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Relaxation phenomena in disordered systems
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Abstract

In this article we discuss how the assumptions of self-similarity imposed on the distribution
of independently relaxing modes, as well as on their amplitude and characteristic times, manifest
in the global relaxation phenomena. We also review recent applications of such approach to the
description of relaxation phenomena in microemulsions and molecular glasses.
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1. Imntroduction

Relaxation phenomena in disordered systems are characterized by some common
pattern, notwithstanding the large differences among the systems themselves [1]. Com-
mon characteristics of the relaxation are the presence of a slow dynamics, i.e., of
decay processes which extend over several orders of magnitude, the presence of power-
law regions at intermediate times and of a stretched exponential decay at late times.
In this article we discuss how such patterns can be derived by the simple assumption
of self-similarity, imposed on the distribution of independently relaxing modes, as well
as on their amplitude and characteristic times [2]. We perform a careful study of the
relaxation in such systems, not only in the power-law regime, but also at early and
late times, i.e., in the region in which scaling starts and ceases to exist. Indeed, self-
similarity is never observed over an infinite range of values. The finite size and/or
time of the smallest units introduces a lower cutoff in the distribution of modes.
A more interesting cutoff is usually acting at large times, limiting the range over
which self-similarity is observed. Very often, the upper cutoff depends on external fields
(like temperature, pressure, etc.) and controls the approach to a critical point, where
the self-similarity extends over all the range of values.
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The conceptual framework of such approach is offered by percolation theory [3].
In such a theory, the presence of disorder manifests itself in the presence of a poly-
disperse set of clusters, characterized by a scale-invariant cluster size distribution. The
scale-invariant disorder of the system may impose scale-invariant relaxation phenomena
in dynamical processes taking place on the clusters. In percolation theory, the lower
cutoff is related to the smallest geometrical unit, the monomer, while the upper cutoff
is controlled by the distance from the percolation point. At percolation the upper cutoff
becomes infinite.

The underlying assumption of a self-similar set of independently relaxing units
may appear, at a first glance, as an oversimplification. Indeed models based on serial
(as opposed to parallel) decay processes [4], i.e., on hierarchical organization in time,
have been proposed to interpret relaxation in complex systems. Such sophisticated mod-
els predict a functional form for the decay of correlation which is not different from
the one obtained by postulating independently relaxing units. For the sake of simplic-
ity, we retain in this discussion the assumption of independence in the relaxation of
each mode. Moreover, systems composed of interacting units may be converted, under
the appropriate transformation, into a system composed of non-interacting eigenmodes.
The assumption of independence is thus equivalent to the assumption of the existence
of such (a priori unknown) transformation.

The correlation function resulting from the assumptions outlined above is given by
a sum of exponential relaxation processes weighted by a power-law distribution of re-
laxation times. The three exponents controlling the self-similarity of the distribution of
modes of the relaxation amplitudes and times combine into two new exponents con-
trolling the distribution of relaxation times and the shape of its upper cutoff. According
to the values of these two exponents, we find different functional forms for the decay
of the correlation function and for the scaling of its moments.

Section 2 discusses the basic ingredients of the independent-modes approach and the
functional forms characterizing the time behavior of the correlation function. Section 3
compares the predictions of the theory in a few disordered systems we have recently
worked on, including microemulsion systems close to critical and percolation points
and molecular glasses.

2. Relaxation times distribution

We write the time correlation function of the fluctuations C(z) as the sum of con-
tributions of various decay times, enumerated by the continuous variable k, relaxing
independently and in parallel. These modes are characterized by a Debye-type relax-
ation with an amplitude 4(k) and a characteristic time z(k). The modes are distributed
according to the density function N(k):

1 oC
Ct) = ﬁ/de(k)A(k)exp [—;(1,(-)] . (1)
1
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The relaxation amplitude is assumed to be a power-law A(k) = k**°, while the distri-
bution N(k) is a power-law limited by an ¢xponential cutoff

N(k) = Nyk~% exp [—k_ 1]. (2)
ke
The kth relaxation time is also assumed to be a power-law in k characterized by
the exponent y, t(k) = 1,k?, where 1; is the shortest time. The exponent y will be
equivalently expressed in terms of another exponent f§ as y = (1 — §)/B. N is given
by the normalization of the correlation function C(¢+ = 0) = 1. In summary,

