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Solution of lattice gas models in the generalized ensemble on the Bethe lattice
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We present the exact Bethe lattice solution for a lattice gas Potts model defined in the generalized ensemble
which was previously studied in elucidating the anomalous thermodynamic properties of water. For this model
the locus of density maxima~TMD!, the locus of isothermal compressibility extrema,~TEC!, the spinodal
curve, and the percolation curve for four hydrogen bonded molecules are calculated using the Bethe lattice
solution. The results confirm qualitative relationships between the TMD, the TEC, and the percolation curve
obtained previously from a mean field calculation.@S1063-651X~99!17205-2#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

There is a long tradition in statistical mechanics of mo
eling physical systems and phenomena in terms of inter
ing discrete variables located on a suitably chosen lattice@1#.
The classic example is the Ising model or the equival
simple lattice gas, the study of which has been instrume
in our understanding of critical phenomena@2#. Relatively
few such models are amenable to an exact solution@3#, and
hence a variety of approximations are used to study th
We study our model on the Bethe lattice, the interior o
Cayley tree, all of whose sites have the same coordina
number and whose bonds permit no closed loops. The e
results obtained on it coincide with results obtained by
Bethe-Peierls@2# approximation on a regular lattice with th
same coordination number@3#. As discussed by Gujrati@4#,
the solution of a model on the Bethe lattice is generally m
reliable than conventional mean field approximations. F
ther, the availability of an exact solution method allows o
to study aspects of the model not accessible to mean
approaches, such as geometric aspectsvia percolation.

In this paper, we consider a lattice gas Potts model s
ied previously to elucidate thermodynamic aspects of the
usual properties of water@5#. We calculate the equation o
state of the model on the Bethe lattice. In order to all
volume fluctuations, as required by our model, we solve
model in the generalized ensemble, in which the state of
system is defined entirely by intensive variables@6#, as op-
posed to the grand canonical ensemble in which lattice
models are typically solved. The peculiarities of the gene
ized ensemble make the calculation of the thermodyna
properties of the model quite intricate; in particular, the re
tively straightforward procedure for calculating the equat
of state@2# in the Bethe-Peierls approximation proves ina
equate. It is necessary to obtain a formal solution for the f
energy in order to calculate the equation of state. In t
paper we show how the calculation of the free energy
lattice models on the Bethe lattice, discussed by Perugg
Liberto, and Monroy@7# and Gujrati@4#, may be extended to
the generalized ensemble.

In Sec. II we describe the model we analyze. Section
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describes the solution procedure for the Bethe lattice. In S
IV we describe some results we obtain. Section V contain
summary and conclusions.

II. MODEL

In this section, we describe the lattice gas Potts model
study. The model is defined to capture some basic aspec
the microscopic behavior of water@8,9#, as described else
where@5#. We restrict ourselves here simply to those deta
necessary to define the model. Interested readers may re
Ref. @5# for details relating to the physics of liquid water. W
mention briefly here, however, that the model described
low aims to capture the effect of strong hydrogen bon
~HB’s! and the correlations between the formation of HB
and the local volume and entropy. These properties are
pendent on the orientational states of the water molecu
which we model using the Potts variables defined at all
cupied sites on the lattice.

Consider a simple cubic lattice~square lattice in two di-
mensions!. At each sitei we define occupancy variablesni
such thatni50 if site i is unoccupied, andni51 if site i is
occupied. For each occupied sitei, and for each neares
neighbor sitej on the lattice, we define a Potts variables i , j
@10#.

Thus s i , j defines the orientation of moleculei with re-
spect to moleculej. The full orientational state of moleculei
is given bys i , j 1

,s i , j 2
, . . . ,s i , j g

where j 1 , j 2 , . . . ,j g are the

neighbors ofi, and g is the total number of neighbors~or
coordination number!. The variabless i , j so defined are in-
dependent of each other, i.e.,s i , j 1

does not depend ons i , j 2
,

etc. In order to distinguish between the energies of stro
HB’s, we first define an interaction term2e ninj between
occupied neighbors, regardless of any requirement for
formation. Thus we write the Hamiltonian as

H5HNHB1HHB52e(̂
i j &

ninj1HHB , ~1!

where^ i j & indicates the set of all nearest neighbor pairs. W
defines i , j5s j ,i to be the condition thati and j are properly
6348 ©1999 The American Physical Society
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oriented for HB formation. If thes i , j have a range of pos
sible values (51,2, . . . ,q), the relative entropy~in terms of
the available numberq of microstates! for HB’s is lower than
the number of microstates for non-HB’s~NHB’s! by a factor
ln(q). Defining the energy increment on HB formation to
2J, we write

HHB52J(̂
i j &

ninjds i , j ,s j ,i
. ~2!

