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We present the exact Bethe lattice solution for a lattice gas Potts model defined in the generalized ensemble
which was previously studied in elucidating the anomalous thermodynamic properties of water. For this model
the locus of density maxim@rMD), the locus of isothermal compressibility extrentaEC), the spinodal
curve, and the percolation curve for four hydrogen bonded molecules are calculated using the Bethe lattice
solution. The results confirm qualitative relationships between the TMD, the TEC, and the percolation curve
obtained previously from a mean field calculatif81063-651X99)17205-2

PACS numbsdis): 05.50+q

[. INTRODUCTION describes the solution procedure for the Bethe lattice. In Sec.
IV we describe some results we obtain. Section V contains a
There is a long tradition in statistical mechanics of mod-summary and conclusions.

eling physical systems and phenomena in terms of interact-
ing discrete variables located on a suitably chosen latlite Il. MODEL
The classic example is the Ising model or the equivalent . . . .
simple lattice gas,F:he study of w?wich has been ins?rumental In this section, we de_scrlbe the lattice gas POtt_S model we
in our understanding of critical phenomef@. Relatively study. The model is defined to capture some basic aspects of

few such models are amenable to an exact soljytsgnand the microscopic be_havior of watg8 9] as described else-_

hence a variety of approximations are used to study themv_vhere[S]. \{[Ve dref.strlctthourseéstl htere silrr&ply tg those det?lls ¢
We study our model on the Bethe lattice, the interior of agee(;e[%ﬁg doetaﬁllsnr('aelat?nmct)o ?h.en ﬁ rzfcg ofrﬁaug?,\/r:ta; r\(/evgr °
Cayley tree, all of whose sites have the same coordinatiquer']tion briefly here hO\?vever tﬁa%/the mod%l describéd be-
number and whose bonds permit no closed loops. The exaFt : i y i ' the eff ’t f st hvd bond
results obtained on it coincide with results obtained by the(OW ams o capture e efiect of strong hydrogen bonas

Bethe-Peierl$2] approximation on a regular lattice with the HB's) and the correlations between the formation of HB's

and the local volume and entropy. These properties are de-

same coordination numbgg]. As discussed by Gujral], endent on the orientational states of the water molecules
the solution of a model on the Bethe lattice is generally mord <" ; . X '
which we model using the Potts variables defined at all oc-

reliable than conventional mean field approximations. Fur-Cupied sites on the lattice
ther, the availability of an exact solution method allows one Consid impl b'. lattick lattice in two di-
to study aspects of the model not accessible to mean field onsider a simplé cubic latiosquare fattice in two di
approaches, such as geometric aspeiepercolation. mensiong At each sitei we define occupancy variables

In this paper, we consider a lattice gas Potts model studgzgn tir;%mi:o? ':;:(':tﬁ Iol(fcﬂn?ecgusﬁie%n?jn?ci)r: ;Lalctrfltnegalfest
ied previously to elucidate thermodynamic aspects of the un-". pied. a up £ .
neighbor sitg on the lattice, we define a Potts varialatg;

usual properties of watdb]. We calculate the equation of
state of the model on the Bethe lattice. In order to aIIovv[lo]' i . . .
volume fluctuations, as required by our model, we solve the Thus o;,; defines the orientation of moleculewith re-
model in the generalized ensemble, in which the state of th(§pe.Ct to moleculg. The ful orlentatlonal .state Of. molecule
system is defined entirely by intensive variabjé as op- 'S 9'VeN by .01, - - - 01 Wherejy o, ...J, are the
posed to the grand canonical ensemble in which lattice gaeighbors ofi, and y is the total number of neighbor®r
models are typically solved. The peculiarities of the generalcoordination number The variabless; ; so defined are in-
ized ensemble make the calculation of the thermodynamiglependent of each other, i.e;;, does not depend om; ;. ,
properties of the model quite intricate; in particular, the rela-etc. In order to distinguish between the energies of strong
tively straightforward procedure for calculating the equationHB'’s, we first define an interaction term e nin; between
of state[2] in the Bethe-Peierls approximation proves inad-occupied neighbors, regardless of any requirement for HB
equate. It is necessary to obtain a formal solution for the fre¢ormation. Thus we write the Hamiltonian as
energy in order to calculate the equation of state. In this
paper we show how the calculation of the free energy of
lattice models on the Bethe lattice, discussed by Peruggi, di
Liberto, and Monroy 7] and Gujrati{4], may be extended to
the generalized ensemble. where(ij) indicates the set of all nearest neighbor pairs. We
In Sec. Il we describe the model we analyze. Section llidefineo; ;= o; ; to be the condition thatandj are properly

