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Test of the semischematic model for a liquid of linear molecules
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We apply to a liquid of linear molecules the semischematic mode-coupling model, previously introduced to
describe the center of mass~COM! slow dynamics of a network-forming molecular liquid. We compare the
theoretical predictions and numerical results from a molecular-dynamics simulation, both for the time and the
wave-vector dependence of the COM density-density correlation function. We discuss the relationship between
the presented analysis and the results from an approximate solution of the equations from molecular mode-
coupling theory@R. Schilling and T. Scheidsteger, Phys. Rev. E56, 2932~1997!#. @S1063-651X~98!08311-1#

PACS number~s!: 61.20.Gy, 64.70.Pf
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I. INTRODUCTION

The mode-coupling theory~MCT! @1,2# has opened new
perspectives in the theoretical understanding of the dyna
slowing down characteristic of supercooled glass-form
liquids @3#. MCT, originally developed to describe the stru
tural relaxation in simple liquids, i.e., in liquids composed
particles interacting via spherically symmetric intermolecu
potentials, also offers a coherent picture of the slow dyna
ics in molecular glass forming liquids, composed of asy
metric molecules. The ability of MCT to model the onset
slow dynamics in molecular liquids has prompted the nee
extend the theory to fully take into account the angular
grees of freedom. The extension of MCT to a solute lin
molecule in a solvent of spherical particles@4# and to mo-
lecular liquids@5,6#, which we refer to in the following as
molecular MCT~MMCT!, has been recently achieved. Th
center-of-mass~COM! density-density correlation function
which in MCT is the only relevant correlation function, i
MMCT becomes coupled to an infinite hierarchy of rot
tional correlation functions, arising from the expansion of t
angular degrees of freedom in spherical harmonics.
MMCT equations for COM and angular correlators ha
been solved until now for systems of linear molecules un
specific approximations@5–7#. Work is currently underway
to improve the approximations for dumbbells and to cal
late a solution for the general case of molecules of arbitr
shape.

Recently, some of us proposed a parametrization of
role of the rotational degrees of freedom and their effect
coupling with the COM density@8#. This approach, which
provides a solvable set of coupled equations for the s
dynamics of the COM density-density correlation functio
has been namedsemischematicbecause it retains all theq
dependence of the COM correlators but condenses the
pling between COM and angular correlation functions into
single q-independent parameterxR . A detailed comparison
between the theoretical predictions of the model and res
from a molecular-dynamics~MD! simulation has been per
formed for a network forming liquid@8#, finding an excellent
agreement up to a cutoffq-vector value where the micro
scopic geometric details become dominant.
PRE 581063-651X/98/58~6!/7272~7!/$15.00
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In the long term, the exact solutions of the MMCT equ
tions are to be preferred because they do not require anad
hocestimate of the translational-rotational coupling and p
dict also the behavior of the angular correlators. On the ot
hand, in the short term the semischematic equations
rather appealing because of their simplicity, for the minim
amount of input information required and because the co
plete time-dependent solution can be achieved with pres
day computational facilities. Also, once the ability of th
semischematic model to describe the time evolution of
COM correlation functions has been assessed by deta
comparison with MD simulations, comparison with expe
mental data is foreseeable, again due to the limited need
structural input. For this reason, in this paper we solve
semischematic model for a system of linear dumbbells in
acting through a Lennard-Jones~LJ! potential and compare
the predictions of the model with the corresponding qua
ties evaluated from long MD simulations of the same liqu
@9#. The choice of a liquid of dumbbells for which th
MMCT equations have been previously solved appro
mately@7# allows at the same time a comparative discuss
of the two theoretical methods.

