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Model for single-particle dynamics in supercooled water
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We analyze a set of 10 M-step molecular dynamics~MD! data of low-temperature SPC/E model water with
a phenomenological analytical model. The motivation is twofold: to extract variousk-dependent physical
parameters associated with the single-particle or the self-intermediate scattering functions~SISFs! of water at
a deeply supercooled temperature and to apply this analytical model to analyses of new high resolution
quasielastic neutron scattering data presented elsewhere. The SISF of the center of mass computed from the
MD data show clearly time-separated two-step relaxations with a well defined plateau in between. We model
the short time relaxation of the test particle as a particle trapped in a harmonical potential well with the
vibrational frequency distribution function having a two-peak structure known from previous inelastic neutron
scattering experiments. For the long time part of the relaxation, we take thea relaxation suggested by mode-
coupling theory. The model fits the low-temperature SISF over the entire time range from 1 fs to 10 ns,
allowing us to extract peak positions of the vibrational density of states, the structural relaxation rate 1/t of the
cage~the potential well! and the stretch exponentb. The structural relaxation rate has a power law dependence
on the magnitude of the wave vector transferk and the stretch exponent varies from 0.55 at largek to unity at
small k. @S1063-651X~99!04406-2#

PACS number~s!: 61.20.Ja, 64.70.Pf
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I. BACKGROUND

The behavior of water upon supercooling has been
great interest to the scientific community that concerns it
with this ubiquitous liquid on earth@1–3#. It has been found
that there are anomalous increases of thermodynamic q
tities and apparent divergences of dynamic properties on
proaching a singular but experimentally inaccessible te
perature of about 227 K, at ambient pressure@4,5#. The
discovery has stimulated a considerable amount of exp
mental, theoretical, and computational work in an attemp
clarify the origin fo this singularity@3#. We have recently
noted@6# that some dynamical properties of interfacial wa
show similarity to that of bulk supercooled water at a low
temperature. In this context, investigation of dynamical pr
erties of bulk supercooled water may lead to a better un
standing of the corresponding properties of interfacial wa
which are of paramount importance to biology and indus

While the phase behavior of supercooled water has b
extensively explored in the molecular dynamics~MD! litera-
ture, few studies have been directed toward the investiga
of dynamics near the apparent singular temperatureTs . A
computation of long-time behavior of correlation function
both single-particle and collective, needs to be made for
meaningful studies of dynamical properties of water nearTs .
Very recently one such attempt has been made by us us
SPC/E model water@7–10#. One of the interesting finding
of this series of MD simulations is an unbiguous identific
tion of a structural arrest temperature at 50 K below
temperature of maximum density of SPC/E water~250 K!.
Thus we can inferTs as the temperature at which the se
diffusion constantD of water goes to zero. This is not une
pected since the mode coupling theory predicts on a fa
general ground the existence of such a structural arrest
PRE 591063-651X/99/59~6!/6708~7!/$15.00
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perature in sufficiently supercooled dense liquids.
The objective of this article is to propose a simple an

lytical physical model for analyses of these numerica
computed self-intermediate scattering functions~SISFs! by
MD. This is motivated by a hope that the simple physic
model we derive here can be used to analyze present
future high resolution quasi-elastic and inelastic neut
scattering experiments on bulk supercooled and interfa
water.

A. Computer molecular dynamic „MD … simulations

We made MD simulations in a NVE ensemble with 21
molecules contained in a cubic box of an edge 18.65 Å. T
effective potential used is the extended simple point cha
model SPC/E@11#. This potential treats a single water mo
ecule as a rigid set of point masses with an OH distance
0.1 nm and an HOH angle equal to the tetrahedral an
109.47°. The point charges are placed on the atoms and
magnitudes areqH50.4238e and q0522qH520.8476e.
Only the oxygen atoms interact among themselves vi
Lennard-Jones potential, with the parameterss50.31656 nm
and e50.64857 kJ/Mol. The interaction between pairs
molecules is calculated explicitly when their separation
less than a cutoff distancer c of 2.5s. The contribution due to
Coulomb interactions beyondr c is calculated using the
reaction-field method, as described by Steinhauser@12#.
Also, the contribution of Lennard-Jones interactions betwe
pairs separated more thanr c is included in the evaluation o
thermodynamic properties by assuming a uniform den
beyondr c . The MD code used here to calculate the SPC
trajectories is the same as that used in Ref.@13#. A heat bath
@14# has been used to allow for heat exchange. In our sim
lation, periodic boundary conditions are used. The time s
6708 ©1999 The American Physical Society
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for the integration of the molecular trajectories is 1 fs. Sim
lations at lowT were started from equilibrated configuratio
at higherT. Equilibration was monitored via the time depe
dence of the potential energy. In all cases the equilibra
time teq was longer than the time needed to enter the dif
sive regime.

