Self-density autocorrelation functiapy(s) evaluated 0 50 100 150
from the Newtonian dynamics (symbols) (from Ref. [24]) and q (nm™)

from the harmonic dynamics (lines), bothZat= 207 K. Three

different ¢ vectors are shown.q = 6.6 (diamonds),q = 18 FIG. 6. ¢ dependence of the plateau value for the density-
(squares), andg = 30 (circles) nnm!. Inset shows theg density autocorrelation functiofp,(t)p—,(0)) (Debye-Waller
dependence of the plateau value (Lamb-Mdssbauer factofactor) calculated agp,(«)p-¢(0)) for the harmonic and as
calculated asp,() for the harmonic and ag,(10 ps) for the  {p,(10 p9p—,(0)) for the Newtonian dynamics, both &t =
Newtonian dynamics. 20 K.
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