II. THEORY

The semischematic model is defined by introducing in
ideal MCT equations for simple liquids an effective couplin
parameterxR which models the caging effect of the molec
lar rotational motion on the COM dynamics, i.e., the slowi
down of the COM relaxation introduced by the angular d
grees of freedom. The resulting system of integrodifferen
equations@8# describes the time evolution of the normalize
density-density COM correlation functions fq(t)
5Sq(t)/Sq , Sq(t) being the dynamic structure factor

Sq~ t !5
1

N
^rq~ t !* rq~0!& ~1!

andSq5Sq(0) the static structure factor. The unknownxR is
fixed once and for all by requiring that the ideal glass tra
sition temperature in the modelTc

MCT coincides with the tem-
perature calculated from the analysis of experimental or M
7272 © 1998 The American Physical Society
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data. The imposed equality of the theoretical and MD te
peratures is very important because it allows us to comp
the numerical and the MD data at the same referenceT, i.e.,
with the same structure factor and the same thermal bro
ening @10#. A larger value ofxR corresponds to a stronge
slowing down of the COM relaxation due to the interacti
with the rotational motion. IfxR51, the semischematic
model coincides with the standard MCT@1#.

The physics described by the semischematic model is
same as for the ideal MCT. It predicts that whenT,Tc

MCT ,
fq(t) does not relax to zero at long times and the CO
dynamics is frozen. AboveTc

MCT , the correlatorfq(t) de-
cays with a typical two-step relaxation process, character
by the fast decay to a plateau value~the nonergodicity pa-
rameter! followed by a slow relaxation to zero~a relaxation!
which gets slower and slower asTc

MCT is approached.
The semischematic model describes the dynamic ev

tion of fq(t) in the time region where the slow dynamic
becomes dominant~a region! by the system of coupled equa
tions,

fq~ t̂ !5mq~ t̂ !2
d

d t̂
E

0

t̂
dsmq~ t̂2s!fq~s!, ~2!

where the time variablet̂ is defined in terms of a characte
istic time scale which diverges atTc

MCT @1#. The memory
function mq is a quadratic functional of the correlation
fq(t) themselves,

mq@fk~ t !#5
xR

2 E d3k

~2p!3
V~qW ,kW !fk~ t !f uqW 2kW u~ t ! ~3!

and its increase on cooling is responsible for the slow
down of the relaxation process. The parameterxR enters in
Eq. ~3! as aq-independent multiplicative factor, thus increa
ing the strength of the COM memory function.

The vertices in Eq.~3! are defined as

V~qW ,kW ![SqSkSuqW 2kW u
1

nq4

3@qW •kW~12Sk
21!1qW •~qW 2kW !~12SuqW 2kW u

21
!#2 ~4!

and are functions of the COMSq and inversely proportiona
to the density.

Note that Eq.~2! ignores the bare transport coefficient
well as the phonon frequencies. Such approximation is m
tivated by the structure of the MCT equations, which in t
vicinity of the critical temperature@1# become scale invari
ant. In this paper we will compare data calculated from M
simulations with the corresponding theoretical quantit
evaluated close to the ideal glass transition temperat
where any information on the bare transport coefficient a
on the phonon frequencies drops out. Recently, this theo
ical prediction has been subjected to an accurate test in
@11# where it has been shown that the slow dynamics clos
Tc is the same for both Newtonian and stochastic mic
scopic dynamics.
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The infinite time limit f q of fq(t) can be calculated solv
ing self-consistently on a discrete set ofq values the coupled
integral equations

f q

~12 f q!
5mq@ f k# ~5!

using as input the number densityn and Sq which can be
calculated from the MD data or measured experimentally

Having chosenxR properly, at the ideal glass transitio
temperature the solutionf q of Eq. ~5! jumps discontinuously
from zero to a nonzero value, which defines the critical no
ergodicity parameterf q

c @1,2#. In what follows, we will ne-
glect the upper index in the nonergodicity parameter.

In the supercooled liquid phase, after the plateau of he
f q , fq(t) follows an initial power-law decay~von Sch-
weidler law!, ruled by aq-independent scaling exponentb,
followed by a stretched exponential relaxation~Kohlrausch-
William-Watts law!:

fq~ t !;Aq
K expF2S t

tq
KD bq

KG . ~6!

The range of validity of the von Schweidler law is stronglyq
dependent@12# and, therefore, it is worthwhile to conside
also the second-order corrections:

fq~ t !; f q2hq
~1!S t

t D b

1hq
~2!S t

t D 2b

1O„~ t/t!3b
…. ~7!

The exponentb can be calculated solving

l5
G~11b!2

G~112b!
, ~8!

whereG is the Euler gamma function and theexponent pa-
rameterl is defined by

l[
1

2 E
0

`

dqE
0

`

dkE
0

`

dpêq
c~12 f k!