H:HNHB+HHB:_€<i2j> ninj+HHB, (1)
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oriented for HB formation. If ther; ; have a range of pos-
sible values €1,2, ... g), the relative entropyin terms of
the available numbeg of microstatesfor HB's is lower than
the number of microstates for non-HB'NHB's) by a factor
In(q). Defining the energy increment on HB formation to be
—J, we write

HHB:_JGZ” ninjégi'j’o-__. (2)

A

Finally we quantify the change in local density as a result
of HB formation, also in terms of the orientational variables
g ;. The total volumeV of the system is first written as the
sum of specific volume¥; of sitesi. The specific volumes
V; are in turn expressed in terms of contributidng that
depend on the interaction state between Sitasdj. Thus

) . . o FIG. 1. The generation of the Cayley tree. Starting from the site
Wheni has a HB interaction with), the local volumeb; ; labeledroot site one addsy (= 3 in this illustration first neigh-
increases, leading to a larger specific volurhe We define  pors, to each of whicly— 1 neighbor sites are connected in the next
two possible values fob; ; : (i) b; j=b for NHB states, and iteration. One of they resulting branches of the tree are shown
whenn; or n; = 0; and(ii) b; j=b+ éb for HB states. Thus here. The sites are labeled with their distance from the surface of
the tree. Thus, for a tree constructed by addivhgenerations of
sites (M steps in the iterative procedyrehe origin or root site is

V=2 bi’i:OZD (b+2b min;dy, o)) labeled byM, the first generation sites are labeledMy- 1, etc.

.5

timates were obtained for the hydrogen bond probability and
i 750’ ) of the percolation threshold for sites with fowith coordi-

nation numbery=4) hydrogen bonds. In what follows, we
whereN is the number of lattice sites, ang=yb/2 is the evaluate both thermodynamic and percolation quantities ex-
volume associated with a site when no hydrogen bonds aractly for the Bethe lattice. In Sec. V, we compare the results
present. Thus we can write the system Hamiltorfiaand an ~ obtained from the present calculations to previous simple

=Nvg+ 5b<2_> nin; 8,
]

“enthalpy” function W as mean field(Bragg-Williamg results.
H= —e(% ninj—J<iEj> nin; 8, o, (5) lll. SOLUTION
In this section we describe the exact solution of the model
W=H+PV defined in Sec. Il in the interior of the Cayley tréBethe

lattice). The Bethe-Peierls approximation, which improves

S nin;+PNu, on the conventional mean field approximation by taking into

i) account the local correlation between sites, consists of writ-
ing the occupation probability of a given sit&entral site”)

e . in terms of the occupancies of its neighbor sites. The influ-

(J Pﬁb)(,EJ) nin; Oy, i 7 © ence of the rest of the system is introduced through an effec-

tive chemical potential that acts on the neighbor sites. The

In order to evaluate the partition function for this model, equation of stat§EOS of the system is found using the
we must sum the appropriate Boltzmann weight over all valtranslational invariance of the system, i.e., by demanding the
ues ofn; and o ;. In doing so, however, the number of occupation number of the neighbor sites to be the same as
molecules as well as the volume of the system are variableshat of the central site.
Thus the appropriate Boltzmann weightgs#+PV=#N) A Cayley tree, illustrated in Fig. 1, is constructed by start-
where 8=1/T is the inverse temperature in the units of theing from a central sit@ and addingy sites(in the following
Boltzmann constant, and the independent variables of thisalled first generation all connected to the site. To each
ensemble areH,u,T), all intensive. The thermodynamic site belonging to the first generatiop;- 1 sites(second gen-
potentialA(P,«,T), obtained by successive Legendre trans-eratior) are then added. The iteration of such procedure gen-
forms with respect td\, V, andS can be seen to be identi- erates a graph which contains no closed loops. Although in a
cally zero[A(P,u, T)=U—-TS+PV—uN=0]. This pro- Cayley tree the number of surface sitdse last generation
vides an implicit relation between the variabRsu,, andT.  grow exponentially, if the number of generations is suffi-
In Ref. [5], the equation of state was calculated using theciently large, the local properties of the interior sites in the
conventional mean field approximatighl]. In addition, es- graph are not surface dependgBt Sites which are not af-
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fected by surface effects constitute the Bethe laftkd.
The Bethe-Peierls approximation for any lattice gas Zy=2, GK; Sisi+h2i S=> P(9), ()
model furnishes a relation between the density and the exter- {st (s

