
PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
Molecular mode-coupling theory for supercooled liquids: Application to water
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We present mode-coupling equations for the description of the slow dynamics observed in supercooled
molecular liquids close to the glass transition. The mode-coupling theory~MCT! originally formulated to study
the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear
molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of
the theory for theq-vector dependence of the molecular nonergodicity parameters, calculated by solving
numerically the molecular MCT equations in two different approximation schemes, with ‘‘exact’’ results
calculated from a molecular dynamics simulation of supercooled water. The agreement between theory and
simulation data supports the view that MCT succeeds in describing the dynamics of supercooled molecular
liquids, even for network forming ones.@S1063-651X~99!06210-8#

PACS number~s!: 61.25.Em, 64.70.Pf, 61.43.Fs, 61.20.Ja
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I. INTRODUCTION

In recent years, the problem of a detailed theoretical
scription of the dynamics ofmolecularsupercooled liquids
has been an area of renewed interest. The success of m
coupling theory~MCT! @1–6# for simple liquids in describ-
ing the weakly supercooled regime has stimulated a con
erable amount of work to extend this approach to molecu
liquids. Recent contributions include the extension of MC
to describe the rotational dynamics of one linear probe m
ecule in an atomic liquid@7#, the extension of MCT to de
scribe the dynamics — both self and collective — of liqui
of linear molecules@8,9#, and the MCT extension to treat th
dynamics of full molecular systems using a site-site rep
sentation@10#. In the first part of this article we report on on
further step taken in the description of the dynamics of
percooled molecular liquids, i.e., the extension of MCT
describe the orientational and translational dynamics for
uids composed by rigid molecules ofarbitrary shape. Within
the framework of ‘‘nonlinear fluctuating hydrodynamics
this has already been achieved by Kawasaki@11#. However,
the connection with themolecularcorrelation functions~see
below!, which are important also from an experimental po
of view has not been worked out. This extension will
calledmolecular mode coupling theory~MMCT!.

The theoretical predictions formulated in all these a
proaches, and the proposed approximations are currently
der investigation by several research groups. Detailed tes
all these approaches are requested to estimate the qual
the approximations, the predictive power of these differ
approaches~i.e., the detail of the theoretical descriptions! as
well as the limit imposed by the complexity of the MC
equations and the feasibility of their solution. Furthermo
the quality of the approximations may depend on the m
lecular liquid under investigations, for example on the frag
ity of the liquid in Angell’s classification scheme.

In the second part of this article we present theq depen-
dence of molecular nonergodicity parameters calcula
from the MMCT equations for a model system of a sup
PRE 601063-651X/99/60~5!/5768~10!/$15.00
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cooled molecular glass-forming liquid. We then compare
theoretical predictions with equivalent quantities calcula
from extensive molecular dynamics~MD! simulations. We
choose to compare theory and MD results for liquid wat
The choice of water as molecular liquid is particularly re
evant for testing the quality of the MMCT approach, due
the presence of an extended network of hydrogen bonds
to the peculiar local tetrahedral ordering. The intermolecu
water-water interaction is defined by the SPC/E poten
@12#, which describes the molecule as a rigid planar body a
models the pair interactions as a sum of electrostatic
Lennard Jones terms. Due to the partial charges of the ato
the molecule possesses a dipole moment which is dire
along the twofold rotational symmetry axis. When referri
to a body-fixed frame of reference for the molecule, we w
always choose the direction of the dipole as thez axis. Thez
axis and thex axis define the plane which is spanned by t
molecule.

The test of MCT and MMCT can be done in two differe
ways. First, one can investigate the validity of some qual
tive predictions which areindependentof the system, i.e.,
which are the same for both theories. These are, e.g.,
power law dependence of the various relaxation times oT
2Tc , whereTc is the critical temperature for an ideal gla
transition, and the universal relationship between the co
sponding exponents and their connection with the so-ca
exponent parameterl, etc. Second, one may calculate th
numerical value of, e.g.,l or of the q dependence of the
critical nonergodicity parameters, critical amplitudes, e
Since these quantities depend on the system, one has to
MMCT in the case of molecular liquids. In this first sense,
has been shown in previous papers@13–17# that mode-
coupling theory appears to be the correct theoretical fra
work for the description of thea-relaxation behavior of
SPC/E water. Indeed, the results from a MD simulation
satisfactory compared to the predictions of MCT. The co
parison has been performed both for center of mass~COM!
self- and collective correlators@13–15# and q-independent
rotational correlators@16#. Moreover, thegeneralpredictions
of MCT for the q-dependent molecular correlato
5768 © 1999 The American Physical Society
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Sln,l 8n8(q,m,t) have been tested up tol 52 in Refs.@17# and
@18#, finding again a remarkable agreement, both from
qualitative and the semiquantitative point of view. This wi
spectra analysis has confirmed the validity of the universa
of MCT predictions and has stimulated a deeper, more qu
titative understanding of the MCT approach, which w
present in this article.

