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Ideal glass-glass transitions and logarithmic decay of correlations in a simple system
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We calculate the ideal-glass-transition line for adhesive hard spheres in the temperature-volume-fraction
plane within the framework of the mode-coupling theory. We find two intersecting lines, controlled by the
hard-core and the adhesive parts of the potential respectively, giving rise to two different mechanisms for
structural arrest. In the glass region we identify the presence of a glass-glass-transition line ending in a cusp
bifurcation which causes, even in the nearby liquid region, a logarithmic decay of correlations.
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The crossover from a liquid to an amorphous solid, ob-change due to a single control parameter is a fold bifurcation
served near the calorimetric glass transition temperdiyre [14], i.e., the coalescence of two real zeroes to a degenerate
exhibits as a precursor phenomenon an anomalous dynamiame. In the microscopic models for liquid-glass transitions
called glassy dynamics. Its evolution is connected with sstudied so faf15], only the fold bifurcation singularity had
critical temperaturd; aboveT,. It has been studied exten- been identified. The next more complicated scenario is the
sively in the recent literature of the glass-transition problemgcusp bifurcation, equivalent to the coalescence of three real
experimentally[1-5], numerically [6,7], and theoretically ~Zeroes. Generically, this case can be obtained only if two
[8,9]. Experiments around, have been interpreted in the control parameters are varigtid]. The MCT-bifurcation dy-
frame of the mode-coupling theofCT) for structural re-  namics for this case has been worked out in a leading order

laxation. MCT deals primarily with closed equations of mo- @SyMPptotic expansiofi6]. Itis drastically different from the

tion for the normalized density-fluctuation-correlation func- °"€ for a fold bifurcation in the sense that relaxation stretch-

tions ®(t) for wave-vector moduliq. The equilibrium ing is much more pronounced. In particular there appear

structure enters as input in these equations via the stat{gga”mm'c decay laws, !.e.,fl-/n0|se spectra, Cusp b|furqa—
. ions in MCT are endpoints of transition lines characterized
structure factorS,. The theory explainsT, as a glass-

o . ) . . . by A =1, and typically they are located near intersections of
transition smgula_rlty resulting as a bl_furcanon IC?henomenorbifurcation lines[13]. Sjagren[17] identified some sets of
for the self-trapping problem of density fluctuations. Below ey gielectric-loss spectra which could not be fitted by
T_C the interaction of densﬂy fluctuations leads to arrest in §ne” fold-scenario but were compatible with a cusp bifurca-
disordered array, characterized by a Debye-Waller faffor tjon. However, in the data used in R§L7] the temperature
>0. Near the transition, the MCT equations can be solved bVVaS varied as the On|y control parameter’ and therefore a
asymptotic expansions. Beyond the initial transient dynamcomplete test of the cusp-bifurcation scenario was not pos-
ics, correlation functions are predicted to decay with a powesijp|e.
law toward a plateau valuég, the critical Debye-Waller In this Rapid Communication we want to demonstrate that
factor. AboveT, the correlations decay frorff, to zero, and a cusp bifurcation near the intersection of two fold-
this is the MCT interpretation of the-process of the classi- bifurcation lines is possible in a simple but realistic model, if
cal literature of glassy dynami¢40]. The initial part of this  the two conventional control parameters, temperailusnd
decay is another power law, called von Schweidler's law.densityn, are varied. With this aim we study an extension of
The values of the power-law exponents are controlled by théhe hard sphere systefHSS), the sticky hard spheres system
so-called exponent parametes 1, which depends solely on (SHSS introduced by Baxtef18] and used extensively, in
Sy. For details and citations of the original literature the particular in colloid physics, due to the short range attraction
reader is referred to the review in RE3). A number of tests  charactecteristic of colloidal interactiofE9,20. The HSS is
of MCT results against data, among them the ones in Refghe archetype of a simple system and its only control param-
[1-7,11,12, demonstrates that this theory treats reasonableter is the packing fractiop= 7wno>/6, with o denoting the
the evolution of structural relaxation in some systems. hard sphere diameter. It has been studied by dynamic light