2ek
c d2mq

d f kd f p
~12 f p!2ep

c .

~9!

In Eq. ~9!, ec and êc are the right and left eigenvector co
responding to the maximum eigenvalue of the stability m
trix

Cqk
c @ f p#[

dmq@ f p#

d f k
~12 f k!

2 ~10!

evaluated at the critical point. The critical amplitudehq
(1) is

hq
~1!5~12 f q!2eq

c ~11!

while hq
(2) is calculated theoretically according to the corre

tion formulas to the asymptotic laws reported in Ref.@12#.
In Sec. IV we present the solution of the static and d

namic equations reported above for a liquid of linear m
ecules. Some of us have recently solved the problem of
estimation of the ideal critical temperature and of the cal
lation of the corresponding nonergodicity parameter for
liquid under investigation solving the MMCT equation
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within some suitable approximations@6,7#. We thus show in
Sec. IV a comparison between the predictions of MMCT
the slow relaxation in a liquid of linear molecules and t
corresponding predictions of the semischematic model.

To facilitate the reading of the present paper, we pres
here a brief outline of the MMCT for linear molecules. W
refer the interested reader to Refs.@5–7#.

According to MMCT, the relevant variables for the d
scription of the slow dynamics of supercooled molecu
glass forming liquids are the generalized correlation fu
tions

Sll 8
m

~q,t !5
1

N
^r lm~q,t !* r l 8m~q,0!&, ~12!

where the density functions are defined by

r lm~qW ,t !5 i lA4p (
j 51

N

eiqW •xW j ~ t !Ylm„V j~ t !…. ~13!

In Eq. ~13! the sum runs over theN molecules of the liquid,
xW j is the COM position of thej th molecule, andYlm(V j ) are
the spherical harmonics for its Euler’s angles. The indel
ranges over the whole set of non-negative integer numb
while mP@2 l ,l #. For l 5 l 850 the correlation function de
fined in Eq.~12! coincides with the COM correlatorSq stud-
ied by the usual MCT and the semischematic model. Du
the lack of rotational invariance of the molecules, the cor
lation functions depend both on modulus and orientation
the wave vector. In Eq.~12! we have chosen a referenc
frame whereqW points in the direction of thez axes, which
offers the advantage of diagonality of the correlators w
respect tom. The evolution equations for the correlators
Eq. ~12! are a generalization of Eq.~2! for a single
q-dependent correlator. The slowing down of the relaxat
is ruled by an infinite set of memory function

@Mll 8
m (q,t)#aa8 which are quadratic functionals of the who

set of correlators~12!. The extra indicesa,a8P$T,R% are
related to projection operations on the longitudinal trans
tional (T) and rotational (R) currents. For the aims of thi
paper we underline that in MMCT the time evolution of ea
correlator is coupled, through the memory functions, to
ery other correlator. This means that, due to the depend
of @M00

0 (q,t)#TT on both the translational and rotational co
relators, the dynamics of the COM correlatorS00

0 (q,t) is af-
fected by the time evolution of every angular correlati
function Sll 8

m (q,t) with l ,l 8Þ0.
With the cutoff l<2, the nonergodicity parameter

f l l
m(q)5 limt→` Sll

m(q,t)/Sll
m(q) have been calculated for th

liquid of LJ dumbbells in the approximation of diagonality
l , i.e., Sll 8

m (q,t)'d l l 8Sll
m(q,t) and @Mll 8

m (q,t)#aa8

'd l l 8@Mll
m(q,t)#aa8 @7#. We stress that this diagonality wa

also demanded for the static correlatorsSll 8
m (q), in order to

keep the MMCT equations as simple as possible. The in
of the calculations are the number density of molecules
all the diagonal static structure factorsSll

m(q) up to l 52 as
evaluated from the set of MD data@9#.