The structure of the article is as follows: In Sec. II w
present the complete set of MMCT equations for the sl
dynamics in supercooled homogeneous liquids compose
molecules of arbitrary shape. In Sec. III we discuss the
different approximations which we employ to numerica
solve the MMCT equations for the general molecule c
and discuss some of the numerical techniques used to s
the MMCT equations. Finally, in Sec. IV we solve the equ
tions for the molecular nonergodicity paramete
Fln,l 8n8(q,m) for SPC/E water and we compare the calc
lated predictions with the corresponding quantities evalua
from the analysis of the MD trajectories.

II. THEORY

A. Collective correlation functions

We consider a system ofN identical, rigid molecules of
arbitrary shape described by the center of mass posit
xW j (t) and the orientations given by the Euler anglesV j (t)
5„f j (t),u j (t),x j (t)…; j 51,2,. . . ,N. The microscopic den-
sity r(xW ,V,t)5( jd„xW2xW j (t)… d„V,V j (t)… in the
6N-dimensional configuration space is expanded with
spect to the complete set of functions given by the pla
waves and the Wigner matricesDmn

l (V) @19#, to get the
tensorial density modes

rk~qW ,t ![r lmn~qW ,t !5 i l~2l 11!1/2(
j 51

N

eiqW xW j (t)Dmn
l* „V j~ t !…,

~1!

which are the starting point of a generalized theory. Herl
runs over all positive integers including zero, andm as well
asn takes integer values between2 l and l. To simplify the
notation we often combinel, m, andn in the superindexk
5( l ,m,n). Our aim is to give a closed set of equations f
the matrixS:

Sk,k8~qW ,t !5
1

N
^rk* ~qW ,t !rk8~qW !& ~2!

of molecular correlation functions. The strategy to der
such equations of motion is the same as was used for ato
liquids and linear molecules and, therefore, explicit calcu
tions shall not be given here. A survey of the MCT forma
ism for simple liquids can be found in Ref.@1# and detailed
calculations for a molecular system can be found in Ref.@8#.
We restrict ourselves to pointing out where modificatio
have to be made in order to treat molecules of arbitr
shape.

In the choice of ‘‘slow variables’’ for the projection op
erator formalism@20,21# one is already forced to make som
further considerations. In the MCT for atomic on
component liquids, one uses the density modesr(q) and the
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longitudinal current density modesj (q). For molecular liq-
uids this has to be modified. Besides translational degree
freedom ~TDOF!, the molecules also possess orientatio
degrees of freedom~ODOF!, and thus we will have to con
sider two different kinds of current densities. The trans
tional current density modes

j k
Tm~qW ,t !5 i l~2l 11!1/2(

j 51

N

ẋj
m~ t !eiqW xW j (t)Dmn

l* „V j~ t !…, ~3!

describe the change of the densityrk(qW ,t) due to transla-
tional motion of molecules, while the rotational curre
modes

j k
Rm~qW ,t !5 i l~2l 11!1/2(

j 51

N

v8 j
m~ t !eiqW xW j (t)Dm n1m

l* „V j~ t !…,

~4!

are responsible for the change of the density due to mole
lar reorientation. Here,vW j8 denotes the angular velocity in th
body-fixed frame. Consequently,j k

Rm is also a vector in the
body-fixed frame. We have skipped the prime because
notational reasons. As in the theory of angular momentum
quantum mechanics, it is more suitable to use spherical c
ponents m50,61, defined by a05az , a6151/A2 (ax
6 iay), instead of the usual cartesian vector compone
ax ,ay ,az . The connection between density and curre
modes is given by the continuity equation

ṙk~qW ,t !5 (
a5T,R

(
m521

1

qln
am* ~qW ! j k

am~qW ,t !, ~5!

with the m-independent coefficients

qln
am~qW !55

1

A2
~qx6 iqy! a5T,m561

qz a5T,m50

1

A2
Al ~ l 11!2n~n1m! a5R,m61

n a5R,m50

.