The MCT bifurcations are caused by a nondegenerate escattering in its realization as a certain colloidal suspension.
genvalue of a certain stability matrix to approach unity fromThe system exhibits an ideal glass transition at some critical
below [13]. Therefore the bifurcation scenario fog is that  packing fractiong, [4]. This is a sharp transition of the fully
known for the zeroes of a polynomial as induced by changesquilibrated sample from an ergodic liquid to a nonergodic
of the polynomial’s coefficientfl4]. The generic case for a amorphous solid. The glassy dynamics of the colloid exhibits

the same scaling laws arfg anomaly as found for the more
conventional systemgl-3,6,7,11,12 The measured corr-
*Permanent address: Physik-Department, Technische Unitersitglators can be explained quantitatively by the first-principle
Munchen, 85747 Garching, Germany. calculation produced by MCT5].
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The SHSS potential is the limiting form of a square well, 8 T .
infinitely narrow and infinitely deef21]. It is defined by the sy l .
interparticle potential 3V(r)=« for r<o, In[127A/(c 6L . oy
+A)] for o<r<o+A, and 0 forr>o+A, in the limit A . L B
—0. HereB=(kgT) 1, kg is Boltzmann’s constant, ancis /.//] L

H . 4 + 13} . B

the adhesiveness parameter that plays the role of a dimen- " [
sionless temperature. For—o one recovers the HSS. o 360 *_\
The Ornstein-Zernike equatio®,=1/(1—nc,) with the 2t ’ ’ ® ]
Percus-Yevick closure has been solved analytically by .__¢__.——*—-B2/’/‘)
Baxter and we use his expressions 1, as a function ofr 0 tor - -
and ¢ [18] as input of this work. The crucial point is that the 03 04 0.5
interaction exhibits two features, which favor arrest of den- ¢

sity fluctuations for two quite d_ifferent reasons. One_is 2 FIG. 1. Ideal glass-transition lines for the Baxter mo@ejuares
srt]rong shor;rangfe r(T_puI%lodn. It |s_the mgchhanlsl;n leading Ynd closed circlesB; (dashed lingis the high temperature branch

t ,e cage e ec_t or 'qu', ynamics and thereby to arreSBf the glass-transition line aril, (solid line) is the low temperature
drlv_e_n by density fluctuat_lons near the structure_factor peal6ne. The arrow indicates the critical packing fraction of the hard
position. The other one is a short-range attraction. It leadgphere system. The open circle denotes the cusp-point. The inset

via the usual mean-field mechanism to a softening of thenows an enlarged view of the phase space region where the cusp-
density fluctuations, in particular of those for small wavepoint is located.

vectors. It is the mechanism that leads to a liquid-gas transi-
tion at low values ofr.

The MCT equations of motions afé] thus of the particle localization compared to the HSS case.

Consequentlyfg increases and spreads out further in the

i i t _ domain, as demonstrated in Fig. 2, top.

Dy(t)+ voI>q(t)+Q(2]<I>q(t)+Q§J dsm,(t—s)®4(s)=0. The increase o, andS, at smallg becomes increasingly
0 relevant on decreasingproducing a different mechanism for

D
Here Q4= \qu/S,, with v denoting the thermal velocity, is wr |
an effective phonon-dispersion law, ang= v10° denotes a 01 i . T
damping constantve usev;=1). The kerneim, is given as >0 300 ;,:,’ o
Mg(t) = Fo[ Py (t) ], where the mode-coupling functiond, - :-",’ \\‘-“‘ o4
is determined by the structure factor: v "\\_\ 4 3
Ao
1 dk o e ettt
Fitd=3 | gmaVaitita i, @ 1 e
= —300
N N n R s a2 .92 ;E qo
Vd,kESqSkS\d—H?[Q'kck+q'(q_k)c\d—k|] ) o | .

