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Ideal glass-glass transitions and logarithmic decay of correlations in a simple system

L. Fabbian, W. Go¨tze,* F. Sciortino, P. Tartaglia, and F. Thiery
Dipartimento di Fisica, Universita` di Roma La Sapienza and Istituto Nazionale di Fisica della Materia, Unita` di Roma La Sapienza,

Piazzale Aldo Moro 2, I-00185 Roma, Italy
~Received 29 May 1998!

We calculate the ideal-glass-transition line for adhesive hard spheres in the temperature-volume-fraction
plane within the framework of the mode-coupling theory. We find two intersecting lines, controlled by the
hard-core and the adhesive parts of the potential respectively, giving rise to two different mechanisms for
structural arrest. In the glass region we identify the presence of a glass-glass-transition line ending in a cusp
bifurcation which causes, even in the nearby liquid region, a logarithmic decay of correlations.
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The crossover from a liquid to an amorphous solid, o
served near the calorimetric glass transition temperatureTg ,
exhibits as a precursor phenomenon an anomalous dynam
called glassy dynamics. Its evolution is connected with
critical temperatureTc aboveTg . It has been studied exten
sively in the recent literature of the glass-transition proble
experimentally@1–5#, numerically @6,7#, and theoretically
@8,9#. Experiments aroundTc have been interpreted in th
frame of the mode-coupling theory~MCT! for structural re-
laxation. MCT deals primarily with closed equations of m
tion for the normalized density-fluctuation-correlation fun
tions Fq(t) for wave-vector moduliq. The equilibrium
structure enters as input in these equations via the s
structure factorSq . The theory explainsTc as a glass-
transition singularity resulting as a bifurcation phenomen
for the self-trapping problem of density fluctuations. Belo
Tc the interaction of density fluctuations leads to arrest i
disordered array, characterized by a Debye-Waller factof q

.0. Near the transition, the MCT equations can be solved
asymptotic expansions. Beyond the initial transient dyna
ics, correlation functions are predicted to decay with a pow
law toward a plateau valuef q

c , the critical Debye-Waller
factor. AboveTc the correlations decay fromf q

c to zero, and
this is the MCT interpretation of thea-process of the classi
cal literature of glassy dynamics@10#. The initial part of this
decay is another power law, called von Schweidler’s la
The values of the power-law exponents are controlled by
so-called exponent parameterl<1, which depends solely on
Sq . For details and citations of the original literature t
reader is referred to the review in Ref.@9#. A number of tests
of MCT results against data, among them the ones in R
@1–7,11,12#, demonstrates that this theory treats reasona
the evolution of structural relaxation in some systems.

The MCT bifurcations are caused by a nondegenerate
genvalue of a certain stability matrix to approach unity fro
below @13#. Therefore the bifurcation scenario forf q is that
known for the zeroes of a polynomial as induced by chan
of the polynomial’s coefficients@14#. The generic case for a
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change due to a single control parameter is a fold bifurca
@14#, i.e., the coalescence of two real zeroes to a degene
one. In the microscopic models for liquid-glass transitio
studied so far@15#, only the fold bifurcation singularity had
been identified. The next more complicated scenario is
cusp bifurcation, equivalent to the coalescence of three
zeroes. Generically, this case can be obtained only if
control parameters are varied@14#. The MCT-bifurcation dy-
namics for this case has been worked out in a leading o
asymptotic expansion@16#. It is drastically different from the
one for a fold bifurcation in the sense that relaxation stret
ing is much more pronounced. In particular there app
logarithmic decay laws, i.e., 1/f -noise spectra. Cusp bifurca
tions in MCT are endpoints of transition lines characteriz
by l51, and typically they are located near intersections
bifurcation lines@13#. Sjögren @17# identified some sets o
polymer dielectric-loss spectra which could not be fitted
the fold-scenario but were compatible with a cusp bifurc
tion. However, in the data used in Ref.@17# the temperature
was varied as the only control parameter, and therefor
complete test of the cusp-bifurcation scenario was not p
sible.