~6!

Apart from the separation into translational and rotatio
currents that was already necessary in the case of the li
of linear molecules, we will considerall components of the
currents as slow variables instead of the longitudi
translational currentsj k

T(qW ,t)5(1/q)(mqln
Tm* (qW ) j k

Tm(qW ,t),

and combined rotational currents j k
R(qW ,t)51/

Al ( l 11)(mqln
Rm* (qW ) j k

Rm(qW ,t), only.
This increase of the number of relevant variables for

projection operator formalism is enforced by the followin
considerations. For general molecules possessing three
tinct moments of inertiaI 15” I 25” I 3, it is important to con-
sider thesinglecomponentsj k

Rm as slow variables, instead o
j k
R from above, because the long time dynamics becom

independent of the moments of inertia only in the first ca
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which is demanded by experimental observations. It is a
sensible to consider the componentsj k

Tm of the translational
currents separately, since the evolution of the density c
elators is influenced by dynamic correlations ofall compo-
nents of the currents, as can be seen from the follow
equation:

d2

dt2
^rk* ~qW ,t !rk8~qW !&52(

aa8
(
mm8

qln
am~qW !ql 8n8

a8m8* ~qW !

3^ j k
am* ~qW ,t ! j k8

a8m8~qW !&, ~7!

in which the termŝ j k
am* (qW ,t) j k8

T61(qW )&5” 0 occur. This dy-
namic coupling to the transversal currents is induced by
anisotropy of the molecule and exists also in the case
linear molecules.

The projection operator formalism then leads to the f
lowing continued fraction for the Laplace transformS(qW ,z)
5 i *0

`S(qW ,t)eizt, Imz.0 of the molecular correlation func
tions:

S~qW ,z!52@zS21~qW !1S21~qW !K ~qW ,z!S21~qW !#21, ~8!

Kk,k8~qW ,z!5(
aa8

(
mm8

qln
am~qW !ql 8n8

a8m8* ~qW !kk,k8
am,a8m8~qW ,z!,

~9!

k~qW ,z!52@zJ21~qW !1J21~qW !M ~qW ,z!J21~qW !#21, ~10!
u
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where Jk,k8
am,a8m8(qW ,z)51/N^ j k

am* (qW ) j k8
a8m8(qW )& is the matrix

of static current correlations. The reader should note that
underbar ofk,J, andM stands for the additional superscrip
am anda8m8.

Thus, the derivation of an equation of motion forS(qW ,t)
has been reduced to finding an expression for the mem

kernelM (qW ,t), also called the fluctuating force kernel, sin
it is the correlation function of a fluctuating force. The a
proximation scheme of MCT consists of a separation

J21(qW )M (qW ,t)J21(qW ) into a regular partmreg(qW ,t), which

accounts for the fast motion and the contributionm(qW ,t), due

to slow pairs of density modes. For an evaluation ofm(qW ,t),
the fluctuating force is projected onto pairs of density mod

rk1
(qW 1)rk2

(qW 2). This projection, which introduces the firs

approximation, leads to atime-dependentfour-point cor-
relator and a vertex function which involvesstatic two-,
three- and four-point correlators. In a second approximat
both four-point correlators, static and dynamic ones, are
torized into a product of two-point correlators. In a final ste
one can approximate the static three-point correlator by
of the generalized convolution approximation which is eas
generalized from linear@8# to arbitrary molecules. As alread
pointed out above, we will not give the complete derivati
here since it is rather involved and analogous to the cas

linear molecules. The result form(qW ,t) can be expressed a
follows:
mk,k8
am,a8m8~qW ,t !5

1

2N S r0

8p2D 2

(
qW 1 ,qW 2

8 (
k1 ,k18

(
k2 ,k28

vkk1k2

am ~qW ,qW 1 ,qW 2! vk8k
18k

28
a8m8*

~qW ,qW 1 ,qW 2!Sk1 ,k
18
~qW 1 ,t !Sk2 ,k

28
~qW 2 ,t !. ~11!
o-

a

Here, the prime denotes summation such thatqW 11qW 25qW .
Besides the time-dependent molecular correlators, the n
ber densityr05N/V and the vertex functions appear, whic
are products of

vkk1k2

am ~qW ,qW 1 ,qW 2!5(
k3

ukk3k2

am ~qW ,qW 1 ,qW 2!ck3 ,k1
~qW 1!1~1↔2!,

~12!

wherec(qW ) denotes the matrix of direct correlation function
which is related to the static structure factors by

c~qW !5
8p2

r0
„12S21~qW !…. ~13!