1 oo
Cr) = / dkk® exp [—kf - ik—v} , 3)
krar (L a, b)) o e T

where I'(a,x) is the incomplete gamma function. Note that when y = 0, or f§ = 1, the
correlation function reduces to the simple exponential exp[—¢/71].
In terms of the variable 7(k), the relaxation time, C(¢) is given by

o 4]

C(r) = / “gwen -], @)

T

g(t)/t is the distribution of times

(1+2)/y 1/y
o) = < (2) ew [— (£) ] , )
yI (1 +a, (%) ) ¢ ¢

where 1, = 1.k, is the cutoff relaxation time. Note that the relaxation times distribution
function g(1) is characterized by a power-law limited by a stretched exponential cutoff
time. A similar distribution function is used in the Cole—Davidson expression for the
C(z), which introduces a cutoff through the upper limit of integration but has no lower
relaxation time limit [5].

2.1. Properties of C(1)

The behavior of C(¢) for small times is given by a linear decay, followed by
a power law and finally by a stretched exponential. This behavior defines two timescales
71 and 7., corresponding to the shortest and the longest relaxation times available to
the system. The average decay time can be easily calculated and is dominated by t; or
7. according to the values we give to the indices, the behavior of which we examine
in detail in the various time regions.

We start by evaluating C(¢) for short times < 1;. For 1 +a < 0, C(¢) is a function
of 7, only

1+ t

CHH~l+ —Fx —. (6)
y—1—-a 1
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In the opposite case, 1 + o > 0 we obtain for 0 <y <1 + «, a function of 7, only

I(ltaty ¢

C(ty~1-— 7
) I'(l + o) T ™
while for 0 < 1 + o <y we get
1 7 (1+=x)/y t
~1-— — —. 8
¢ (y—l—oc)l“(1+oc)x(rc) * 1 )

In the intermediate time regime, 1) <t <1, the self-similarity of g(zr) manifests in
a power-law dependence in C(¢) in two different ways according to the sign of 1 + «.
For 1 + a >0, 1 — C(¢) behaves as a power law

~1— v -1+ a)y) ¢\
COR 1= e =T X~ T X(_) _

Tc
For 1 +a < 0, we get the true power law

(1+a)/y
ot () ()T
s Y Y T T1

For t» 1., C(¢) is a stretched exponential decay times a power
27’[/('))4‘ 1 vt (a+0.5)/(y+1) p B
o= () e (o) |
F(oc+ 1, (—) ) ¢
7
(11)

where the universal exponent § has been defined before. Note that one obtains a pure
stretched exponential only when x = —0.5 [2].

)

3. Applications in disordered systems
3.1. Dielectric relaxation in microemulsion systems at percolation

In [6], the idea discussed in the previous sections have been applied to dielectric
relaxation in microemulsion systems. A mixture of water-in-oil microemulsion droplets
has been modeled as a polydisperse set of clusters, containing k& droplets each, dis-
tributed according to random percolation, i.e., with a scaling expression [3]

k—° e—k/kc

T RETQ -k

N(k) (12)
characterized by a power-law behavior with index 7 and a cutoff cluster size k. which
diverges as the system approaches the percolation threshold. The scattering amplitude
and correlation time, in the simple case of a conducting microemulsion in a non-
conducting medium, have been evaluated on the basis of the following argument [6].
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Fig. 1. Points are the C(z) for water~AOT—decane microemulsion for different values of ¢ (0.24 (<), 0.28
(0) and 0.32 (o)), T = 25°C and X = [HyO]/[AOT] = 40.8, calculated by Laplace transform of the
measured conductivity and permittivity [7]. The full lines are given by Eq. (3) with (1 + a)/y = 0.41 and
B =04

Ay 1s related to the product of the mean square charge fluctuations, proportional to the
cluster size k, and the radius of gyration squared R:, where Ry ~ kP and D is the
fractal dimension of the cluster. Consequently, 4; will scale as kRi. The decorrelation
time is proportional to the time it takes a charge carrier to visit all sites of the cluster.
If the clusters were compact objects 7, would be proportional to R} since the charge
carriers perform diffusive motion in the clusters. Since the motion is instead on a fractal
aggregate, it is governed by anomalous diffusion and 7; will be related to the radius
of gyration through a power which takes into account the anomaly, i.c., the ratio D/d

T ~ (RDP (13)

where d is the spectral exponent.