In this Rapid Communication we want to demonstrate t
a cusp bifurcation near the intersection of two fol
bifurcation lines is possible in a simple but realistic model
the two conventional control parameters, temperatureT and
densityn, are varied. With this aim we study an extension
the hard sphere system~HSS!, the sticky hard spheres syste
~SHSS! introduced by Baxter@18# and used extensively, in
particular in colloid physics, due to the short range attract
charactecteristic of colloidal interactions@19,20#. The HSS is
the archetype of a simple system and its only control para
eter is the packing fractionf5pns3/6, with s denoting the
hard sphere diameter. It has been studied by dynamic l
scattering in its realization as a certain colloidal suspens
The system exhibits an ideal glass transition at some crit
packing fractionfc @4#. This is a sharp transition of the fully
equilibrated sample from an ergodic liquid to a nonergo
amorphous solid. The glassy dynamics of the colloid exhib
the same scaling laws andf q anomaly as found for the mor
conventional systems@1–3,6,7,11,12#. The measured corr
elators can be explained quantitatively by the first-princi
calculation produced by MCT@5#.
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R1347 ©1999 The American Physical Society



ll

e
.

b

e
n
a

g
es
ea
ad
th
ve
ns

h

ea
b
c

-

-

th

d

se.

r

h

rd
inset
usp-

n

ws

RAPID COMMUNICATIONS

R1348 PRE 59L. FABBIAN et al.
The SHSS potential is the limiting form of a square we
infinitely narrow and infinitely deep@21#. It is defined by the
interparticle potentialbV(r )5` for r<s, ln@12tD/(s
1D)# for s,r<s1D, and 0 forr .s1D, in the limit D
→0. Hereb5(kBT)21, kB is Boltzmann’s constant, andt is
the adhesiveness parameter that plays the role of a dim
sionless temperature. Fort→` one recovers the HSS
The Ornstein-Zernike equationSq51/(12ncq) with the
Percus-Yevick closure has been solved analytically
Baxter and we use his expressions forSq , as a function oft
andf @18# as input of this work. The crucial point is that th
interaction exhibits two features, which favor arrest of de
sity fluctuations for two quite different reasons. One is
strong short-range repulsion. It is the mechanism leadin
the cage effect for liquid dynamics and thereby to arr
driven by density fluctuations near the structure factor p
position. The other one is a short-range attraction. It le
via the usual mean-field mechanism to a softening of
density fluctuations, in particular of those for small wa
vectors. It is the mechanism that leads to a liquid-gas tra
tion at low values oft.

The MCT equations of motions are@9#

F̈q~ t !1nqḞq~ t !1Vq
2Fq~ t !1Vq

2E
0

t

dsmq~ t2s!Ḟq~s!50.

~1!

HereVq5Aqv/Sq, with v denoting the thermal velocity, is
an effective phonon-dispersion law, andnq5n1q2 denotes a
damping constant~we usen151!. The kernelmq is given as
mq(t)5Fq@Fk(t)#, where the mode-coupling functionalFq
is determined by the structure factor:

Fq@ f k#5
1

2 E d3k

~2p!3 VqW ,kW f kf uqW 2kW u , ~2!

VqW ,kW[SqSkSuqW 2kW u
n

q4 @qW •kWck1qW •~qW 2kW !cuqW 2kW u#
2. ~3!

We numerically solved Eq.~1! on a grid of 400 equally
spacedq values extending up toqs572 @22#. f q is obtained
by an iterative solution of the bifurcation equation

f q /~12 f q!5Fq@ f k#. ~4!

For t→` we recover the known HSS result, for whic
the ideal glass transition atfc

HSS;0.516 @8# is led by the
increase of2cq andSq with f. For f>fc

HSS, the particles
are trapped in cages formed by their neighbors. On decr
ing t attractive forces become relevant; nearest neigh
pairs are closer and therefore holes in the cage are produ
destabilizing the glass. A decrease oft has to be compen
sated by an increase off and thus thetc versusfc high-
temperature-transition line has to bend away from thef
5fc

HSS value. This effect is brought out by the MCT solu
tions, as shown by the dashed linesB1 in Fig. 1. The desta-
bilization of the glass on decreasingt is related, within
MCT, to the increase of pair correlations which weaken
screened potential2cq and decrease the value ofS(q) at the
first peak, as shown in Fig. 2, top. Moving alongB1 in Fig.
1 by decreasingt implies an increase of the attraction an
,

n-

y

-

to
t
k
s
e

i-

s-
or
ed,

e

thus of the particle localization compared to the HSS ca
Consequently,f q

c increases and spreads out further in theq
domain, as demonstrated in Fig. 2, top.