Finally we quantify the change in local density as a res
of HB formation, also in terms of the orientational variabl
s i , j . The total volumeV of the system is first written as th
sum of specific volumesVi of sites i. The specific volumes
Vi are in turn expressed in terms of contributionsbi , j that
depend on the interaction state between sitesi and j. Thus

V5(
i

Vi[(
^ i , j &

bi , j . ~3!

When i has a HB interaction withj, the local volumebi , j
increases, leading to a larger specific volumeVi . We define
two possible values forbi , j : ~i! bi , j5b for NHB states, and
whenni or nj 5 0; and~ii ! bi , j5b1db for HB states. Thus

V5(
^ i , j &

bi , j5(
^ i , j &

~b1db ninjds i , j ,s j ,i
!

5Nvo1db(
^ i , j &

ninj ds i , j s j ,i
, ~4!

whereN is the number of lattice sites, andvo[gb/2 is the
volume associated with a site when no hydrogen bonds
present. Thus we can write the system HamiltonianH and an
‘‘enthalpy’’ function W as

H52e(̂
i j &

ninj2J(̂
i j &

ninj ds i , j s j ,i
~5!

W5H1PV

52e(̂
i j &

ninj1PNvo

2~J2Pdb!(̂
i j &

ninjds i , j s j ,i
~6!

In order to evaluate the partition function for this mod
we must sum the appropriate Boltzmann weight over all v
ues of ni and s i , j . In doing so, however, the number o
molecules as well as the volume of the system are variab
Thus the appropriate Boltzmann weight ise2b(H1PV2mN) ,
whereb51/T is the inverse temperature in the units of t
Boltzmann constant, and the independent variables of
ensemble are (P,m,T), all intensive. The thermodynami
potentialD(P,m,T), obtained by successive Legendre tran
forms with respect toN, V, andS, can be seen to be ident
cally zero @D(P,m,T)5U2TS1PV2mN50#. This pro-
vides an implicit relation between the variablesP, m, andT.
In Ref. @5#, the equation of state was calculated using
conventional mean field approximation@11#. In addition, es-
lt

re

,
l-

s.

is

-

e

timates were obtained for the hydrogen bond probability a
of the percolation threshold for sites with four~with coordi-
nation numberg54) hydrogen bonds. In what follows, w
evaluate both thermodynamic and percolation quantities
actly for the Bethe lattice. In Sec. V, we compare the resu
obtained from the present calculations to previous sim
mean field~Bragg-Williams! results.

III. SOLUTION

In this section we describe the exact solution of the mo
defined in Sec. II in the interior of the Cayley tree~Bethe
lattice!. The Bethe-Peierls approximation, which improv
on the conventional mean field approximation by taking in
account the local correlation between sites, consists of w
ing the occupation probability of a given site~‘‘central site’’!
in terms of the occupancies of its neighbor sites. The in
ence of the rest of the system is introduced through an ef
tive chemical potential that acts on the neighbor sites. T
equation of state~EOS! of the system is found using th
translational invariance of the system, i.e., by demanding
occupation number of the neighbor sites to be the sam
that of the central site.

A Cayley tree, illustrated in Fig. 1, is constructed by sta
ing from a central siteo and addingg sites~in the following
called first generation!, all connected to the siteo. To each
site belonging to the first generation,g21 sites~second gen-
eration! are then added. The iteration of such procedure g
erates a graph which contains no closed loops. Although
Cayley tree the number of surface sites~the last generation!
grow exponentially, if the number of generations is suf
ciently large, the local properties of the interior sites in t
graph are not surface dependent@3#. Sites which are not af-