In {6], the amplitude and relaxation times for the more complex case of conducting
droplets in a moderately conducting medium are given. Using t =22, D =25, d =
1.36, one obtains (1 +a)/y = 0.41 and § = 0.4. The results are shown in Fig. 1, where
we report the comparison of the measured conductivity and the dielectric constant of
the microemulsion with the Laplace transform of the time derivative of C(z), with
a rather good agreement. The details of the comparison are given in {6,7].

3.2. Glassy relaxation of density correlations in the mode-coupling theory

In the last 10 years, significant efforts have been devoted to the study of the slow
dynamics in glass forming supercooled liquids. In such systems, correlations in space
decay in a multi-step process. An initial decorrelation, controlled by the microscopic
dynamics only at early stages, towards a non-zero plateau value (the so called non-
ergodicity factor, fz4). In the liquid state this decay is followed by a much slower
relaxation controlled by collective dynamics, often described as cage restructuring pro-
cess, which restores ergodicity in the system. The behavior of the correlation function
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Fig. 2. Decay of the correlator ¢(¢) for the Fi; model. Points are numerical solutions of the model, plotted
in the scaled variable ¢/t .. The full curve is the fit to the scaled data according to Eq. (3).

close to the plateau (f-region) and at late times (a-region) is very often the same in
completely different systems, speaking for an underlying universality in the dynamics.
Two empirical laws have been proposed to describe the late f-region and the a-region,
the von-Schwindler law (C(2) — fr4 ~ (¢/7giass )’) and the stretched exponential form
(C(t) ~ e_“/’”’w)ﬂ), where 74, is the characteristic time which diverges at the MCT
glass transition point. The MCT exponent b depends on the glass transition point only.
All these observations have been rationalized by the mode-coupling theory (MCT) for
the glass transition [8], the first successful theory for supercooled liquids. MCT pre-
dicts indeed the existence of f and « regions, as well as the power-law and stretched
exponential decays. It predicts also the existence of scaling at different temperatures
and pressures for the late § and « regions. Interestingly enough, all these features are
also found in Eq. (3) when (1 + a)/y > 0.

The essential ingredients of MCT are a non-linear coupling of the correlators in the
retarded memory function controlling the evolution of the correlators themselves. For
simple forms of the memory function, the evolution of the correlators can be calculated
numerically. Fig. 2 shows the decay of C(¢) for the so-called Fi, model [8]. Different
curves are calculated for different distances from the glass transition point, measured
by the value of &. Curves have been plotted as a function of #/74,, to highlight the
scaling behavior in the « regime. For the chosen glass transition point, MCT predicts
b =064 and § = 0.52.

Motivated by the similarity in the behavior of C(¢) as predicted by MCT and of
C(?) calculated as sum of independently relaxing modes, we have compared the two
curves in Fig. 2. We have used y = 0.92 and 1+« = 0.59, in agreement with the MCT
exponent of the von—Schwindler law. In this region of 1 + « the relevant parameter
is 7. and all curves can be scaled in #/1., corresponding to the MCT time-temperature
superposition principle [8]. Thus, 1. plays the role of Tg;.

Of course, while MCT is able to describe also the approach to the plateau as well
as to predict the value of the exponent in the power-law regime and the scaling
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Fig. 3. Fs(Q.r) at 7 = 210 and Q = 1.8 A—!, corresponding to the position of the maximum in the static
structure factor from [10]. The full line is a fit with Eq. (3) for times larger than 3 ps, i.e., after the plateau.

behavior of 14, from the chosen model, in our case we arbitrarily chose y and «. This
notwithstanding, the agreement is surprisingly good, suggesting that cage-restructuring
dynamics close to the glass transition is the result of a self-similar distribution of re-
laxation times. This may offer an explanation on why alternative approaches [9] to
the description of the dynamics close to the glass transition, based on an a priori
assumption of distribution of relaxation times, succeed in describing the behavior of
supercooled liquids.

3.3. Slow dynamics in water

The single-particle dynamics in deeply supercooled water have been recently studied
via molecular dynamics [10]. It has been shown that at low temperatures the decay of
the intermediate incoherent scattering function, F,(Q,t), is characterized by a two-step
process, with a characteristic separation time coinciding with the onset of the cage
effect. For lengths comparable to the cage size the slow decay is well described by
a stretched exponential decay. Fig. 3 shows that the slow decay of Fy((,t) can be
well described by a distribution of relaxation times, with 1 + o« = 0.22 and y = 0.43,
suggesting that a self-similar distribution of relaxation times can be an alternative
description to the slow dynamics in molecular systems.