The SPC/E potential has been explicitly parametrized
reproduce the experimental value of the self-diffusion c
stant at ambient temperature and density of 1 g/cm3 and it
has been widely studied over the last few years@15,16#.
Moreover, this potential is able to reproduce a pressu
dependent temperature of maximum density~TMD! @13,16#.
As was shown in Ref.@16#, the SPC/E 1 bar isobar is cha
acterized by a TMD of about 235 K and a correspond
density of 1.026 g/cm3. The240 MPa isobar is instead cha
acterized by a TMD of about 250 K and a correspond
density of 1.000 g/cm3 @13#, in agreement with the experi
mental pressure dependence of the TMD line. We have s
ied the280 MPa isobar. Seven simulations have been p
formed at the states ranging from 35° above the TMD to
below, thus covering both the normal and supercooled st
of water, for time periods ranging from a few hundredth o
ps at highT, to 200 ns at the lowestT.

B. Mode-coupling theory

In the following formulation of the model we shall use a
idea borrowed from mode coupling theory~MCT! of super-
cooled liquids. MCT is a theory that focuses its attention
the cage effect in the liquid state which can be pictured a
transient trapping of molecules as a result of lowering
temperature or on increasing the density@17,18#. Micro-
scopic density fluctuations of disordered high temperat
and low density fluids usually relax rapidly in a time scale
a few picoseconds. The MCT does not attempt to address
detailed system specific dynamics in this time regime. Ho
ever, upon lowering the temperature below the freezing p
or increasing the density of the liquid by applying a pressu
there is a rapid increase in the local order surroundin
particle ~called a cage!, leading to a substantial increase
the local structural relaxation time. In the supercooled
dense liquid regime, a trapped particle in a cage can mig
only through rearrangement of a large number of partic
surrounding it. There is thus a strong coupling between
single particle motion and the density fluctuations of t
fluid. MCT addresses primarily physical processes in t
time regime. According to MCT, the equilibrium structu
factorS(k) of the liquid completely determines the long tim
cage structural relaxation behavior. It predicts that on
proachingTs from above, there is a further and further sep
ration between the time scales describing the rattling mo
of a particle in the cage and the eventual structural relaxa
time of the cage. AtTs the structural relaxation time be
comes infinity and the supercooled liquid shows a pheno
enon of structural arrest. It has been shown numerically
various model systems, such as a hard sphere system@19# or
a mixed Lennard-Jones system@20#, that the time evolution
of the structural relaxation~called thea relaxation! is well
approximated by a stretched exponential decay with a sys
dependent stretch exponent.

Application of the above concept derived from MCT
supercooled water represents an interesting special case
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well known that upon supercooling, water undergoes an
pansion or lowering of density. At the molecular level th
can be traced to a tendency for water to form a hydrog
bonded, tetrahedrally coordinated first and second neigh
shell around a given molecule, on lowering the temperat
below the freezing point. This configuration is a more op
structure as compared to five or six neighbor configurati
which are known to be present with higher probability
higher temperatures. Thus the so-called cage in water h
qualitatively different property from the hard sphere
Lennard-Jones fluids. In the latter case, density of the liq
actually increases upon cooling. The structural relaxat
time of water increases rapidly upon supercooling beca
the tetrahedrally coordinated hydrogen-bonded structure
depicted in Fig. 1 is an inherently more stable structure
cally and has a longer lifetime.

II. RELAXING CAGE MODEL FOR THE SELF-
INTERMEDIATE SCATTERING FUNCTION

It is obvious by a careful inspection of the SISF of th
oxygen atom calculated in the long-time MD simulation
supercooled SPC/E water that the center of mass motion
water molecule in supercooled states can be considered
compounded motion of a short-time in-cage vibrations an
long-time cage relaxation, having two widely separated ti
scales. According to this picture, the SISF is a product
contributions from these two types of motions. The SISF
the two-time autocorrelation function of fluctuation of Fo
rier component of the test particle density and is defined

Fs~k,t !5^exp@2 ik•r ~0!#exp~k•r ~ t !!&. ~1!