In this approximation scheme the MMCT equations
the long time limit of the COM and angular correlators c
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be solved on varying the temperature. The model predicts
existence of a completely ergodic~liquid! phase down to a
critical temperatureTt

MMCT50.383 where the COM dynam
ics runs into a nonergodic~glassy! phase while the angula
dynamics is still liquidlike. On lowering the temperature fu
ther, a second critical temperatureTr

MMCT appears, character
ized by the freezing of both angular and COM dynami
This splitting of critical temperatures is an artifact of th
diagonalization approximation and is not observed when
approximationlÞ l 8 is waived, at least for the static correla
tors @13#. Indeed, in the analysis of the MD simulation, ro
tational and translational critical temperatures coincide,
discussed in Sec. III. This unphysical splitting of the theor
ical critical temperatures implies that, for temperatur
higher thanTr

MMCT , MMCT in the diagonalization approxi-
mation is completely equivalent to the ideal MCT for simp
liquids, since the angular dynamics does not contribute to
slowing down of the relaxation. For this reason, the theo
ical COM critical temperatureTt

MMCT is 25% lower than the
numerical critical temperatureTc

MD .
In Fig. 1 we show the results~from Ref. @6#! for the long

time limit of the COM correlatorS00
0 (q,t) ~normalized at its

t50 value! for the two different critical temperatures~short
and long dashed lines!. For T.Tt

MMCT, the COM correlator
decays to zero in a finite time interval~ergodic phase!, while
at Tt

MMCT its infinite time limit jumps to a nonzero value
namely the nonergodicity parameterf 00

0 . The rotational dy-
namics is still in a liquid phase, i.e., all the angular corre
tors vanish in the long time limit until the temperature
lowered down toTr

MMCT . At Tr
MMCT , the transition for the

angular correlators occurs and the angular dynamics star
contribute to the nonergodicity parameter. This means
also the angular correlators contribute to the structural ar
of the COM dynamics. From a mathematical point of vie

FIG. 1. COM nonergodicity parameterf q as calculated by solv-
ing Eq. ~5! ~solid line! and as evaluated from the MD simulation
@9# ~symbols!. For comparison also the COM nonergodicity para
eters as predicted by MMCT are reported at two different tempe
tures~dashed lines!. The dotted line showsf q as predicted by the
semischematic model atT50.310. The unit ofq is sAA

21 while the
unit of temperature iseAA ~settingkB51). The MMCT curves are
from Ref. @6#.



he

o
a

im
r-
fo

te
le
-
up
th

f

fo
th

n
al

o

te
e
th
o
t

ra
o

w

fo

ic
s

da

M

s

r
ent

tor

e-
the

y

the
re
b-

ape
nds

M
ses

he

o-

n.

PRE 58 7275TEST OF THE SEMISCHEMATIC MODEL FORA . . .
at Tr
MMCT the angular correlators start to play a role in t

calculation of the COM memory function@M00
0 (q,t)#TT. The

long dashed line in Fig. 1 represents the infinite time limit
the normalized COM correlator. We underline that,
Tr

MMCT , the COM is in a deep glassy phase and the long t
limit of S00

0 (q,t) is therefore higher than the critical none
godicity parameter. All the details of the calculation, both
the angular and COM quantities, can be found in Ref.@6#.

III. MODEL AND SIMULATION DATA

The model under investigation is a one-component sys
containingN5500 rigid diatomic molecules. Each molecu
consists of two atoms, labeledA andB, separated by a dis
tanced. The interaction between two molecules is built
by pair interactions between the atoms, which are due to
LJ potentials,

Vab~r !54eabF S sab

r D 12

2S sab

r D 6G ,
a,bP$A,B% ~14!

with LJ parameterseAA5eAB51.0,eBB50.8 and sAA
5sAB51.0,sBB50.95, i.e.,eAA was chosen as the unit o
energy and temperature (kB51) and sAA as the unit of
length. The unit of time is then@(sAA

2 m)/(48eAA)#1/2, where
m is the mass of an atom which is chosen to be equal
both types of atoms. The slight head-tail asymmetry of
dumbbell assures, together with the choice ofd50.5 as in-
teratomic distance, a good coupling between translatio
and rotational motion on the one hand, and avoids cryst
zation into a liquid crystalline phase and the intersection
two dumbbells on the other.

After equilibrating the system in the (N,p,T) ensemble
for times which exceeded the relaxation times of the sys
even at the lowest temperature, the production runs w
carried out in the microcanonical ensemble. To improve
statistics, the data for each temperature were averaged
at least eight independent runs. Further details about
simulation can be found in Ref.@9#, from which we take part
of the data to be compared with the theoretical results.

