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La Sapienza, Piazzale Aldo Moro 2, I-00185, Roma, Italy

Received 2 October 1998

Abstract. We examine the possibility of detecting mode-couplingβ-correlator behaviour in the
time dependence of correlation functions of supercooled liquids. We compare the theoretical scaling
predictions with several translational and rotational correlation functions calculated from molecular
dynamics trajectories as well as with correlation functions evaluated by solving the mode-coupling
equations for hard spheres. We find that while the ideal glass transition point can be unambiguously
determined by studying the evolution of correlators on approaching the glass point, thepureβ-
correlator dynamics is hardly measurable. Information on theα-scaling is important for a proper
determination of the MCT critical exponents.

1. Introduction

Mode-coupling theory (MCT) for supercooled liquids [1, 2] predicts that close to the ideal
MCT glass transition, i.e. when asymptotic predictions became relevant, the time dependence
of all of the correlation functionsφ(t)which couple to the density is described by a well defined
functiongλ, where the exponent parameter 0.5 6 λ 6 1 depends on the liquid structure at
the ideal glass transition point. This prediction is valid in the so-calledβ-region, i.e. the
time window in which the values of the correlation functions are close to their non-ergodicity
parameterfc. Of course, the external control parameters (for example, pressure and density)
must be close to their critical values. In theβ-region, all functionsφ(t) are predicted to follow
the law

φ(t) = fc + hgλ(t/tσ ) (1)

where the correlator-dependent critical amplitudeh and the correlator-independent timescale
tσ depend on the relative distance from the ideal glass transition pointε as follows:

h ∼ ε1/2 tσ ∼ ε−1/2a. (2)

The critical exponenta is fixed by the value ofλ.
Recently, the next-to-leading-order expansion of the critical decay has been worked out [3].

Corrections to scaling have an intensity which is strongly correlator dependent and which may
completely mask the leading-order behaviour. A complete MCT solution is required to predict
which correlators are less affected by second-order correction and are thus good candidates
for showing the universal pattern at finite distance from the critical point.

Two further complications hide the asymptotic result of equation (1). On the short-time
side, the timescale of the microscopic dynamics often extends in time and overlaps with the
critical behaviour. Sound waves, hindered rotational and translational motions, and bending
modes may give rise to slow microscopic processes. On the long-time side, decorrelation
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channels not included in the ideal MCT theory become more and more relevant on approaching
the critical temperature. In systems where hopping effects are relevant, theβ-correlator decay
can be confined for a narrow range of control parameters, limited from above by the requirement
of validity of the asymptotic solutions and from below by the requirement that the leading
decay channels are still the ones included in the ideal version of the MCT. Predictions for
the decay of correlation in presence of hopping in theβ-region can be formulated in the
extended version of the MCT theory [1] (and have been compared with experimental [4, 5]
and simulation results [6]). Still, at the present time only the leading corrections are known
and in our opinion this is not sufficient to disentangle the contribution from hopping from the
(correlator-dependent) contribution of the next-to-leading-order corrections.

In this article we critically discuss the possibility of describing unambiguously the decay
of correlations in theβ-region usingonlyequation (1). We emphasize the wordonlysince it has
been proved [7,8] that MCT is able to describe successfully the slow dynamics in supercooled
liquids once information on theα-relaxation scaling is taken into account together with theβ-
correlator next-to-leading-order corrections. We aim to show that only if hopping effects are
negligible at a relative distanceε 6 10−3 can a procedure of fitting to several correlation
functions be used to determine the value ofλ. When systems withε > 10−3 are studied, the
uncertainties on the values of the non-ergodicity parameters and on the amplitude of the next-
to-leading-order corrections, as well as the non-negligible role of the microscopic dynamics,
may prevent a proper determination ofλ. In this last case, information on the temperature or
density dependence of theα-relaxation time may provide a way of reducing the error in the
estimate ofλ.

In this article we analyse two sets of correlation functions. One is based on translational
and rotational correlators evaluated from a molecular dynamics simulation of a large system
of three-site molecules interacting with the Lewis and Wahnström potential [9], originally
designed to mimic the behaviour of orthoterphenyl. The other set is composed by self-
density [10] and collective density [3] correlators obtained by solving theq-dependent ideal
MCT equations for the hard-sphere liquid (using the Percus–Yevick approximation for the input
structure factor). We will show fits of the two sets of correlation functions made assuming two
well separated values ofλ, i.e.λ = 0.55 andλ = 0.70.