The in-cage librations and vibrations of a water molecule c
be treated approximately as motions of the center of mas
an isotropic harmonic potential well provided by the me
field of its neighbors. Thus the Hamiltonian of a typical pa
ticle with massM is assumed to be

H5
P2

2M
1

Mv2r 2

2
, ~2!

FIG. 1. A schematic diagram for the hydrogen-bonded, tetra
drally coordinated nearest neighbor cage in supercooled water
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FIG. 2. The two-peak structure of the vibra
tional density of states of supercooled water
47° below the temperature of density maximum
Notice that the first prominent peak occurs
about 10 meV and the second low-lying peak
about 38 meV.
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wherev is the characteristic vibrational frequency which w
shall take to be a variable different for individual water mo
ecules situated in different spatial locations. Since in liqu
the test particle motion is isotropic, the SISF depends o
on magnitude of the wave vector transferk. Under this cir-
cumstance, we can arbitrarily choose the direction of thk
vector to be in thex direction. Hence for a system obeyin
classical mechanics, we can write the vibrational part of
SISF as

Fv~K,t !5^exp$ ik@x~ t !2x~0!#%&

5expF2
1

2
k2^@x~ t !2x~0!#2&G , ~3!

where the second equality is established by using the
called Bloch identity valid for a system with a simple ha
monic oscillator Hamiltonian@21#. With this observation,
one can calculate the SISF for particles in an ensembl
harmonic potential wells as

Fv~k,t !5expF2
1

2
k2K S E

0

t

vx~ t8!dt8D 2L G
5expF2k2S E

0

t

~ t2t!^vx~0!vx~t!&dt D G , ~4!

where the second equality follows from the stationary pr
erty of a time-correlation function. We next introduce t
normalized velocity autocorrelation functionc~t!, and its
Fourier transferZ(v) as follows:

c~t!5^v~0!•v~t!&/^v2&, v0
25^vx

2&5kBT/M ,

Z~v!5
1

2pE2`

`

eivtc~ t !dt. ~5!

Z(c) is also called the generalized frequency distribution
the translational motions. In terms of these functions,
vibrational SISF can now be transformed into the form
s
ly

e

o-

of

-

f
e

Fv~k,t !5expF2k2v0
2E

0

t

~ t2t!c~t!dtG
5expF22k2v0

2E
0

`

dvZ~v!
12cosvt

v2 G . ~6!

For water we take the frequency distribution function of t
following form:

Z~v!5~12C!
v2

v1
2A2pv1

2
expS 2

v2

2v1
2D

1C
v2

v2
2A2pv2

2
expS 2

v2

2v2
2D , ~7!

where we redefineZ(v) by normalizing it to unity over the
whole range of frequencies. This form of the distributio
function has a two peak structure as illustrated by Fig. 2. T
introduction of this form is suggested by the low-frequen
proton density of states of water measured by a previ
incoherent inelastic neutron scattering experiment@22#. Us-
ing Eq. ~7!, the integration in the exponent of Eq.~6! can
then be performed analytically to obtain the result

Fv~k,t !5expH 2k2v0
2F12C

v1
2 ~12e2v1

2t2/2!

1
C

v2
2 ~12e2v2

2t2/2!G J . ~8!

This is the short-time behavior of the SISF of the test p
ticle. It starts from unity att50 and decays rapidly to a fla
plateau determined by an incoherent Debye-Waller fac
A(k) given by

A~k!5expH 2k2v0
2S 12C

v1
2 1

C

v2
2D J , ~9!
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FIG. 3. Illustration of the short-time dynamic
of SISF as described by vibrations in a harmon
potential well with the characteristic frequencie
having a two-peak distribution. Notice since th
motions are confined, at long time, the SISF ten
to a constant level given by a Debye-Waller fa
tor ~solid line!. In the inset, we show the shor
time decay of SISF in a linear scale. The oscill
tion of the MD data around 0.6 ps is an artifa
due to the finite size of the simulation box.
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which has a Gaussian form ink. The decay rate of the sho
time part is seen to be controlled by three parame
v1 , v2, andC. A plot of Fv(k,t) vs t according to the Eq.
~8! is given in Fig. 3.