nal flelds,.|.e., gives the EOS. for the model. In the case'of "i'NhereE{S} is the sum over all the possible spin configura-
model defined in the generalized ensemble, such a relation |8 " (& "is the sum over all siteisand its nearest neigh-
not sufficient to reconstruct the EOS, since one needs iBors ’in the”next generation of the trge

addition to specify the relation bet'wc'aen _th_e .intensive param- - As the Cayley tree is the union efidentical branches all

etersP, u, and_T. Such a relation is implicit in t_he fa_lct that joined in the root site, we can factori®(S),

for the generalized ensemble, the free enexgyg identically

zero. Hence the full solution of the EOS requires also a for- 4

mal evaluation of the free energy. P(S)=e"M[] ou({S_1ISu). (8)
Before discussing the calculation of the EOS and the free k=1

energy for the model defined in Sec Il, we introduce some

definitions: The number of generations in the Cayley tree iV

represented by, which is then also the distance between”

the surface sites and the central sit&Ve represent a Cayley Bk sk

tree withM generations ag,,. The number of generations

between a sgelected site and the surface is Iatgtaleluience, QM({S}KA_1|SM):eKE SSTKSMh 2 S (g

for the central siteo, m=M. Each sitei is associated to an .

occupation variable, and (whenn;=1) y Potts variable Where=®w is the sum over all sites on brané; exclud-

i, with 1<g; ;<7. The set of fy/—1) nearest neighbors ing the site at the origin of the tree. The notation

of a sitei in the next generation are representedrpyAs we ~ Qu({SHy_1/Sw) indicates thaQy depends on spins of gen-

typically discuss a single site at a given generation in theerationM—1 and higher on th&' branch. WithW(Sy,)

calculations below, we refer to such a site simply by its=e"*, we can rewrite the partition function as

distance from the surface when no confusion is caussd

e.g., themsite), even though, in the generation at distante

away from the surface, there arg-€ 1)M ™ sites. We define Zu= 2 N

ZX (nm.,{o}X) as the partial partition function sum over sites Sm

on one of the brancheBf, rooted in one of the sites at

distancem from the surface, keeping fixed its occupation EE W(SM)H Zu(Sw). (20

numbern,, and the orientation variablesﬁ”m, where |, Sm Y

can be any of the nearest neighbor sitesno#henn,,=0, FactorizingQu({S}&,_,|Sw) as
the orientationso,; are not defined, and hence we write

Z,(0) in this case. When no confusion is caused, we supQu({S}y_1/Sw)

press the branch indeik Finally, we defineZy, to be the y-1

partition function for a Cayley tree with generations. Note — eKSuSm-1+hSy_1 STALS 11
that 2, can be obtained frorak,(ny ,{o}y) by “hooking” k[[l Qu-1({Shu—2[Su-1). 19
the y branche at the siteM and summing over its occupa-

hereS,, is the spin on the root site, the product is on all the
sub-branche& emanating from the root site, and

Bl
> Qu(Sy_1ISw)
k=1 1S

tion numbern,, and orientation variableg y 1. we obtain
y—1
A. Recursive relations for the partition function K
on & Cavley troe Zu(Sw)= 2 W(Sw.Su-0 ]l Zu-1(Sh-1). (12
yley Sv—1 k=1
Because in a Cayley tree the number of the boundary sites , , ,
is not negligible compared to the inner ones, the free energgd the final recursive equation
of the system depends on the surface. Techniques to calcu- y-1

late the free energy for the inner sites of the Cayley tree were _ K
presented by Peruggi, di Liberto, and Mon{@J and Gujrati Zm( Sm) s%l W(Sm'sm—l)kﬂl Zm-1(Sm-1), (19