We numerically solved Eq(1l) on a grid of 400 equally
spacedj values extending up tqo=72[22]. f is obtained
by an iterative solution of the bifurcation equation

=

—

5,/10

fol(1—fq)=F[fil. (4)

q

£,

For r—o we recover the known HSS result, for which
the ideal glass transition at!S5~0.516(8] is led by the
increase of-c, and S, with ¢. For ¢= ¢'°S, the particles
are trapped in cages formed by their neighbors. On decreas-
ing 7 attractive forces become relevant; nearest neighbor . ) _
pairs are closer and therefore holes in the cage are produced, /G 2. Structure factor§;/10, direct correlation functions,,
destabilizing the glass. A decrease ohas to be compen- 2nd critical Debye-Waller factors, along B, (top), B, (middle),
sated by an increase @ and thus ther; versusd¢, high- "ind along. the glass'gla.ss trans't'on_"mttom'_mp' 7c=8, e
temperature-transition line has to bend away from the —0.530 (light dashed lines and 7,=1.32, ¢.=0.5564 (heavy

: ; dashed lines The dotted line in the inset i, at ¢f >>=0.516 for
_ +HSS c

= e value. This effect is brOL_Jght out _by the MCT solu- __ . widdle: 7.=0.2, ¢.=0.295 (light solid lines and 7
tions, as shown by the dashed lir@sin Fig. 1. The desta- _1 37 4 _=0.5561(heavy solid lines Bottom: The soliddashei

bilization of the glass on decreasingis related, within jines refer, from top to bottortbottom to top, to r=1.34, 1.35, and
MCT, to the increase of pair correlations which weaken the) 36 respectively, on thB, (B;) side of the glass-glass transition
screened potentiat ¢, and decrease the value 8fq) atthe Jine. The heavy solid line i, for the cusp pointr=1.37, ¢
first peak, as shown in Fig. 2, top. Moving aloBg in Fig. =0.558 07. The loweS, refers to the same states. The inset shows
1 by decreasing implies an increase of the attraction and the exponent parametaralongB,; (dashed andB, (solid).
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structural arrest. This increase of the compressibility is a 00| ¢,
precursor of the liquid-gas critical point. The enhanced am- 1r » /’“‘
plitudes for density fluctuations increase their anharmonic o | A -300 -,z,.’/
interactions, and indeed the solution of the MCT equations =L Aa L4 qc
predict their spontaneous arrest on a low-temperature- N // A BEVEETS
transition lineB, in the 7 vs ¢ plane, shown in Fig. 1. In- N \\"\

crease of¢ suppresses smatj fluctuations. But it also in- > h ,«l: i .
creases—cq and the first peak ofS;, as shown by a L e —o B
comparison of results shown in Fig. 2, middle. Both effects 1 r ’
stabilize the glass, since the mode-coupling constants, Eg. - 300 - ;

(3) increase. This explains the upward bending of the full I q0
line in Fig. 1. Since arrest for smadj is favored on theB, L e

branch,fg is much larger there than for the HSS. The de-

crease of the compressibility upon increasifignake spon- =
taneous arrest less easy and thereftgedecreases upon Py . L L .
compressing. Both features are demonstrated in Fig. 2, 1

middle.

The explained interplay of attraction, and repulsion places
the meeting poinC* of the two branche®, andB, to a
packing fractiong* =0.5565, higher thams!>, and tor*
=1.320. Thus there is a reentry phenomenonif lowered,

e.g., for a packing fraction between 0.52 and 0.55. At seame
above 1.32 the glass melts, since the increase of attraction-
induced pair correlations destabilizes the cages for particle
arrest. At some lower the liquid freezes again into a glass,  FIG. 3. Density correlator fogo=14.4 at7=1.40 and various
because of the compressibility increase.@t, the f, cal- ¢ as a function of logyt/t) with to=o/v.

culated on the two different branche§’ andf{?), are dif-

ferent, while the corresponding, are indistinguishable. \ector is always smaller than unity. We also note that experi-

Thus two types of glasses, differing in théjf and in their  onia| measurements on Baxter-like colloidal systems show
dynamical propertl(el?, can (?)e obtained closeCto Inthe  yho presence of a line of structural arrest, which extends
region where bott;~’ and f,~ are solutions of Eq(4), the down to ¢=0.2[20].