The increase ofcq andSq at smallq becomes increasingly
relevant on decreasingt producing a different mechanism fo

FIG. 1. Ideal glass-transition lines for the Baxter model~squares
and closed circles!. B1 ~dashed line! is the high temperature branc
of the glass-transition line andB2 ~solid line! is the low temperature
one. The arrow indicates the critical packing fraction of the ha
sphere system. The open circle denotes the cusp-point. The
shows an enlarged view of the phase space region where the c
point is located.

FIG. 2. Structure factorsSq/10, direct correlation functionscq,
and critical Debye-Waller factorsf q

c along B1 ~top!, B2 ~middle!,
and along the glass-glass transition line~bottom!. Top: tc58, fc

50.530 ~light dashed lines! and tc51.32, fc50.5564 ~heavy
dashed lines!. The dotted line in the inset iscq at fc

HSS50.516 for
t5`. Middle: tc50.2, fc50.295 ~light solid lines! and tc

51.31,fc50.5561~heavy solid lines!. Bottom: The solid~dashed!
lines refer, from top to bottom~bottom to top!, to t51.34, 1.35, and
1.36 respectively, on theB2 (B1) side of the glass-glass transitio
line. The heavy solid line isf q for the cusp pointt51.37, f
50.558 07. The lowerSq refers to the same states. The inset sho
the exponent parameterl alongB1 ~dashed! andB2 ~solid!.
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structural arrest. This increase of the compressibility is
precursor of the liquid-gas critical point. The enhanced a
plitudes for density fluctuations increase their anharmo
interactions, and indeed the solution of the MCT equatio
predict their spontaneous arrest on a low-temperat
transition lineB2 in the t vs f plane, shown in Fig. 1. In-
crease off suppresses smallq fluctuations. But it also in-
creases2cq and the first peak ofSq , as shown by a
comparison of results shown in Fig. 2, middle. Both effe
stabilize the glass, since the mode-coupling constants,
~3! increase. This explains the upward bending of the
line in Fig. 1. Since arrest for smallq is favored on theB2

branch, f q
c is much larger there than for the HSS. The d

crease of the compressibility upon increasingf make spon-
taneous arrest less easy and thereforef q

c decreases upon
compressing. Both features are demonstrated in Fig
middle.

The explained interplay of attraction, and repulsion pla
the meeting pointC* of the two branchesB1 and B2 to a
packing fractionf* 50.5565, higher thanfc

HSS, and tot*
51.320. Thus there is a reentry phenomenon ift is lowered,
e.g., for a packing fraction between 0.52 and 0.55. At somt
above 1.32 the glass melts, since the increase of attrac
induced pair correlations destabilizes the cages for par
arrest. At some lowert the liquid freezes again into a glas
because of the compressibility increase. AtC* , the f q cal-
culated on the two different branches,f q

(1) and f q
(2) , are dif-

ferent, while the correspondingSq are indistinguishable
Thus two types of glasses, differing in theirf q and in their
dynamical properties, can be obtained close toC* . In the
region where bothf q

(1) and f q
(2) are solutions of Eq.~4!, the

one with the largerf q is the relevant solution. This exempl
fies the maximum theorem of MCT: if there is a solution
Eq. ~4!, say f̃ q , the long time limit f q at the same equilib-
rium state obeysf q> f̃ q @13#. For our case it means that th
continuation off q

c(2) takes over the role off q , i.e., B1 stops
at C* . Therefore the two branches of the transition line
not join smoothly atC* . TheB2 branch continues, as show
by the inset of Fig. 1, until it reaches a cusp bifurcation as
endpoint of the transition line. Indeed, we evaluate the ex
nent parameterl along theB1 and B2 lines and find, as
shown in the inset of Fig. 2, bottom, that along theB2 line l
keeps on increasing till it reaches unity fort51.37 andf
50.558 07. The line betweenC* and the cusp point is a line
of glass-to-glass transitions. For the given equilibrium str
ture for ~t,f! on this line, there are two possibilities fo
structural arrest. The one on hight side is driven by the
excluded volume mechanism and the other one by
attraction-induced compressibility increase. The lat
mechanism leads to a largerf q than the former. The end
point is characterized by their difference approaching ze
as shown in Fig. 2, bottom.