In the frame of MCT, the presence of a critical tempe
ture affects theT dependence of several observables. F
example, the Debye-Waller factors are predicted to sho
square root singularity atTc . The a-relaxation times for all
possible correlators coupled with the density fluctuations
low a power law inuT2Tcu on approachingTc from above.
Close toTc , the power law crosses to an activated dynam
law due to the increased relevance of the hopping proces
These behaviors can be used to estimate from the MD
the location of the critical temperatureTc

MD , as shown, for
example, in Refs.@14–16,9,17#.

In the present case, the critical temperature for the CO
was determined from the simulation by fitting thea-
relaxation time and the diffusion constantD with power laws
f
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t}~T2T c
MD!2g, D}~T2T c

MD!g ~15!

and it was found to beT c
MD50.477. The numerical value

for the nonergodicity parameterf q , the critical amplitude
hq

(1) , and the second-order correctionhq
(2) at the critical tem-

peratureT MD50.477 are also taken from Ref.@9#. They were
evaluated by fitting the decay from the plateau infq(t) with
the von Schweidler law Eq.~7!, including the second-orde
correction. From the same procedure the critical expon
b50.55 is also obtained and, via Eq.~8!, one gets for the
exponent parameterl the resultl50.76. Furthermore, we
have examined the time dependence of the MD correla
fq(t) in the a region by evaluating the amplitudesAq

K ,
stretching exponentsbq

K , and relaxation timestq
K of a

Kohlrausch-Williams-Watts fit@Eq. ~6!#.

IV. RESULTS

We solve for the liquid of LJ dumbbells the semisch
matic equations introduced in Sec. II using as input for
calculation the static structure factorSq as obtained from the
simulation ~Figs. 2 and 3! and the COM number densit
n50.719 atT MD50.477. We solve Eq.~5! on a grid of 300
equispacedq values extending up toqsAA525. This
q-vector range covers about four times the position of
first peak in the staticSq and extends up to the region whe
Sq has practically reached its asymptotic value of 1. Pu
lished work on the hard-sphere system@18,12# has shown
that the results are not affected by the mesh size if the sh
of the structure factor is well resolved and the range exte
up to values such thatSq51.

We find that the conditionT c
MCT5T MD fixes the value of

xR to 1.17, which suggests that the coupling between CO
and angular degrees of freedom in LJ dumbbells increa
the COM memory function about 20%. If compared to t
value xR51.93 found for SPC/E water@8,17#, this result
highlights the weaker hindering effect of the rotational m

FIG. 2. Critical amplitudeshq
(1) andhq

(2) in the von Schweidler
law Eq. ~7! as predicted by the semischematic model~solid lines!
and as calculated from the MD data~symbols!. The static structure
factor Sq used as input of the theoretical calculation is also show
The unit ofq is 2psAA

21 .
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tion in a liquid of LJ linear molecules with respect to th
strong one observed in a hydrogen-bonded network-form
liquid. In water, the highly energetic hydrogen bonds bu
up the network structure which is responsible for the cag
of the molecules in the glass phase. The motion of the C
of the molecules is completely dependent on the break
and reforming of the hydrogen bonds, i.e., it is definite
correlated to the angular dynamics.

The solution of Eq.~5! for xR51.17 as a function of the
wave vectorq is shown in Fig. 1 together with the COM
nonergodicity parameters as calculated from the MD d
The theoreticalf q oscillates in phase with the MD data, b
underestimates the amplitude, especially at largeq vectors.

Although the phase relation betweenf q andSq may seem
at a first glance a trivial effect of usingSq as input in the
theory, we stress that thef q value at wave vectorq is con-
trolled by Eq. ~2! and thus it is the result of a three
dimensional integration which involves the entireq depen-
dence ofSq .

The shoulder aroundq53, which may be attributed to th
rotational-translational coupling, as the orientational c
relator S11

0 (q) has a maximum at thisq, is also underesti-
mated. This notwithstanding, the semischematicf q captures
the q dependence of the nonergodicity parameter as ca
lated from the MD data.

The simplicity of the semischematic equations allows
to study, besidesf q , also the complete time relaxation o
fq(t). According to the theoretical predictions outlined
Sec. II, we calculate the critical amplitudeshq

(1) andhq
(2) and

the exponentb which rule the earlya-relaxation behavior
@Eq. ~7!#.