The cage relaxation at long time can be described by
standard alpha relaxation model@18#:

Fa~k,t !5expF2 S t

t D bG , ~10!

with a structural relaxation timet and a stretch exponentb.
From Eqs.~8! and ~10!, the SISF, valid for the entire time
range can be constructed as

Fs~k,t !5Fv~k,t !Fa~k,t !

5expH 2k2v0
2F12C

v1
2 ~12e2v1

2t2/2!

1
C

v2
2 ~12e2v2

2t2/2!G J expF2S t

t D bG . ~11!

This form of SISF satisfies the two general boundary con
tions F3(k,t50)51 and Fs(k50,t)51, provided that 1/t
has a power-law dependence onk with a positive power
which was shown to be true experimentally@23,24#.

III. DATA ANALYSIS

We use the relaxing cage model to analyze a serie
SISFs for water at 207 K generated by MD with the SPC
potential@8#. The time range of SISF is from 1 fs to 10 ns f
each scattering wave numberk. The range ofk covered is
from 3.3 to 29.7 nm21. The data set includes SISFs for
differentk values in an interval of 3.3 nm21. The fitting uses
the model given in Eq.~11! with five fitting parameters:
C, v1 , v2 , t, andb. The results of the fits are shown i
Fig. 4, wherek increases from top to bottom. The ins
shows in an expanded scale the fits to the short time pa
SISF up to 0.5 ps. The decay of SISF can be divided into
rs

e

i-

of

of
o

well separated stages: the short time relaxation due to m
ments of particles in the harmonic potential wells havi
different characteristic frequencies and the long time, alp
relaxation due to the structural relaxation of the cages.

We find that the fitted parametersC, v1 , v2 vary only
slightly for different values ofk. Figure 5 shows nine super
posed curves of the vibrational density of statesZ(v) gen-
erated by the nine sets of parametersC, v1 , v2. This fig-
ure shows a nearlyk independence ofZ(v), which implies
that the short time dynamics of supercooled water is, t
good approximation, harmonic. This is in agreement with
finding of Sciortino and Tartaglia@25# who demonstrated
this point by carrying out an instantaneous normal mo
analysis of the MD data. Thek independence ofZ(v) also
guarantees the Gaussian shape of the Debye-Waller fact
a function ofk according to Eq.~9!. We can write the Debye-
Waller factor asA(k)5exp@2k2a2/3#, wherea is the root
mean square vibrational amplitude of water molecules in
cage in which the particle is constrained during its short ti
movements. If we take the mean values from the fitsC
50.44, v1510.8 THz, v2542.0 THz, it leads to a value
a50.38 A.

The best fitted parameters for the alpha relaxation,b and
t, are clearlyk dependent. It is seen from Fig. 6~a! that ask
increases, the long time decay of SISF deviates more
more from an exponential form. The stretch exponentb in-
creases smoothly from 0.57 atk530 nm21 to 0.9 at k
53.3 nm21, showing a tendency of approaching unity
k50. The relaxation rate 1/t vs k in a log-log plot gives
approximately a straight line, which indicates that variati
of t obeys the power law 1/t}kg with slightly k-dependentg
@Fig. 6~b!#. The inset of Fig. 6~b! shows that the exponentg
remains constant at 1.2 down tok51 nm21, swings up
thereafter and shows a tendency of approaching 2 atk50.
There is thus a clear indication that at a sufficiently smalk,
the normal diffusion process is restored in such a way t
Fs(k,t)5exp(2Dk2t).

Finally, let us point out a spurious oscillation in SISF d
to finite size of the MD simulation box. Careful examinatio
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FIG. 4. MD generated SISFs at ninek values
for SPC/E water at 207 K and their analyse
Solid lines are the model analyses, circles are
MD data. Thek values increase from top to bot
tom with equal intervals. The inset shows the e
panded short time parts of the MD SISFs a
their model fits.
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of Fig. 4 shows that there exists an oscillation in SISF wh
our model does not reproduce. Inspection of the oscillati
in SISF for differentk values reveals that these oscillatio
occur at the same average time of around 0.6 ps~position of
the mode! and may be attributed to an artifact of the sim
lation. This statement is further strengthened if we exam
both coherentF(k,t) andFs(k,t) together in the same tim
scale~Fig. 7! The existence of a well-defined Brillouin pea
in coherent dynamic structure factorS(k,v) corresponds to a
damped oscillation in the coherentF(k,t). This can be seen
in that function at lowk values~the top three curves of th
lower group of curves!. For largerk, the coherentF(k,t)
should exhibit no damped oscillation because there is
long-range order in liquids. Hence there is no well-defin
Brillouin peak. But the MD data of the coherentF(k,t) still
shows an oscillation at the same time~0.6 ps!. Combining
the observation that the same oscillation exists in both
h
s