FIG. 1. The generation of the Cayley tree. Starting from the s
labeledroot site, one addsg ~5 3 in this illustration! first neigh-
bors, to each of whichg21 neighbor sites are connected in the ne
iteration. One of theg resulting branches of the tree are show
here. The sites are labeled with their distance from the surfac
the tree. Thus, for a tree constructed by addingM generations of
sites (M steps in the iterative procedure!, the origin or root site is
labeled byM, the first generation sites are labeled byM21, etc.
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6350 PRE 59LA NAVE, SASTRY, SCIORTINO, AND TARTAGLIA
fected by surface effects constitute the Bethe lattice@12#.
The Bethe-Peierls approximation for any lattice g

model furnishes a relation between the density and the ex
nal fields, i.e., gives the EOS for the model. In the case o
model defined in the generalized ensemble, such a relatio
not sufficient to reconstruct the EOS, since one needs
addition to specify the relation between the intensive para
etersP, m, andT. Such a relation is implicit in the fact tha
for the generalized ensemble, the free energyD is identically
zero. Hence the full solution of the EOS requires also a f
mal evaluation of the free energy.

Before discussing the calculation of the EOS and the f
energy for the model defined in Sec II, we introduce so
definitions: The number of generations in the Cayley tree
represented byM, which is then also the distance betwe
the surface sites and the central siteo. We represent a Cayle
tree with M generations asTM . The number of generation
between a selected site and the surface is labeledm; hence,
for the central siteo, m5M . Each sitei is associated to an
occupation variableni and ~when ni51) g Potts variable
s i , j , with 1<s i , j<g. The set of (g21) nearest neighbor
of a sitei in the next generation are represented byt i . As we
typically discuss a single site at a given generation in
calculations below, we refer to such a site simply by
distance from the surface when no confusion is caused~as,
e.g., them site!, even though, in the generation at distancem
away from the surface, there are (g21)M2m sites. We define
Zm

k (nm ,$s%m
k ) as the partial partition function sum over sit

on one of the branchesBm
k rooted in one of the sites a

distancem from the surface, keeping fixed its occupatio
numbernm and the orientation variablessm, j m

k , where j m

can be any of the nearest neighbor sites ofm. Whennm50,
the orientationssm, j m

are not defined, and hence we wri

Zm(0) in this case. When no confusion is caused, we s
press the branch indexk. Finally, we defineZM to be the
partition function for a Cayley tree withM generations. Note
thatZM can be obtained fromZM

k (nM ,$s%M) by ‘‘hooking’’
theg branchesk at the siteM and summing over its occupa
tion numbernM and orientation variablessM ,M21.

A. Recursive relations for the partition function
on a Cayley tree

Because in a Cayley tree the number of the boundary s
is not negligible compared to the inner ones, the free ene
of the system depends on the surface. Techniques to ca
late the free energy for the inner sites of the Cayley tree w
presented by Peruggi, di Liberto, and Monroy@7# and Gujrati
@4# for models defined in the canonical or grand-canoni
ensemble. In Sec. III B we extend it to the case of the g
eralized ensemble, and we solve the model presented in
II. The technique of Gujrati@4# builds on the standard recu
sive methods for the calculation of the partition function
the Cayley tree@3#, which we review in this section to facili
tate the reading of the present paper for the case of stan
Ising model with couplingK8 ~with K5bK8) in the pres-
ence of a magnetic fieldh8 ~with h5bh8). We then calcu-
late the recursive relation for the partition function and t
EOS for our model.

In the Ising model on of theM generations Cayley tree
the total partition functionZM is
s
r-
a
is

in
-

r-

e
e
is

e

-

es
y
u-

re

l
-

ec.

ard

ZM5(
$S%

eK(
i j

SiSj 1h(
i

Si[(
$S}

P~S!, ~7!

where($S% is the sum over all the possible spin configur
tions, and( i j is the sum over all sitesi and its nearest neigh
bors in the next generation of the tree,j.

As the Cayley tree is the union ofg identical branches al
joined in the root site, we can factorizeP(S),

P~S!5ehSM )
k51

g

QM~$S%M21
k uSM !, ~8!

whereSM is the spin on the root site, the product is on all t
g sub-branchesk emanating from the root site, and

QM~$S%M21
k uSM !5eK(

B M
k*

SiSj 1KSM21SM1h(
B M

k*

Si, ~9!

where(B M
k* is the sum over all sites on branchBM

k exclud-
ing the site at the origin of the tree. The notatio
QM($S%M21

k uSM) indicates thatQM depends on spins of gen
eration M21 and higher on thekth branch. WithW(SM)
5ehSM, we can rewrite the partition function as

ZM5(
SM

ehSM )
k51

g

(
$S%

B M
k*

QM~SM21
k uSM !

[(
SM

W~SM !)
g

ZM~SM !. ~10!