FIG. 3. AmplitudeAq
K , stretching exponentbq

K, and relaxation
time tq

K in the Kohlrausch-William-Watts law Eq.~6!. Lines are
obtained fitting Eq.~6! to the exact time-dependent solution of E
~2! while symbols are evaluated fitting the same law to the M
data. The MD time unit fortq

K is 105@(sAA
2 m)/(48eAA)#1/2 while the

MCT relaxation times are arbitrarily scaled. The unit ofq is
2psAA

21 . The static structure factor is shown as a reference.
g

g
M
g

a.

-

u-

s

In Fig. 2, we present a comparison between the theore
predictions of the semischematic model for the critical a
plitudeshq

(1) and hq
(2) and the same quantities as calculat

by fitting Eq.~7! to the density-density correlation function
i.e., with a quadratic fit intb. The fitting coefficientshq

(1)/tb

and hq
(2)/t2b can be compared with the theoretical critic

amplitudes after fixing, once and for all, theq-independent
time scalet, introduced by the scale invariance of Eq.~2!.
The agreement is satisfactory in a wide range ofq values.
The theoretical value for the exponent parameter, as ca
lated from Eq. ~9!, is l50.63, to be compared withl
50.76 as obtained by the simulation, i.e., the difference
tween the two is about 15%. This yields a theoretical criti
exponentb50.75, while the exponent calculated from M
data isb50.55. In the case of SPC/E water, the theoreti
and MD values ofb coincide within the numerical error
Such a finding is consistent with the remarkable agreem
of the nonergodicity parameters over both the relevant pe
of the structure factor.

The comparison between MD data and the prediction
the semischematic model can be extended to the long
region. We solve the complete dynamic set of Eq.~2! in the
whole q range@19#.

We fit the stretched exponential law@Eq. ~6!# to the long
time relaxation~late a region! and we compare the obtaine
amplitudeAq

K , relaxation timetq
K , and stretching exponen

bq
K with the corresponding quantities as calculated by fitt

the MD relaxation. The comparison of the completeq de-
pendence ofAq

K , tq
K , andbq

K is shown in Fig. 3. The theo
retical and numerical relaxation times are in perfect agr
ment. Less satisfactory, as in the case of water, is
theoretical prediction forbq

K for which the theory provides
the correct qualitativeq dependence, but failing in amplitud
up to 30%. The error in the values of the stretching exp
nents is expected on the basis of the drastic simplifica
adopted in the semischematic approach, which condens
the coupling between the infinite set of angular correla
and the COM correlator. Indeed, in phenomena in which
decay of correlation results from the sum of several indep
dent relaxation processes, a smallerb indicates a wider dis-
tribution of relaxation times@20#. As expected,Aq

K has the
same behavior asf q both for theory and simulation.

The choice of the dumbbell liquid is particularly interes
ing because it allows a comparison between the theore
predictions of the semischematic model and those of MMC
which provides a deeper understanding of the basic appr
mation in the model, i.e., the assumption that the coupl
between the COM and angular degrees of freedom can
quantified in a multiplicativeq-independent factorxR . The
comparison requires a certain degree of care, because o
difference in the theoretical estimate ofT MMCT, rather dif-
ferent fromT c

MD . Indeed, while in the case of the semisch
matic model the MD and the theoreticalf q are evaluated a
the same temperature, in the case of MMCT the nonerg
icity parameters are calculated using as inputs the struc
factors from the simulationsbut evaluated at temperature
different fromTc

MD .
Since in the diagonal approximation of MMCT, fo

T.T r
MMCT the angular correlators decay to zero, they do

contribute to the structural arrest of the COM dynamics. T
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underestimated coupling between translational and rotati
degrees of freedom, introduced by the diagonal approxi
tion, is compensated by a decrease of the ideal glass tra
tion temperature fromT c

MD to T t
MMCT . On the other hand, in

the semischematic model, by using the couplingxR as an
additional parameter in the theory, it is possible to mimic
role of the angular correlators in increasing the strength
the COM memory function atT c

MD without the need of
changing the ideal glass transition temperature. As can
seen from Fig. 1, the two approaches converge to equiva
results for the COM nonergodicity parameter~solid and short
dashed lines! but with a considerable difference in the com
putational times requested.