The coefficientsu are given by
m-

,

ukk1k2

am ~qW ,qW 1 ,qW 2!5 i l 11 l 22 l S ~2l 111!~2l 211!

2l 11 D 1/2

3C~ l 1l 2l ;m1m2m!ql 1n1

am* ~qW 1!

3H C~ l 1l 2l ;n1n2n! a5T

C~ l 1l 2l ;n11m n2 n1m! a5R,

~14!

andC( l 1l 2l ;m1m2m) denotes the usual Clebsch–Gordan c
efficients@19#.

Equations~8!–~10!, together with Eq.~11!, form a closed
set of equations for the correlation matrixS(qW ,t). The vertex
functions given by Eqs.~12!–~14! are determined by the
number densityr0 and the static structure factorsS(qW ), only.

B. Tagged particle correlation function

We will now examine the motion of asingle molecule
that is immersed in a molecular liquid. Again we have
liquid of N21 identical, rigid molecules of massM and
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moments of inertiaI 1 , I 2 , I 3, whose center of mass coord
nates are denoted asxj (t), and whose orientations are give
by the Euler anglesV j (t). In addition we have, as theNth
particle, a molecule of massM 8 and moments of inertiaI 18 ,
I 28 , I 38 . As a special case we get the self-correlator o
selected particle within a homogeneous liquid if the tagg
particle is identical to the molecules of the surrounding l
uid.

Besides the quantities we have already introduced in
previous subsection, we have to consider the density mo
for the tagged particle:

rk
(s)~qW ,t !5eiqW xWN(t)Dmn

l* „VN~ t !…, ~15!

and the corresponding tagged particle correlation functio

Sk,k8
(s)

~qW ,t !5^rk
(s)* ~qW ,t !rk8

~s!
~qW !&. ~16!

The slow variables for the projection operator formalism
given by the density modes~15! and the current densities

j k
(s)Tm~qW ,t !5 ẋN

m~ t !eiqW xWN(t)Dmn
l* „VN~ t !…, ~17!

j k
(s)Rm~qW ,t !5v8N

m~ t !eiqW xWN(t)Dm n1m
l* „VN~ t !…, ~18!

of the tagged particle. In this case it is necessary to use
components of the rotational currents separately to avoid
ertia effects in the long-time behavior. The results of t
ec
ee
b

am

iq
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e
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projection operator formalism are analogous to the equat
for the coherent correlations. As a further simplification t
static self-correlations are given bySk,k8

(s) (qW )5dk,k8 . Thus,
we get

S(s)~qW ,z!52@z11K (s)~qW ,z!#21, ~19!

Kk,k8
(s)

~qW ,z!5(
aa8

(
mm8

qln
am~qW !ql 8n8

a8m8* ~qW !kk,k8
(s)am,a8m8~qW ,z!,

~20!

k(s)~qW ,z!52@zJ(s)21
~qW !1J(s)21

~qW !M (s)~qW ,z!J(s)21
~qW !#21,

~21!

with the same coefficientsqln
am(qW ) as above.

The correlations of the tagged particle will be controll
by the coherent correlations. Therefore, in the mo
coupling approximation for the memory functionm(s)(qW ,t),

the slow part ofJ(s)21
(qW )M (s)(qW ,t)J(s)21

(qW ), the fluctuating
forces are projected onto bilinear products of tagged part
and coherent density modes. In the thermodynamic limit,
effect of the tagged particle on the surrounding liquid can
neglected and the coherent correlator is identical to the
relation function for the homogeneous liquid. The mode co
pling approximation for the four-point correlation function
thus leads to the following expression for the memory fun
tion
mk,k8
(s)am,a8m8~qW ,t !5S r0

8p2D 2
1

N (
qW 1 ,qW 2

8 (
k1 ,k18

(
k2 ,k28

vkk1k2

(s)am ~qW ,qW 1 ,qW 2!vk8k
18k

28
(s)a8m8*

~qW ,qW 1 ,qW 2!Sk1 ,k
18

(s)
~qW 1 ,t !Sk2 ,k

28
~qW 2 ,t !, ~22!
ine
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with the vertex functions

vkk1k2

(s)am ~qW ,qW 1 ,qW 2!5(
k3

ukk3k1

am ~qW ,qW 2 ,qW 1!ck3 ,k2

(s) ~qW 2!.