e

o
d

e

coherentF(k,t) at highk andFs(k,t) at all k values, we may
conclude that this oscillation at around 0.6 ps is an artifac
the simulation. The origin of the oscillation can be attribut
to reflection of a propagating density disturbance at a po
within the box by the walls of the simulation box due to th
imposition of the periodic boundary conditions. For examp
a disturbance propagating along positivex direction when it
reaches the boundary of the simulation will be brought ba
to the opposite boundary by the periodic boundary conditi
Then it continues to propagate in thex direction and comes
back to the point where it started after it travels exactly
distanceL The edge of the cubic simulation box isL518.65
Å. The speed of high frequency sound known to propagat
water isv53000 m/s@26#. The time it takes for the distur
bance to travel to the wall and come back to the same p
is exactly L/v50.622 ps~private communication with the
late Dr. Aneesur Rahman@27#!. We have also tried to simu
rs
-
r-
est
FIG. 5. The nine distribution functionsZ(v)
calculated from the best fitting paramete
C, v1 , v2 to the MD generated SISFs at differ
ent k values. Notice all the distributions supe
posed on top of one another except for the low
k case.
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FIG. 6. k dependence of the best fit param
etersb ~a! and 1/t ~b!. Solid lines are lines con-
necting the nine data points. Notice that the 1/t vs
k in a log-log plot follows approximately a
straight line. The inset show the dependence
the slope of the straight line onk.

FIG. 7. Plausible evidence of a spurious o
cillation in Fs(k,t) andF(k,t) caused by the fi-
nite size of the simulation box. The upper sev
curves of circles areFs(k,t) of differentk values
with k increasing from the top to bottom. Th
lower seven curves of pulses areF(k,t) of differ-
ent k values withk increasing from the top to
bottom. The damped oscillation at around 0.6 p
existing in all curves~indicated by a dash line!,
must be due to an artifact induced by the period
boundary condition imposed in the simulation.



oc

o
ia
tio
n-
lu
o

ni
u
an
nt

nd
es
t

hi
h

me
re-

ed
en
sly
ed

nal
t
ion
po-
cat-
at
well
t

e-

ials
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late a much larger system~216364 particles!. The prelimi-
nary result shows that the spurious oscillation no longer
curs at 0.6 ps~Sciortino!.

IV. DISCUSSION AND CONCLUSION

We have shown, by analyzing MD generated SISFs
supercooled water, that incorporation of both an appropr
short-time in-cage dynamics and a long-time cage relaxa
represented by ana relaxation process is essential in co
struction of an analytical model for analyses of high reso
tion incoherent quasielastic spectra. We found that the sh
time dynamics can be well approximated by harmo
vibrations of a molecule in a cage with a frequency distrib
tion function which has a two-peak structure known from
analysis of MD data@25# and a previous inelastic incohere
neutron scattering@22# experiment. In a high resolution
quasielastic neutron scattering~QENS! spectrum, the line
shape having a sharp central component and an exte
slowly decaying wing is a clear frequency-domain manif
tation of a stretched exponential relaxation. We stress tha
order to analyze an experimentally measured spectrum w
covers an extensive frequency range, we need a theory w
an
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e

e

e

ys
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covers the SISF for their entire time domain, both short ti
and long time. In this regard, the use of only the alpha
laxation is not enough for this purpose.

We would like to emphasize that the formalism describ
in this paper is straightforward, analytical and practical wh
applied to analyses of high resolution QENS data. Previou
a QENS experiment of supercooled water was perform
with a moderate resolution and analyzed with a conventio
theory@28,29# in which thea relaxation contribution was no
included. We have recently analyzed a new high resolut
QENS experiment of supercooled water contained in a
rous glass specifically to test the theory of incoherent s
tering described here@30#. The analysis demonstrated th
the present theory describes the QENS line shape quite
in a k range from 0.1 to 1.0 Å21, and we are able to extrac
the averagea relaxation time which shows a power-law d
pendence on the magnitude of wave vector transferk.
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