We note in passing that the existence of the lineB2 is
strongly related to the small wavelength, increasing fluct
tions on decreasingt andf, i.e., to the same mechanism th
is responsible for the existence of the critical point in Ba
ter’s potential~f50.1213,t50.0976!. Still, the location of
the C* point is so far from the critical point that the usu
critical fluctuations effects can be safely neglected in
present context. Indeed, the structure factor for small w
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vector is always smaller than unity. We also note that exp
mental measurements on Baxter-like colloidal systems sh
the presence of a line of structural arrest, which exte
down tof50.2 @20#.

In Fig. 3 the glassy dynamics outside the transient is
hibited for states in the reentry region. The dynamics is,
to a regular time scale, independent of the transient. In p
ticular it is the same for a colloid as for a conventional liqu
for which Eq. ~1! is formulated@9#. The uppermost curve
corresponds to a point in the glass region and demonstr
arrest near theB1 branch, and the others exhibit stretch
liquid relaxation to zero. Interestingly enough, the exhibit
anomalous dynamics is dominated by the cusp singula
not by the closer fold. Indeed even though a huge dynam
window is considered, the known fold bifurcation patte
cannot be recognized. There is no power-law decay towa
the f q

c(1) nor is there ana process obeying the superpositio
principle. We checked that the mentioned asymptotic fo
bifurcation features appear only after tuningf much closer
to the transition line, which implies the extension of the d
namical window to even larger sizes. Instead, the cusp
namics appears in the liquid region. The stretched relaxa
in the three-decade window 0< log10(t/t0)<3 shows the ap-
proach towards the critical decay of the cusp@16#. Then the
correlators follow closely a logarithmic law in time. Forf
50.555 it extends over five decades. Upon decreasingf its
range of validity shrinks but even atf50.540 it extends
over two decades. This logarithmic decay is the known c
substitute for the start of a folda-process. Let us emphasiz
that the above scenario does not require a fine tuning ot.
For t51.32 the pattern is similar to the one shown fort
51.40. Moving further from the reentry region, the logarit

FIG. 3. Density correlator forqs514.4 att51.40 and various
f as a function of log10(t/t0) with t05s/v.



ill

ts
on
ti
on
he
la
s
he
c
n
-t

r-
c-
int.
ith
ics
ple
ibit
It

ems
ific
se,
la-

RAPID COMMUNICATIONS

R1350 PRE 59L. FABBIAN et al.
mic decay will smoothly disappear, i.e., its time window w
shrink, and the dynamics will become power-law again~i.e.,
its window will widen!.

In summary, we have shown that the SHSS presen
peculiar structural arrest dynamics at high packing fracti
due to the competing mechanism of hard-core and attrac
interactions. Two differently sloped ideal-glass transiti
lines appear in the phase diagram. In the region where t
two lines meet the slow dynamics changes from power
to a logarithmic law due to the influence of a nearby cu
singularity. The bifurcation scenario characteristic of t
Baxter potential will persist in systems with a small attra
tive range. For some critical deformation of the potential o
expects that the cusp scenario disappears via a swallow
u,

ra
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se
w
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ail

bifurcation@14#. In the same spirit, the dynamics aroundC*
will smoothly change from logarithmic to power law on pe
turbing the Baxter potential. Potentials with larger intera
tion range may not show in their phase diagram a cusp po

In most tests of MCT the data had been compared w
the universal results obtained for the asymptotic dynam
near a fold transition. But our results show that even a sim
system can exhibit glassy dynamics that does not exh
asymptotic laws within accessible dynamical windows.
seems relevant to test, by spectroscopy for colloidal syst
and by molecular-dynamics simulations, whether spec
systems exhibit the shown complex dynamics and, in ca
whether it is handled properly by the present MCT calcu
tion.
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