[4] for models defined in the canonical or grand-canonical
ensemble. In Sec. Il B we extend it to the case of the genwhich connects partial partition function sums for successive
eralized ensemble, and we solve the model presented in Segtibtrees indexed by different values.
Il. The technique of Gujrafi4] builds on the standard recur- ~ Now we obtain the recursive relation for the model
sive methods for the calculation of the partition function onpresented in Sec. Il by a simple extension of the above
the Cayley tre¢3], which we review in this section to facili- procedure. In this case the Boltzmann weight
tate the reading of the present paper for the case of standaW(np,0m m—1,"m-1,0m—1m) associated with the interac-
Ising model with couplingk’ (with K=8K') in the pres- tion between the sitexand one of the sites in the sgf, (the
ence of a magnetic field’ (with h=8h’). We then calcu- y—1 next generation nearest neighbatepends on both the
late the recursive relation for the partition function and theoccupation number and the Potts orientational variables; thus
EQOS for our model. W, 0mm-1,"m-1,0m=1m) contains the Boltzmann

In the Ising model on of thé/ generations Cayley tree, weights corresponding to the interaction between thersite
the total partition functionzy, is and sitem—1 and the interaction with the external fiel#s
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(e7#P" andu (ef*). Using the notation already introduced in Sec. Il, we write the recurrence relation
y—1
Zm(nmv{o'}m): E W(nmagm,mflanmflaamfl,m)H er(nfl(nmflr{o'}mfl)v (14)
Nm-1d0tm-1 k=1
where the sum is over all the possible states,gf ;, and orientation variables associated with the 1 site,am_l,jm_l. The
total partition function for the tree is

E W(nM>H Z(ny {otw), (15)

nM ‘7'M

whereW(ny,) is now the Boltzmann weight due to the interaction between the root site and the externgl. field
We can explicitly rewrite the recurrence equations:

m(1{o}m) =[ePrefe PP {efUPP)+ (q— 1)} g7 [ Zm 1(1{o}tm- 0] +e PP 2 1(0)]7 7Y, (16)
[
or, by definingX=ef¢’, ef<' =ef 1+ 1/q(ef~PP —1)], XY i+1
andY=q"ef* , m=VpTr1 " (22)
m—1

Zm(la{o'}m):XYei'BPb[Zm—l(ly{U}m—l)]yil
In the limit of M going to infinity, Eq.(22) becomes an

— BPby -1
te [Zm-1(0)]7 17) implicit relation for the unknown variablg
and
XYtr~1+1
- BPby y-1 t=<5-1,7- (23)
Zn(0)=Ye PP Z0 1(1{o}m-1)] Yoiel
+e PPz, 1(0)] 7T, (18)

In order to obtain a solution fot, as input we need a

In deriving Eq.(16), we have included the fact that when consistent set of value®, x, andT implicitly present in the
the sites in generatiom andm—21 are occupied, there is a equation above. As described earlier, such a relation is ob-
contribution to the partition function which includés the tained from a formal evaluation of the free eneryyBefore
occupation of sitan—1 (e#); (ii) a contribution from the turning to the calculation oA, we indicate here how various
Potts variablesry,_1 -2 (97 1) [13]; (iii) a contribution to  important quantities may be calculated once the valueiof
the volume fromb,, , 1 (e #PP, ande AP in the hydro-  known.
gen bond term beloyy (iv) a contrlbutlon due to the possi- It is easily seen that the average occupation number for
bility to form a hydrogen bondg?’e #P%): and(v) a con-  the root site is given by:
tribution due toq—1 orientational states where no hydrogen
bond is formed.

In the case when the site in generationis occupied qre ALz (1{otw)
while t_he_sne |n_|terat|orm—1' is empty, iny 'the vplu_me <”M>— e PLz) (1{otw) +27(0)’
effect(ii) is considered. Equatiof18) is derived in a similar
way.
By defining that, in the limit ofM goes to infinity, and using Eq$19)

and(20), becomes
Bn=[Ye APPZr 1 (1{o}m 1) +e FPPZ21(0)1=Z,(0)
(19
Y

Yt
and (ny)y=(n)= Yol (24

Bmtm=[XYe APPZY~%(1 +e APPzZY1(0
mtm=1 “i(1ioin-1) ~1(0)] To write down the equation for the average number of

=Z(1{o}m). (200  bonds in the system, we have to consider the contribution 1
to the total partition function by the configurations with at
the recurrence equatiori$6) and (18) become least one bond between the root site and one of its nearest

ob 1 neighbors. The total partition functiofi,, may be written,
Bn=e fPh(Y{ 1+ 1)B) 1, (21)  using Egs(17) and(18) as
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Zu=0"e PHZ}(L{ohw) + Z5(0) =Y Zy M L{ohw) XY € PPPZ (Lot 1) +e P72 ()] + 2} (0)

X[Ye PPz Y (L{ohm-1) +e P2y 4(0)].