2. Correlation functions

We have performed molecular dynamics simulations of 9261 molecules in a cubic box
interacting via the Lewis and Wahnström potential [9], i.e. a rigid three-site model in which
sites interact with a Lennard-Jones potential. We have simulated the same state points as in
reference [9], but for times up to 50 ns. The large size of the simulated system eliminates
spurious oscillations appearing in correlation functions at short time, connected to the low-
frequency cut-off of the density of states imposed by the boundary conditions and/or by the
undamped propagation of the sound waves, through the boundary conditions [11]. From the
trajectory of the system in configuration space, we have calculated the coherent and incoherent
correlation functions, for both sites and the centre of mass, as well as the Legendre polynomials
for the principal axis of symmetry of the molecule. This ensemble of correlation functions
constitutes the set labelled LW.

The second set of correlation functions is composed of by four collective and four
self-normalized intermediate-scattering functions for the hard-sphere (HS) liquid. The cor-
respondingq-vectors (in units ofσ , the hard-sphere diameter) areq0 = 3.4, q1 = 7.0 (the
structure factor peak),q2 = 10.6, andq3 = 17.4. The correlation functions are solutions of the
MCT equations discretized on a grid of 100q-vectors at three different packing fractions, cor-
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responding to relative distances from the critical packing fraction of 2.15×10−3, 1.0×10−2, and
4.6×10−2. A full description of this model can be found in references [3,10]. The three packing
fractions studied here correspond ton = 4, 6, and 8 in the notation of references [3, 10]. For
our purpose, we recall that a Brownian dynamics has been considered to model the microscopic
dynamics, that the theoretical value of the exponent parameter isλ = 0.735, and that thefc(q)
are also known.

3. The fitting procedure

In the present discussion we fixλ = 0.55 (corresponding toa = 0.38) or λ = 0.70 (cor-
responding toa = 0.33). If the asymptotic prediction of equation (1) holds, onceλ is fixed,
fixing the non-ergodicity parameter of one arbitrary correlator, at one fixed distance from the
critical point, completely definestσ and as a consequence the non-ergodicity parameters of all
other correlators. Indeed, since we know the time at which

φ(t) = fc (3)

then by solving

gλ(t/tσ ) = 0 (4)

we can calculate the correlator-independent value oftσ . In other words, in the truly asymptotic
region, all correlators cross theirfc-value at the same time. Since thefc-values are not
temperature (or density) dependent, the temperature (or density) dependence oftσ is also
determined. We stress that without using any fitting procedure, by arbitrarily fixing the value
of the non-ergodicity parameter for one arbitrary correlator, it is possible to check equation (1)
by calculating thetσ versusε−2a dependence for several correlators.

Selection of anε-dependent fitting interval is the obvious choice. Finally, a simple fitting
procedure allows the evaluation ofh. In principle, theε-dependence ofh andtσ can be used
to strengthen the validity of the assumed values forλ andfc.

In the case of the HS set, we will compare three cases:

• λ = 0.70,fc constrained to the theoretical values;
• λ = 0.55,fc constrained to the theoretical values;
• λ = 0.55, with arbitraryfc.

In the case of the LW set, we will compare the two cases:

• λ = 0.70, for three different values offc;
• λ = 0.55, for the same three different values offc.

4. Discussion

Indications of the possibility of detecting theβ-correlator can be obtained without using any
fitting procedure, by comparing—for several correlators—the susceptibility spectra for the
smallestε. Indeed, in theβ-region, sufficiently close to the ideal glass transition, all spectra
should show minima at the same position. Figure 1 (left) shows the susceptibility spectra for
several correlators atT = 266 K, close to the estimated glass transition temperature for the
LW potential (i.e.1T/Tc 6 0.02). Figure 1 (right) shows similar quantities for the HS system
for ε = 2.15× 10−3. In both systems, the frequenciesωmin at whichχ ′′ is at a minimum are
spread around one decade,apparentlyviolating the asymptotic predictions of equation (1). On
the other hand, in the HS case, by construction, the susceptibility spectra are the theoretical
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Figure 1. Susceptibility spectraχ(ω) for the LW (left) and the HS (right) sets. Left: from top
to bottom: centre-of-mass self-correlators atq = qmin and q = qmax , whereqmax and qmin
indicate the positions of the first maximum and minimum of the structure factor; the first five
Legendre polynomials for the principal symmetry axis; and the collective density correlators for
four differentq-vectors. Self- and collective correlators have been shifted up or down by one
decade for clarity. Right: self-correlators (dashed curves) and collective correlators (full curves).
Collective correlators have been shifted up one decade for clarity.