FactorizingQM($S%M21
k uSM) as

QM~$S%M21
k uSM !

5eKSMSM211hSM21)
k51

g21

QM21~$S%M22
k uSM21!, ~11!

we obtain

ZM~SM !5 (
SM21

W~SM ,SM21! )
k51

g21

ZM21~SM21
k !, ~12!

and the final recursive equation

Zm~Sm!5 (
Sm21

W~Sm ,Sm21! )
k51

g21

Zm21~Sm21
k !, ~13!

which connects partial partition function sums for success
subtrees indexed by differentm values.

Now we obtain the recursive relation for the mod
presented in Sec. II by a simple extension of the abo
procedure. In this case the Boltzmann weig
W(nm ,sm,m21 ,nm21 ,sm21,m) associated with the interac
tion between the sitem and one of the sites in the settm ~the
g21 next generation nearest neighbors! depends on both the
occupation number and the Potts orientational variables;
W(nm ,sm,m21 ,nm21 ,sm21,m) contains the Boltzmann
weights corresponding to the interaction between the sitm
and sitem21 and the interaction with the external fieldsP



PRE 59 6351SOLUTION OF LATTICE GAS MODELS IN THE . . .
(e2bPb) andm (ebm). Using the notation already introduced in Sec. II, we write the recurrence relation

Zm~nm ,$s%m!5 (
nm21 ,$s%m21

W~nm ,sm,m21 ,nm21 ,sm21,m! )
k51

g21

Zm21
k ~nm21 ,$s%m21!, ~14!

where the sum is over all the possible states ofnm21, and orientation variables associated with them21 site,sm21,j m21
. The

total partition function for the tree is

ZM5 (
nM ,$s%M

W~nM !)
k51

g

ZM
k ~nM ,$s%M !, ~15!

whereW(nM) is now the Boltzmann weight due to the interaction between the root site and the external fieldm.
We can explicitly rewrite the recurrence equations:

Zm~1,$s%m!5@ebmebee2bPb$eb(J2Pdb)1~q21!%#qg21@Zm21~1,$s%m21!#g211e2bPb@Zm21~0!#g21, ~16!
n
a

i-

en

ob-

s

for

of
n 1
at
rest
or, by definingX5ebe8, ebe85ebe@111/q(eb(J2Pdb)21)# ,
andY5qgebm ,

Zm~1,$s%m!5XYe2bPb@Zm21~1,$s%m21!#g21

1e2bPb@Zm21~0!#g21 ~17!

and

Zm~0!5Ye2bPb@Zm21~1,$s%m21!#g21

1e2bPb@Zm21~0!#g21, ~18!

In deriving Eq.~16!, we have included the fact that whe
the sites in generationm andm21 are occupied, there is
contribution to the partition function which includes~i! the
occupation of sitem21 (ebm); ~ii ! a contribution from the
Potts variablessm21,m22 (qg21) @13#; ~iii ! a contribution to
the volume frombm,m21 (e2bPb, ande2bPdb in the hydro-
gen bond term below!; ~iv! a contribution due to the poss
bility to form a hydrogen bond (ebJe2bPdb); and ~v! a con-
tribution due toq21 orientational states where no hydrog
bond is formed.

In the case when the site in generationm is occupied
while the site in iterationm21 is empty, only the volume
effect ~ii ! is considered. Equation~18! is derived in a similar
way.

By defining

Bm5@Ye2bPbZm21
g21 ~1,$s%m21!1e2bPbZm21

g21 ~0!#5Zm~0!
~19!

and

Bmtm5@XYe2bPbZm21
g21 ~1,$s%m21!1e2bPbZm21

g21 ~0!#

5Zm~1,$s%m!. ~20!

the recurrence equations~16! and ~18! become

Bm5e2bPb~Ytm21
g21 11!Bm21

g21 , ~21!
tm5
XYtm21

g21 11

Ytm21
g21 11

. ~22!

In the limit of M going to infinity, Eq.~22! becomes an
implicit relation for the unknown variablet,

t5
XYtg2111

Ytg2111
. ~23!

In order to obtain a solution fort, as input we need a
consistent set of valuesP, m, andT implicitly present in the
equation above. As described earlier, such a relation is
tained from a formal evaluation of the free energyD. Before
turning to the calculation ofD, we indicate here how variou
important quantities may be calculated once the value oft is
known.