~23!

The coefficientsu are the same as given above and the dir
correlation function that describes the interaction betw
the tagged particle and the surrounding liquid is defined

r0„c
(s)~qW !S~qW !…k,k85^rk

(s)* ~qW !rk8~qW !&2dk,k8 . ~24!

In the special case in which the tagged particle has the s
properties as the molecules of the liquid,c(s)(qW ) is just the
ordinary direct correlation function of the homogeneous l
uid.

Detailed investigations for the tagged particle correlat
have been done for a dumbbell molecule in a simple iso
pic liquid @7#. The equations given here are the generali
tion of this theory~for a linear molecule in a simple liquid!
to the general case of an arbitrary shaped molecule in a
lecular liquid.
t
n

y

e

-

s
-
-

o-

III. APPROXIMATIONS

The aim of our numerical investigations was to exam
the long-time behavior of the solutions of the equations
motion presented in Sec. II A, i.e., to calculate the critic

nonergodicity parametersF(qW )5 limt→`S(qW ,t) and the tran-
sition temperatureTc . As input for these calculations w

have determined the static structure factorsS(qW ) from a MD
simulation, as described in detail in a previous publicat
@17#. As discussed there, theC2v symmetry of the water
molecule leads to the consequence that the distinct

S(d)(qW ) of the structure factors vanishes forn and/orn8 odd,

i.e., Slmn,l 8m8n8(q
W ) with n and n8 odd, only contains infor-

mation about the self-correlation of the molecules. The
symmetry relations allow for a simplification of the equ
tions. As shown in Appendix A, the matrix equation spl

into two parts. The matrix elementsSlmn,l 8m8n8(q
W ,t) with n

and n8 even, are determined by a closed set of equati
which is independent of the correlators withn and/orn8 odd.
The remaining part of the equations, i.e., forn andn8 odd, is
identical to the corresponding tagged particle equations
the self-correlators as presented in Sec. II B.

For these numerical studies, it is further useful to tra
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form the equations to theq-frame representation, i.e., t
choose thez axis of the laboratory frame in the direction o

the vectorqW . The resulting set of equations and some det
of their derivation are given in Appendix B. Theq frame
offers the advantage of the correlation matrices depend
only on the modulusq5uqW u, and in addition are diagona
with respect to the indicesm andm8. Thus we have to solve
self-consistently a set of equations for the nonergodicity
rametersFln,l 8n8(q,m)[Flmn,l 8mn8(qêz).

The main computational problem in solving the equatio
for the glass-form factor is the calculation of the memo

matrix mk,k8
am,a8m8(q), due to the enormous number of terms

the summation of Eq.~11!. Of course, any attempt at numer
cal calculation requires the introduction of an upper cut
l co in l ,l 8, in order to have a finite number of coupled equ
tions. The stable solutionF(q,m) is found as the fixed poin
of the iterative solution of the given equations.

It has been estimated in several MCT calculations that
order to have a reasonable convergence towards the
point, it is necessary to perform several hundreds of ite
tions. Although it is possible to considerably reduce t
number of elements in the sum of Eq.~11! by taking into
account the symmetries of the molecule, a full solution
l co52 is still not feasible.

As discussed in Sec. II, it is necessary to take into acco
the components of the rotational currentsj Rm separately to
avoid inertia effects in the long-time behavior. Thus we ha
taken into account all corresponding memory functio
With respect to the translational currents, we have decide
take into account only the longitudinal componentsj T0, i.e.,
all memory functions witha5T,m561 or a85T,m8
561 are neglected.