(29

The number of configurations with one bond between two particles is

ePrqrzyy N(1{otw)efelle FPqr-tefrzyt (1{a}m-1)

Finally we can write

eBeeBlo—BPobg—BPb

Y2Zh M1 {otw)ZY ML {otm-1)-

(Np) =

which, in the limit of M —~ and using Eqs(19) and(20), becomes

q
(26)
efcefle  FPDe=FPO Y270 (1 ah)ZY M1 {otw-1)
7 : 27
q M
eBeeBJe—,BPc?b (Yt'y—l)Z
(28

(Np) = q

YO XY I+ )+ (YO 1)

Finally, the volume per molecule is given by the volume of the sydtginen by definition(4)] divided by the number of

molecules in the system, i.e.,

sb
(Vsite) vot 5 %Mo) Y lv1 Sb ePfePle=APd  yp-l
v= = =votvoT g T a0 +—5v — . (29
(n) (n) YO iyrlefe +1) 2 q (XYP~1+1)

B. Calculation of the free energy in the generalized ensemble

We now calculate the free energy for Bethe lattice sites by

implementing the method proposed by Guijfdij. The Cay-
ley treey, is the union ofy branches3), connected together
at the root site. Similarly, we definey(-1) trees7,_,,i
=1, ...,y—1, each of which we obtain as the union of
branchesB),_; connected together at the-1 sites labeled
M—1. Comparing the tree7,, with the set 7 },_,,i
=1, ...,y—1, it can easily be verified th&, has the same
number of surface sitgs=y(y—1)M 1] as they—1 trees
Tv-1

[=(y—1)Xy(y—1)M2]. On the other hand, the number
of sites on7y (=1+[v/(y—2){(y—1)M-1}) is greater
than the total number of the—1 copies

w1 E(y=X{L+[y(y=2)U(y— DM 1-11}
=1+[y/(y=2)H(y- D" -1}-2)

by 2. Similarly, 7y, hasy more bonds than theg— 1 copies
Ty-1-

Thus, the ratio of the partition functiog,, for 7, and
the sum of partition functions for they—1 copies
Th_1 (==7"1Z},_1), in the limit M—c, yields the free
energy for two sitegor equivalently,y bonds on the Bethe
lattice. The Bethe lattice, or bulk, free energy per bands
thus

y—1

—kgT )
B linzy-> Inz, ,|.
=1

Ap=lim (30)

M —

Zu=Y[Zu(Lowm-D]"+[Zu(0)]"=Bj{(Yt)+1),

(3D
Zy_1=Bh_(Yth_,+1), (32

whereY is as defined earlier, and
By =[e PPy, L+ 1)BL L] (33

The final expression for the free energy, in the lifdit— oo,
is thus

B, (Yt'+1)
L(BY-p)” (Ytr+1)7 !

A=
==In
Y

(YO l41)7

e_BPb'y
(Yt +1)r2

1
=—In
Y

: (34)

which follows from using the relation betweeB,, and
By _1 from the previous step, and noting that ls— o,
tu=tu_1=t, given by Eq.(23). Now, using the fact that the
free energyA in the generalized ensemble is identically zero,
we obtain the implicit relation betwed?, w, andT:

(Yt 1+1)

efPb—_~ =~ 77
(Ytr+1)(r=2m°

(39

Thus Eqs(35) and(23) constitute a system of two equa-
tions for the four unknown, P, «, and T which, once re-
solved, allow the evaluation of the EQ®ith P and T as
independent thermodynamic variablésr the model defined
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in the generalized ensemHl&4]. At the same time, from the The percolation curve is then given by:
t values it is possible to calculate the average number of
hydrogen bond§Eq. (28)], in addition to the system volume eflg=pPoD Xyt 1
[Eg. (29)] and other thermodynamic quantities of interest. P(1|1)pp= — B~ BPb 1.1 y—1°
. . . . (qg—1)+ePe XYt *+1 7Y
Before concluding this section, we write the exact solu-

tion for our model in one dimension, which can be obtained 4D
from the results above simply by choosing-2, since the The expression above, in the limit pf,=1, becomes the
Bethe lattice fory=2 is identical to the one-dimensional expression for a correlated site percolation problem on the
regular lattice. Withy=2, Eq.(35) becomes lattice and, with the substitutiof22] z=Yt""1, coincides
y—1_ BPb with the result previously derived by Muraf23] in the
Yuro=emt-1, (36) mean field approximation. The percolation properties of the
four-bonded moleculegl6] can also be derived within the
efPP framework of the present model. Let us consider a tree with
v:b+b(eBPb_ 1)[ (efPP— 1)eﬁe’+l] coordination numbery=4. If a chosen sité belongs to a
given cluster of four-bonded molecules, the probability that a
ehcelle AP (efPP—1) neighbor sitg also belongs to the same cluster is equal to the
+6b q [(ePPP_1)efe + 1]’ 37 probability for this site to have three more occupied neigh-

bors which are hydrogen bonded to it, since the initial site
which coincide with the previously derived one-dimensionallS already known to be occupied and hydrogen bonded with
result[5]. j (indeed the site must have four bonds to belong to the
clusted. The percolation curve for four-bonded molecules on
C. Percolation quantities a lattice withy=4 is then given by

The solution of lattice models on the Bethe lattice is par- 3
ticularly useful if we require thermodynamic information to- [PoP(1]1)] 3 (42)
gether with the evaluation of connectivity propertj@§]. In
the case of water, it has been suggested that the hydrogen
bond connectivityf 16], and in particular the connectivity of
the four-bonded molecules, plays a significant role in the eBlg=BPdb Ytr~1x
liquid dynamics[17,18 and thermodynamic behavior. Be- 51— pPab 1
cause the model we consider does not introduce any correla- (q=1)+e%e XY+l
tion between adjacent bondias seen from the Hamiltonian
in Eq. (5)], the percolation problem is of the correlated site-
random bond typ€19,20. Starting from an occupied site at
the origin of the tree, the probability to have a hydrogen
bond between two sites can be written as the conditional IV. RESULTS

probability to find both sites occupie®(1|1) times the In this section we compare the predictions of the model
probability p, that a hydrogen bond exists between them.presented in Sec. Il solved exactly on the Bethe lattice with
From well known results for the Cayley tré21], an infinite  the previously derived mean-fiel@ragg-Williams results.
spanning cluster of hydrogen bonds appears when the proliye evaluated the EOS for the same parameters chosen in
ability to have a hydrogen bond becomes equal 0 ( Ref. [5], i.e., y=4, sb/b=0.953,J/e=0.25, andq=2100.
-1 We have evaluated the locus of density maxifiD), i.e.,

In our model the probability>(11) of finding two mol-  the curve along which, by following an isobaric path, the
ecules in two nearest neighbor sit¢ssing calculations density has a maximum, the locus of the isothermal com-

1 1/3
§) . (43

Note that this result is applicable to the percolation of occu-
pied “four-bonded” sites.

analogous to Sec.)lis given by pressibility extremaTEC), the spinodal curvéwhere the
1o compressibility diverges and the percolation curve for the
P(11) X(Yt™7) 38) four-bonded molecules. Note that the spinodal line, as well

asmetastableextensions of the liquid phadelso gag arise

in mean field and related solutions of phase behavior. Both
Using the law of conditional probabilityf P(A|A)  can exist at negative pressures. While equilibrium stated

=P(AA)/P(A)], obtaining the occupation probability of an solutiong can only occur at positive pressuieee, e.g., Ref.