It is easily seen that the average occupation number
the root site is given by:

^nM&5
qge2bmZM

g ~1,$s%M !

qge2bmZM
g ~1,$s%M !1ZM

g ~0!
,

that, in the limit ofM goes to infinity, and using Eqs.~19!
and ~20!, becomes

^nM&5^n&5
Ytg

Ytg11
. ~24!

To write down the equation for the average number
bonds in the system, we have to consider the contributio
to the total partition function by the configurations with
least one bond between the root site and one of its nea
neighbors. The total partition functionZM may be written,
using Eqs.~17! and ~18! as
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ZM5qge2bmZM
g ~1,$s%M !1ZM

g ~0!5YZM
g21~1,$s%M !@XYe2bPbZM21

g21 ~1,$s%M21!1e2bPbZM21
g21 ~0!#1ZM

g21~0!

3@Ye2bPbZM21
g21 ~1,$s%m21!1e2bPbZM21

g21 ~0!#. ~25!

The number of configurations with one bond between two particles is

ebmqgZM
g21~1,$s%M !ebeebJe2bPdbqg21ebmZM21

g21 ~1,$s%m21!5
ebeebJe2bPdbe2bPb

q
Y2ZM

g21~1,$s%M !ZM
g21~1,$s%M21!.

~26!

Finally we can write

^nb&5
ebeebJe2bPdbe2bPb

q

Y2ZM
g21~1,$s%M !ZM

g21~1,$s%M21!

ZM
, ~27!

which, in the limit of M→` and using Eqs.~19! and ~20!, becomes

^nb&5
ebeebJe2bPdb

q

~Ytg21!2

Ytg21~XYtg2111!1~Ytg2111!
. ~28!

Finally, the volume per molecule is given by the volume of the system@given by definition~4!# divided by the number of
molecules in the system, i.e.,

v5
^vsite&

^n&
5

vo1
db

2
g^nb&

^n&
5vo1vo

Y tg2111

Ytg21~Ytg21ebe811!
1

db

2
g

ebeebJe2bPdb

q

Ytg21

~XYtg2111!
. ~29!
b

r

r

ro,

-

B. Calculation of the free energy in the generalized ensemble

We now calculate the free energy for Bethe lattice sites
implementing the method proposed by Gujrati@4#. The Cay-
ley treeTM is the union ofg branchesBM connected togethe
at the root site. Similarly, we define (g21) treesTM21

i ,i
51, . . . ,g21, each of which we obtain as the union ofg
branchesBM21 connected together at theg21 sites labeled
M21. Comparing the treeTM with the set T M21

i ,i
51, . . . ,g21, it can easily be verified thatTM has the same
number of surface sites@5g(g21)M21# as theg21 trees
TM21

@5(g21)3g(g21)M22#. On the other hand, the numbe
of sites onTM „511@g/(g22)#$(g21)M21%… is greater
than the total number of theg21 copies

T M21
i

„5~g21!3$11@g/~g22!#ˆ~g21!M2121%‰

511@g/~g22!#$~g21!M21%22…

by 2. Similarly,TM hasg more bonds than theg21 copies
T M21

i .
Thus, the ratio of the partition functionZM for TM and

the sum of partition functions for theg21 copies
T M21

i (5( i
g21ZM21

i ), in the limit M→`, yields the free
energy for two sites~or equivalently,g bonds! on the Bethe
lattice. The Bethe lattice, or bulk, free energy per bondDb is
thus

Db5 lim
M→`

2kBT

g F lnZM2 (
i 51

g21

lnZM21
i G . ~30!
y
ZM5Y@ZM~1,sM ,M21!#g1@ZM~0!#g5BM

g ~YtM
g 11!,

~31!

ZM215BM21
g ~YtM21

g 11!, ~32!

whereY is as defined earlier, and

BM
g 5@e2bPb~YtM21

g21 11!BM21
g21 #g. ~33!

The final expression for the free energy, in the limitM→`,
is thus

Db5
1

g
lnF BM

g

~BM21
g !g21

~Ytg11!

~Ytg11!g21G
5

1

g
lnFe2bPbg

~Ytg2111!g

~Ytg11!g22G , ~34!

which follows from using the relation betweenBM and
BM21 from the previous step, and noting that asM→`,
tM5tM215t, given by Eq.~23!. Now, using the fact that the
free energyD in the generalized ensemble is identically ze
we obtain the implicit relation betweenP, m, andT:

ebPb5
~Ytg2111!