one with the largef,, is the relevant solution. This exempli- In Fig. 3 the glassy dynamics outside the transient is ex-

fies the maximum theorem of MCT: if there is a solution of pjpyjseq for states in the reentry region. The dynamics is, up
Eq. (4), sayfy, the long time limitf, at the same equilib- o a regular time scale, independent of the transient. In par-
rium state obeys =T, [13]. For our case it means that the ticular it is the same for a colloid as for a conventional liquid
continuation offg( ) takes over the role of,, i.e.,By stops  for which Eq. (1) is formulated[9]. The uppermost curve
at C*. Therefore the two branches of the transition line docorresponds to a point in the glass region and demonstrates
not join smoothly aC*. TheB, branch continues, as shown arrest near thé, branch, and the others exhibit stretched
by the inset of Fig. 1, until it reaches a cusp bifurcation as aniquid relaxation to zero. Interestingly enough, the exhibited
endpoint of the transition line. Indeed, we evaluate the expoanomalous dynamics is dominated by the cusp singularity,
nent parameteh along theB; and B, lines and find, as not by the closer fold. Indeed even though a huge dynamical
shown in the inset of Fig. 2, bottom, that along Beline N window is considered, the known fold bifurcation pattern
keeps on increasing till it reaches unity for=1.37 and$  cannot be recognized. There is no power-law decay towards
=0.55807. The line betweed™ and the cusp pointis aline ,q f5) nor is there anx process obeying the superposition
of glass-to-glass tra'n3|t'|ons. For the given eq“"'.bf'_“.m Struc'principle. We checked that the mentioned asymptotic fold-
ture for (r.¢) on this line, therg are two po_35|b|llt|es for bifurcation features appear only after tunigigmuch closer
structural arrest. The one on highside is driven by the T C .

éo the transition line, which implies the extension of the dy-

excluded volume mechanism and the other one by th mical window to even larger sizes. Instead. th d
attraction-induced compressibility increase. The latte/ramica ow 1o even farger sizes. Instead, the cusp dy-

mechanism leads to a largéy than the former. The end namics appears in the liquid region. The stretched relaxation

point is characterized by their difference approaching zeroll the three-decade windows<dlog, (t/to) <3 shows the ap-

as shown in Fig. 2, bottom. proach towards the critical decay of the cigp]. Then the

We note in passing that the existence of the IBeis correlators follow closely a logarithmic law in time. Fgr
strongly related to the small wavelength, increasing fluctua= 0.555 it extends over five decades. Upon decreagiity
tions on decreasingand ¢, i.e., to the same mechanism that range of validity shrinks but even at=0.540 it extends
is responsible for the existence of the critical point in Bax-over two decades. This logarithmic decay is the known cusp
ter's potential(¢=0.1213,7=0.0976. Still, the location of  substitute for the start of a fold-process. Let us emphasize
the C* point is so far from the critical point that the usual that the above scenario does not require a fine tuning of
critical fluctuations effects can be safely neglected in thé~or 7=1.32 the pattern is similar to the one shown for
present context. Indeed, the structure factor for small wave= 1.40. Moving further from the reentry region, the logarith-

fc

oS/10
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mic decay will smoothly disappear, i.e., its time window will bifurcation[14]. In the same spirit, the dynamics arou@d
shrink, and the dynamics will become power-law agae.,  will smoothly change from logarithmic to power law on per-
its window will widen). turbing the Baxter potential. Potentials with larger interac-

In summary, we have shown that the SHSS presents #ion range may not show in their phase diagram a cusp point.
peculiar structural arrest dynamics at high packing fractions In most tests of MCT the data had been compared with
due to the competing mechanism of hard-core and attractivihe universal results obtained for the asymptotic dynamics
interactions. Two differently sloped ideal-glass transitionnear a fold transition. But our results show that even a simple
lines appear in the phase diagram. In the region where thesgystem can exhibit glassy dynamics that does not exhibit
two lines meet the slow dynamics changes from power lavasymptotic laws within accessible dynamical windows. It
to a logarithmic law due to the influence of a nearby cuspseems relevant to test, by spectroscopy for colloidal systems
singularity. The bifurcation scenario characteristic of theand by molecular-dynamics simulations, whether specific
Baxter potential will persist in systems with a small attrac-systems exhibit the shown complex dynamics and, in case,
tive range. For some critical deformation of the potential onewhether it is handled properly by the present MCT calcula-
expects that the cusp scenario disappears via a swallow-taibn.
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