3.4. The droplet model of critical phenomena

We turn next to the discussion of some aspects of the droplet dynamics near the
critical point. Scattering data close to the critical point have been interpreted in terms
of independent clusters [11] of fractal dimension D = 2.5. Authors of [11] have used
Eq. (12) (with T = 2.2) as cluster size distribution

Si(Q) = ke QR0 (14)
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Fig. 4. Measured correlation functions showing deviations from the exponential behavior. The dashed lines
represent the fit to an exponential, full lines are a fit with Eq. (3) (from [11]).

(where Rgy ~k'/P is the radius of gyration of a cluster of size k) as relaxation amplitude
and

= DyQ? = O*D kP (15)

as relaxation time. Here, D, is the diffusion coefficient of the k-cluster and D; is the
renormalised diffusion coefficient of a single droplet. In the hydrodynamic regime, the
structure factor Sy(Q) = k. Such a choice fixes the value of the exponents to the values
1+a=-02 and y = 0.4. Fig. 4 shows the measured correlation function and the fit
according to the present model.

On the basis of these relaxations one obtains not only a successful description of
the decay of correlations close to the critical point but also a correct description of the
static scattering. Indeed, when k. becomes large, the resulting static scattering reduces
to the well-known Ornstein—Zernike relation [11].

4. Conclusions

We have presented a detailed study of the behavior of the decay of correlation in
disordered systems characterized by a power-law distribution of independently relaxing
modes.

The independently relaxing modes approach has been often used to describe the
decay of correlation in complex systems [5]. The well-known empirical Cole-Davidson
description of relaxation is indeed based on a power-law distribution of relaxation
times. In this paper, we build upon such previous works and extend it to include the
consequences introduced by the presence of an upper (1.) and lower (7;) cutoff on the
time distribution.

We have studied how the value of the exponent controlling g(t) enters in the func-
tional form describing the decay. Interestingly enough, we find that, in the region of
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time such that 1| <t < 1., the self-similarity in g(t) determines a power-law behavior
in C(¢) or in 1 — C(#), according to the sign of 1 + a. Moreover, in the same time
window, C(¢) does not or it does depend on 7.. The long-time behavior is always
described by a power-law times a stretched exponential behavior.

We have shown how the independent modes picture is able to describe the decorrela-
tion process in microemulsions. We have investigated the electrical conductivity close
to the percolation line and the dynamical light scattering close to the critical point.
In these two examples, the value of the exponents « and y can be obtained theoret-
ically. In the first example, 1 — C(¢) ~ 1+*7 while in the second, C(z) ~ (127,
In the end, we have also shown that a self similar g(t) is a very good representation
of the decay in supercooled liquids and theoretical glasses.

Acknowledgements

We thank C. Cametti, S.H. Chen and J. Rouch for the very useful discussions which
lead to this work.

References

[1] See e.g. K. Kawasaki, T. Kawakatsu and M. Tokuyama, eds., Slow Dynamics in Condensed Matter
(American Institute of Physica, New York, 1992).

f2] R. Botet, LA. Campbell, J.M. Flesselles and R. Jullien, in: Universalities in Condensed Matter, eds.
R. Jullien, L. Peliti, R. Rammal and N. Boccara (Springer, Berlin, 1987) p. 250.

[3] D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1992).

[4] R.G. Palmer, D.L. Stein, E. Abrahams and P.W. Anderson, Phys. Rev. Lett. §3 (1984) 958.

5] J. Ross MacDonald, Impedance Spectroscopy (Wiley, New York, 1987).

[6] F. Bordi, C. Cametti, J. Rouch, F. Sciortino and P. Tartaglia J. Phys.: Condens. Matters in press.

[7] C. Cametti, F. Sciortino, P. Tartaglia, J. Rouch and S.H. Chen, Phys. Rev. Lett. 75 (1995) 569.

[8] W. Gitze and L. Sjogren, Rep. Prog. Phys. 55 (1992) 241; see also the special issue of Transport
Theory Statist. Phys. 24 (1995) 801.

[9] T. Odagaki, Phys. Rev. Lett. 75 (1995) 3701 and references therein,

[10] P. Gallo, F. Sciortino, P. Tartaglia and S.H. Chen, Phys. Rev. Lett. 76 (1996) 2730; F. Sciortino,
P. Gallo, P. Tartaglia and S.H. Chen, Phys. Rev. E (December 1996).

[11] J. Rouch, P. Tartaglia and S.H. Chen, Phys. Rev. Lett. 71 (1993) 1947.