~Ytg11!(g22/g)
. ~35!

Thus Eqs.~35! and~23! constitute a system of two equa
tions for the four unknownt, P, m, and T which, once re-
solved, allow the evaluation of the EOS~with P and T as
independent thermodynamic variables! for the model defined
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in the generalized ensemble@14#. At the same time, from the
t values it is possible to calculate the average numbe
hydrogen bonds@Eq. ~28!#, in addition to the system volum
@Eq. ~29!# and other thermodynamic quantities of interest

Before concluding this section, we write the exact so
tion for our model in one dimension, which can be obtain
from the results above simply by choosingg52, since the
Bethe lattice forg52 is identical to the one-dimensiona
regular lattice. Withg52, Eq. ~35! becomes

Ytg215ebPb21, ~36!

v5b1b
ebPb

~ebPb21!@~ebPb21!ebe811#

1db
ebeebJe2bPdb

q

~ebPb21!

@~ebPb21!ebe811#
, ~37!

which coincide with the previously derived one-dimension
result @5#.

C. Percolation quantities

The solution of lattice models on the Bethe lattice is p
ticularly useful if we require thermodynamic information t
gether with the evaluation of connectivity properties@15#. In
the case of water, it has been suggested that the hydr
bond connectivity@16#, and in particular the connectivity o
the four-bonded molecules, plays a significant role in
liquid dynamics@17,18# and thermodynamic behavior. Be
cause the model we consider does not introduce any cor
tion between adjacent bonds@as seen from the Hamiltonia
in Eq. ~5!#, the percolation problem is of the correlated si
random bond type@19,20#. Starting from an occupied site a
the origin of the tree, the probability to have a hydrog
bond between two sites can be written as the conditio
probability to find both sites occupiedP(1u1) times the
probability pb that a hydrogen bond exists between the
From well known results for the Cayley tree@21#, an infinite
spanning cluster of hydrogen bonds appears when the p
ability to have a hydrogen bond becomes equal tog
21)21.

In our model the probabilityP(11) of finding two mol-
ecules in two nearest neighbor sites~using calculations
analogous to Sec. II! is given by

P~11!5
X~Ytg21!2

Ytg21~XYtg2111!1~Ytg2111!
. ~38!

Using the law of conditional probability@P(AuA)
5P(AA)/P(A)#, obtaining the occupation probability of a
arbitrarily chosen site@P(A)# from Eqs.~24!, we have

P~1u1!5
Ytg21X

XYtg2111
. ~39!

The probability to have a bond between two occupied site

pb5
ebJe2bPdb

~q21!1ebJe2bPdb
. ~40!
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The percolation curve is then given by:

P~1u1!pb5
ebJe2bPdb

~q21!1ebJe2bPdb

XYtg21

XYtg2111
5

1

g21
.

~41!

The expression above, in the limit ofpb51, becomes the
expression for a correlated site percolation problem on
lattice and, with the substitution@22# z5Ytg21, coincides
with the result previously derived by Murata@23# in the
mean field approximation. The percolation properties of
four-bonded molecules@16# can also be derived within the
framework of the present model. Let us consider a tree w
coordination numberg54. If a chosen sitei belongs to a
given cluster of four-bonded molecules, the probability tha
neighbor sitej also belongs to the same cluster is equal to
probability for this site to have three more occupied neig
bors which are hydrogen bonded to it, since the initial siti
is already known to be occupied and hydrogen bonded w
j ~indeed the sitei must have four bonds to belong to th
cluster!. The percolation curve for four-bonded molecules
a lattice withg54 is then given by

@pbP~1u1!#35
1

3
, ~42!

or

ebJe2bPdb

~q21!1ebJe2bPdb

Y tg21x

XYtg2111
5S 1

3D 1/3

. ~43!

Note that this result is applicable to the percolation of oc
pied ‘‘four-bonded’’ sites.