A better insight into the comparison between the differ
theoretical approaches can be performed studying the no
godicity parameter as predicted by the semischematic m
at T r

MMCT . Keeping fixed once and for all the couplingxR

51.17, we can solve Eq.~5! with the memory function Eq.
~3!. With this choice of temperature the COM dynamics is
a deep glassy phase, both in the semischematic and MM
descriptions. Thus, being in a nonergodic phase, the C
dynamic structure factor has a finite long-time limit, which
shown in Fig. 1. The semischematic~long dashed line! and
MMCT ~dotted line! predictions are in perfect agreemen
This result can be illustrated by the comparison of the lo
time limits of the semischematic memory functionmq and

the COM MMCT memory function@M00
0 (q)#TT at T r

MMCT

~Fig. 4!. We recall that the angular correlators contribute
@M00

0 (q)#TT as well as the COM correlator, while the sem
schematicmq is ruled only by the COMSq and the value of
xR . Thus, the semischematic model gives rise to the co
plete functional dependence of the COM memory funct
on the rotational relaxation in a very simple way, i.e., taki
into account only the functional dependence on the CO
correlator and summarizing all the remaining coupling in
effectivexR . This means that the COM dynamics predict
by the semischematic model almost coincides with the c
responding predictions of MMCT in the diagonalization a
proximation. Furthermore, the model has the advantage

FIG. 4. COM memory function as predicted by the semisc
matic model Eq.~3! ~solid line! and by MMCT ~dashed line! at
Tr

MMCT50.310. The unit ofq is 2psAA
21 while the unit of tempera-

ture iseAA ~settingkB51).
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the complete time evolution of the COM correlator can
calculated with current computational resources.

V. CONCLUSIONS

A theoretical ~but relatively simple! description of the
COM dynamics in a molecular supercooled liquid is a r
evant task which has recently attracted a lot of attention. T
situation recalls the early days of the MCT for simple li
uids, when the dynamical equations were known but the
act numerical solutions were too difficult to handle. In th
situation, simple approximations giving rise to a solvable
of equations were proposed and carefully studied. This c
of approximations, which is still extensively used to interp
experimental results in a simple way@21,22#, arises from the
basic assumption that theq dependence ofSq can be reduced
to a single representativeq0 vector, i.e.,Sq}d(q2q0) @23#.
In this approximation, which is called theschematic model,
the q dependence is abandoned in favor of an exact desc
tion of one or two representative correlators. In the sa
spirit, thesemischematicmodel provides a method for study
ing the completeq dependence of the COM dynamics, n
glecting the angular degrees of freedom which are conden
in a singleq-independent parameterxR .

Notwithstanding the drastic approximation intrinsic in th
proposed approach, we have shown in this paper that
model captures the essential ingredients of theq-dependent
static and dynamic features of the COMa relaxation. The
predicted nonergodicity parameter, relaxation time, a
stretching exponent oscillate in phase, the critical amplitu
out of phase, with the COM structure factor, i.e., the mo
predicts the same qualitative behavior observed in the si
lation. The quantitative agreement with the MD data forf q ,
hq

(1) , hq
(2) , and tq is satisfactory, especially forq vectors

close to the maximum ofSq , while the stretching exponen
bK is overestimated. This reflects the major weakness of
approach but at the same time clearly indicates the
played by the angular degrees of freedom in controlling
dynamical evolution of the center of mass. If the pres
observations are discussed together with the semischem
analysis of the dynamics of SPC/E water, a model wh
mimics a liquid of strong directional hydrogen bonds, it b
comes obvious that the value ofxR is a measure for the
strength of the rototranslational coupling.

The comparison between the semischematic model
the MMCT approximate solutions for the COM nonergod
ity parameter and memory function also supports the valid
of the assumption of aq-independentxR . Moreover, the
coincidence of the theoretical criticalT and the MD one
allows for precise comparisons between theory and exp
ments. Different from the MMCT, the only required input
the model is the COMSq , a quantity which can be experi
mentally measured by suitably designed neutron or x-
scattering experiments@24#.
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