MCT spectra. Thus, the data in figure 1 (right) prove that even whenε is of the order of 10−3,
the asymptotic MCT predictionsaloneare not sufficient to describe the system’s dynamics in
theβ-region for all correlators. Next-to-leading-order corrections play a fundamental role in
the interpretation of the frequency dependence close to the susceptibility minimum, even close
to the ideal glass transition.

When only one correlation function can be observed, a test for the presence of asymptotic
behaviour can be made (and this has often been done in the past in the analysis of experimental
data [12–14]) by studying the relation betweenωmin andχ ′′min, which is predicted to be of the
form

χ ′′min ∼ ωamin. (5)

This test is one of the most convincing, since it does not require ana priori knowledge
of the critical parameters. The only fitting parameters are the exponenta and the amplitude
of the power law. Log–log plots ofχ ′′(ω) versusω at several temperatures for the LW case
and at several densities for the HS case are shown in figure 2 together with theωa-law. We
note that in the LW case no clearωa-law is observed, while in the HS case theωa-dependence
starts to be exhibited only whenε 6 10−2. These data suggest that when hopping effects are
absent and when no microscopic slow motions (such as undamped oscillations and rotations)
are present, a relative distance of 10−2 could be sufficient for one to observe the behaviour
described by equation (5).

We now turn to the analysis in the time domain. The analysis of the susceptibility in the
ω-domain requires fewer fitting parameters than the analysis of the correlation functions with
respect to time, because the time-derivative operation implicit in the susceptibility eliminates
the dependence on the value of the non-ergodicity parameter. The price to be paid is that,
due to the different weights of the next-to-leading-order corrections, the range of validity
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Figure 2. χ(ω) for a few selected correlators for the LW (left and centre, respectively: centre-of-
mass self-correlators and the fourth Legendre polynomial) and HS (right: both self- and collective
correlators) cases. The temperatures vary from 266 K to 346 K for the LW case whileε is equal to
2.15× 10−3, 1.0× 10−2, 4.6× 10−2 for the HS case. The straight line represents, in the left and
centre panels,ω0.4, the largestω-value consistent with MCT, while for the HS case it represents
the theoretical asymptotic valueω0.32.

of the asymptotic predictions shrinks on going from the time to the frequency domain, as
demonstrated in reference [3]. For this reason, evidence of aβ-scaling could be observed in
the time domain even if it is masked in frequency space. In the following we will compare
the fittings of the correlation functions in theβ-region, by arbitrarily fixing the value ofλ at
0.55 and 0.7. The study of theε-dependence of the parameters as well as the comparison with
the exact MCT predictions for the HS case will be used to discuss the quality of the fit and to
assess with what uncertainty it is possible to determine the value of the exponent parameterλ.
Again we proceed by comparing the HS case and the LW case.

Figure 3 shows the best fit obtained for the HS case for the three cases studied, i.e. for
the theoreticalλ = 0.7 andfc, for λ = 0.55 and theoreticalfc-values, and forλ = 0.55 and
arbitraryfc. The chosenfc-values are shown in figure 3. We note that for the smallestε the
best fit to the data coincides with the theoretical predictions. Whenε is 10−2 or more, a wrong
choice of the non-ergodicity factors can partially compensate for the wrong choice ofλ. We
next study theε-dependence of the fitting parameterh and tσ . MCT predicts thath2 varies
linearly with the distance from the ideal glass transition point. Figure 4 showsh2 for all three
fitting cases from the simultaneous fit of all HS correlators. We note that the relationh2 ∼ ε
is fulfilled in all cases, and thus it is not possible to discriminate between the correct case—in
which the theoretical values forfc and forλ are used—and the two wrong ones.

Fits of two rotational correlation functions for the LW case are shown in figure 5. In
this case, we compare the two different choices ofλ with three different choices forfc
(corresponding to three different values oftσ ). It is evident that different correlators would
suggest different choices forλ andfc, again illustrating very clearly the need for an extended
type of analysis including the correction to scaling.