IV. RESULTS

In this section we compare the predictions of the mo
presented in Sec. II solved exactly on the Bethe lattice w
the previously derived mean-field~Bragg-Williams! results.
We evaluated the EOS for the same parameters chose
Ref. @5#, i.e., g54, db/b50.953, J/e50.25, andq5100.
We have evaluated the locus of density maxima~TMD!, i.e.,
the curve along which, by following an isobaric path, t
density has a maximum, the locus of the isothermal co
pressibility extrema~TEC!, the spinodal curve~where the
compressibility diverges!, and the percolation curve for th
four-bonded molecules. Note that the spinodal line, as w
asmetastableextensions of the liquid phase~also gas!, arise
in mean field and related solutions of phase behavior. B
can exist at negative pressures. While equilibrium states~and
solutions! can only occur at positive pressures~see, e.g., Ref.
@24#!, negative pressure states~and metastable states in ge
eral! are routinely observed on experimental~and longer!
time scales for real materials. The TMD and TEC lines ar
in liquids which show density anomalies, i.e., liquids whi
show a nonmonotonic dependence of the density on the t
perature at a constant pressure. The model we study
indeed originally developed to clarify the relation betwe
the temperature dependence of density and isothermal c
pressibility. We refer the reader interested in the thermo
namics of liquids with a TMD to Refs.@8,9#. In this paper,
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which is focused on the possibility of solving models defin
in the generalized ensable on the Bethe lattice, we limit o
selves to the comparison of the EOS, which is presente
Fig. 2.

Apart from an upward shift ofT andP, the shape of the
phase diagram does not change on going from the Bra
Williams approximation to the Bethe lattice solution. W
confirm that the TMD line changes slope in the (P,T) plane
and that it does not meet the spinodal line, which does
retrace ~i.e., whose pressure values do not display an ex
mum as a function of temperature!, in accordance with ther
modynamic analyses which show that the intersection of
TMD and the spinodal would require such retracing for th

FIG. 2. Comparison between the phase diagram obtained in
Bragg-Williams mean field approximation@5# ~top graph! and in the
Bethe-Peierls approximation~bottom graph!. Both of these dia-
grams show the TMD line, spinodal line, and TEC line. The TE
line meets the TMD line at the retracting point. Note that belowT,
at which theKT extrema locus displays a minimum, the extrema
maxima, while above they are minima. Also shown is thepb

50.795 locus in the top graph and the percolation curve for fo
bonded molecules in the bottom graph. Temperature is express
units of e/kB , and pressure in units ofe/vo .
r-
in

g-

ot
e-

e
-

modynamic consistency@25,26#. The TMD meet the TEC
with an infinite slope, as it must for thermodynamic cons
tency@5#. The TEC has a minimum which separates the te
perature range of compressibility maxima~left side! and
minima ~right side!.

We also calculate the percolation curve for four-bond
molecules. This evaluation constitutes a consistent dete
nation of such a line within the framework of a well define
microscopic model of water. Unlike previous attempts,
take into account the correlation between the positions of
molecules~site occupation in our model!. We find that the
percolation curve is almost coincident with the TEC line. W
note that the ‘‘percolation model’’ of the anomalous prope
ties of water, while predicting a percolation transition, do
not predict any thermodynamic anomalies at the percola
line, and, further, predicts a compressibility extremum tha
not coincident with the percolation threshold@16#.

V. CONCLUSIONS

In this paper we have described a procedure to solve
actly lattice gas models defined in the generalized ensem
on the Bethe lattice. We have applied this method to a
cently proposed model which includes a coupling betwe
bond energy and local volume and which requires the us
the generalized ensemble. The apparent disadvantag
working in an overdefined ensemble, i.e., in an ensem
where the corresponding free energy is identically zero
utilized as a consistency condition to obtain a relation
tween intensive variablesP, m, andT. In order to do so, we
have extended to the generalized ensemble the metho
Gujrati @4# for the calculation of the free energy on the Bet
lattice. By specializing the calculation ofD to the model
described in Sec. II, we have calculated the equation of st
and compared with the previously published mean fi
~Bragg-Williams! results@5#.

The improvement over the basic mean field approxim
tion achieved with the solution on the Bethe lattice is p
ticularly important because it allows a simultaneous deter
nation of thermodynamic and percolation properties. In
case of liquid water, percolation properties have been
cussed at length@16,18,17#, but they have never been calcu
lated consistently from a well defined microscopic mod
The results presented here suggest that, in our model, a d
relation does not exist between the location of the perco
tion threshold for four-bonded molecules and the line
compressibility extrema. We also note that the present mo
does not include any correlation between hydrogen bon
which has been thought to be relevant for the understand
of the behavior of supercooled water. An extension of
present model to include hydrogen bond correlations and
exact solution on the Bethe Lattice is feasible, and will
pursued in the future with the approach described in t
paper.
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