CYPTYXY O L) (YO 1)

arbitrarily chosen sit¢P(A)] from Egs.(24), we have [24]), negative pressure stat@nd metastable states in gen-
era) are routinely observed on experimentaind longer
Ytr—1x time scales for real materials. The TMD and TEC lines arise
P(1]1)= (39  in liquids which show density anomalies, i.e., liquids which

y-1 ' . .
XYt +1 show a nonmonotonic dependence of the density on the tem-

gerature at a constant pressure. The model we study was
indeed originally developed to clarify the relation between
ey the temperature dependence of density and isothermal com-
eBlg—BPD o ) :
= ) (40) pressibility. We refer the reader interested in the thermody-
(q—1)+efle AP namics of liquids with a TMD to Refd8,9]. In this paper,

The probability to have a bond between two occupied sites i

Pp
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Mean Field modynamic consistenc}25,26. The TMD meet the TEC
with an infinite slope, as it must for thermodynamic consis-
tency[5]. The TEC has a minimum which separates the tem-
perature range of compressibility maxinikeft side and
minima (right side.

We also calculate the percolation curve for four-bonded
molecules. This evaluation constitutes a consistent determi-
nation of such a line within the framework of a well defined
microscopic model of water. Unlike previous attempts, we
take into account the correlation between the positions of the
molecules(site occupation in our modelWe find that the
percolation curve is almost coincident with the TEC line. We

. note that the “percolation model” of the anomalous proper-
—_ %’\’A"E‘fda' ties of water, while predicting a percolation transition, does
———- TEC not predict any thermodynamic anomalies at the percolation
——- Bond Probability=.795 line, and, further, predicts a compressibility extremum that is
‘ not coincident with the percolation threshdltb.

0.0

Pressure

0.0 0.2 0.4
(a) Temperature

Bethe Lattice V. CONCLUSIONS

In this paper we have described a procedure to solve ex-

actly lattice gas models defined in the generalized ensemble
_ on the Bethe lattice. We have applied this method to a re-
cently proposed model which includes a coupling between
bond energy and local volume and which requires the use of
the generalized ensemble. The apparent disadvantage of
working in an overdefined ensemble, i.e., in an ensemble
where the corresponding free energy is identically zero, is
utilized as a consistency condition to obtain a relation be-
tween intensive variableB, w, andT. In order to do so, we
have extended to the generalized ensemble the method of
Gujrati[4] for the calculation of the free energy on the Bethe
lattice. By specializing the calculation & to the model
described in Sec. Il, we have calculated the equation of state,
, ‘ and compared with the previously published mean field
0.02 0.12 0.22 0.32 (Bragg-Williamg results[5].
(b) Temperature The improvement over the basic mean field approxima-
tion achieved with the solution on the Bethe lattice is par-
ﬁcularly important because it allows a simultaneous determi-
nation of thermodynamic and percolation properties. In the
grams show the TMD line, spinodal line, and TEC line. The TECC@SE of liquid water, percolation properties have been dis-
line meets the TMD line at the retracting point. Note that belgw cussed at lengtf6,18,117, but they have never been calcu-

at which thek ; extrema locus displays a minimum, the extrema arelated consistently from a well defined microscopic model.
maxima, while above they are minima. Also shown is ihe The results presented here suggest that, in our model, a direct

=0.795 locus in the top graph and the percolation curve for four€lation does not exist between the location of the percola-

bonded molecules in the bottom graph. Temperature is expressed t@n threshold for four-bonded molecules and the line of

units of e/kg, and pressure in units effv,, . compressibility extrema. We also note that the present model

does not include any correlation between hydrogen bonds,

which is focused on the possibility of solving models definedwhich has been thought to be relevant for the understanding

in the generalized ensable on the Bethe lattice, we limit ourof the behavior of supercooled water. An extension of the

selves to the comparison of the EOS, which is presented iRresent model to include hydrogen bond correlations and an

Fig. 2. exact solution on the Bethe Lattice is feasible, and will be
Apart from an upward shift o andP, the shape of the Pursued in the future with the approach described in this

phase diagram does not change on going from the Bragdaper.

Williams approximation to the Bethe lattice solution. We

confirm that the TMD line change; slope. in th‘é,D plane ACKNOWLEDGMENTS

and that it does not meet the spinodal line, which does not

retrace (i.e., whose pressure values do not display an extre- S.S. thanks the University of Rome “La Sapienza” for
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FIG. 2. Comparison between the phase diagram obtained in th
Bragg-Williams mean field approximati¢b] (top graph and in the
Bethe-Peierls approximatiotbottom graph Both of these dia-
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