The temperature dependence of the fitting parameters is reported for several different
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Figure 3. The best fit of two HS correlators for the three different relative distancesε from the ideal
glass transition point. Each panel describes a different correlation function. The MCT correlators
(full circles) are compared with the best fit obtained by fixing the exactλ and the exact non-
ergodicity factors (full curve), or by making the wrong choice ofλ = 0.55 but with the theoretical
ergodicity factors (short-dashed curve) or by making the wrong choice ofλ = 0.55 and of the
non-ergodicity factors (long-dashed curve). The fitting range—in time—is indicated by the short
horizontal dashed lines.
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Figure 4. Theε-dependence of the (scaled) fitting parameterh2 for the three cases studied. Top:
λ = 0.55; centre:λ = 0.55, fc wrong; bottom: λ = 0.55, theoreticalfc-values). The eight
different symbols refer to the eight correlators studied. The data have been scaled according to the
value ofh2 at the largestε.
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the figure. The fitting range—of time—is indicated by the short horizontal lines.

correlators in figure 6. Consistently with the finding presented in figure 4, theT -dependence
of h2 is not sufficient to validate one set of fitting parameters and invalidate the others. The
t−1/2a-dependence of the scaling time as a function of temperature is also not sufficient.
Notwithstanding the impossibility of determining the value ofλ, it appears very clearly that
the two predictions,h2 ∼ ε and tσ ∼ ε−1/2a, are rather robust and indicate with very little
uncertainty the location of the ideal glass transition.

260 290 320 350
Temperature (K)

0.00

0.01

0.02

0.03

h2

P2

φself
(qmax)

P4 φself
(qmax)

0.0
1.0
2.0

t σ−
1/

2a
 

P4(t)

260 290 320 350
Temperature (K)

0.0
1.0
2.0

t σ−
1/

2a
 P2((t)

0.0

1.0

t σ−
1/

2a
 

Figure 6. Theε-dependences of the fitting parametersh2 (left) andt−1/2a
σ (right) for some of the

cases studied. The lines are labelled as in figure 5. The value ofa has been chosen consistently
with the value ofλ.
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5. Conclusions

In this article we have critically examined the possibility of detecting unambiguouslyβ-
correlator behaviour in the time dependence of correlation functions close to the ideal glass
transition. The important conclusion is that an unambiguousβ-correlator behaviour cannot
be observed if the distance from the ideal glass transition line is larger than 10−2. Since
the role of the hopping processes increases on approaching the ideal glass transition point,
a clear indication of theβ-correlator can only by expected in systems, such as hard spheres,
in which hopping is not a relevant transport mechanism. For realistic choices of the relative
distance from the ideal glass transition point, a full description of theβ-region requires also
next-to-leading-order corrections to the asymptoticβ-correlator of equation (1).

This should not be taken by any means as proving the MCT approach to the description of
supercooled liquids to be invalid, because it has been by construction derived by means of an
analysis of a fully solved MCT model, the hard-sphere case reported in references [3, 10].
Indeed, it is remarkable that the predicted dependence of the critical amplitude and the
characteristic time of theβ-correlator are so robust as to be correct even with imprecise choices
of the value ofλ. In all cases, an unambiguous estimate of the ideal glass transition point can
be obtained.

The analysis presented in this article suggests that a MCT analysis of the liquid dynamics,
restricted to theβ-correlator (equation (1)), may lead to large errors in the determination of
λ [15]. The error can be significantly reduced if information on theα-scaling is taken into
account, since the exponent controlling the divergence of theα-relaxation time on approaching
the ideal glass transition line uniquely fixes the value ofλ [1,2]. Indeed, previous work [7,8]
has shown that it is possible to describe self- and collective correlation functions (in both the
β- andα-regions) when next-to-leading-order corrections are taken into account and when
the value ofλ is consistent with theα-relaxation scaling. Thus, analysis of experimental and
numerical data should always include information from theα-relaxation scaling. The present
findings strongly support the suggestion that the comparison between theory and experiment
should be performed on a more extended level, i.e. by also evaluating the next-to-leading-
order corrections or, even better, by comparing the full solution of the MCT equation with
experimental or numerical work. Very relevant examples of such extended comparisons
for simple liquids [16] have confirmed that MCT is able to describe in full detail the time
and temperature dependence of correlations in the supercooled regime above the ideal glass
transition line.
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