The structure of the MMCT equations further offers t
possibility of several approximation schemes, differing in t
choice of the molecular static structure factors which
taken into account. In this article we present MMCT calc
lations for two different approximations, which bring the n
merical calculations to the frontier of the present compu
facilities. In both approximations we neglect the third ang
lar indexn in the static quantities, i.e., we include as input
the calculation only the static structure factorsSl0,l 80(q,m)
and, thus, the direct correlation functionscl0,l 80(q,m). In ad-
dition, we putFln,l 8n8(q,m) at zero forn and n8 different
from zero. This approximation is reflected in the reduction
the number of independent memory kernels to be calcula

We have examined the intensity and the temperature
pendence of the static correlation functions, and we h
given some justification for this approximation in a previo
publication @17#. Still it has to be noted that it is mainly
motivated by the need to reduce the computational bur
and we plan to put a significant effort in the direction of
full solution of the MMCT equations, including also the a
gular indexn.

In Ref. @17#, it has been shown that the distinct part of t
structure factors vanishes for oddn and/orn8. Thus, with l
<2, the approximationn5n850 essentially means neglec
ing the coupling with the correlators withunu52 and/or
un8u52. This approximation is equivalent to neglecting t
third Euler anglex, i.e., the rotations of the water molecule
around the dipolar axes. This means that the motion of
ls
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water molecules is reduced to the motion of their dipo
moments. Thus, we will refer to this first simplification a
the dipole approximation.

An even stronger approximation is defined by assumi
in addition, that both the static structure factors, the criti
nonergodicity parameters, and the memory functions are
agonal inl and l 8, i.e.,

Sl0,l 80~q,m!5Sl0,l0~q,m!d l l 8 , ~25!

Fl0,l 80~q,m!5Fl0,l0~q,m!d l l 8 , ~26!

mlm0,l 8m808
am,a8m8 ~q!5mlm0,lm808

am,a8m8 ~q!d l l 8 . ~27!

ThusS(q,m) becomes a diagonal matrix with six nonvanis
ing elements~the diagonal ones!, while m(q) is still nondi-
agonal with respect toam and a8m8. This approximation
and also the even stronger restriction of additional diagon
ity of the memory kernel with respect toam has also been
used in the study of a dumbbell in a simple liquid@7#, and a
liquid of diatomic molecules@22#.

We have iteratively solved the equations for the non
godicity parameters on a grid of 100q vectors ranging up to
110 nm21. Within the diagonal approximation, one iteratio
step requires about 15 minutes on onea station. The dipole
approximation requires about two hours of CPU time, a
we estimated that a full solution of the MMCT equatio
including n would require about 4 days per iteration.

IV. RESULTS

We have foundTc
MMCT5206 K in the diagonal-dipole

approximation. At this temperature, the solution of the no
ergodicity parameter equations has been iterated until
average difference over the wholeq range between the (n
11)th iterationF(n11)(q,m) and thenth F(n)(q,m) was of
order 10210. Since the MCT approach to, e.g., a hard sph
system@23#, binary liquids@24#, and diatomic molecules@25#
has shown that MCT overestimates the freezing into a gla
state, we consider fortuitous the agreement between the
matedTc

MMCT and the numerical estimate of the critical tem
perature from the analysis of the molecular dynamics d
Tc

MD520063 K, for SPC/E water. We want to highlight tha
despite the diagonalization approximation, in contrast
what has been found for the liquid of Lennard-Jones dum
bells described in Ref.@22#, in the case of water the theor
does not yield an unphysical splitting of rotational and tra
lational transition temperatures, i.e., all the elements of
theoretical nonergodicity matrixF(q,m) simultaneously
jump from zero to a nonzero value at the same temperat
or in other words:all degrees of freedom freeze at asingle
temperature.

In the dipole approximation, i.e., relaxing the diagonal
approximation, the equations forF(q,m) have been solved
in a similar way. In this approximation the value of thecriti-
cal F(q,m) was evaluated, stopping the iterative calculati
when the average difference between two consecutive it
tions was of order 1028. In the dipole approximation, the
theoretical critical temperature has been found to be ab
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T8c
MMCT5208 K, which is not so different fromTc

MMCT in
the diagonal approximation or from the numerical one.
discussed in Ref.@17#, it is reasonable to suppose that t
transition is driven by the diagonal structure factors, es
cially the ones withl 50 or l 52, which are the most sens
tive to variations of temperature. It is thus not surprising
observe that the critical temperature is almost insensitive
the introduction of the off-diagonal terms, which display
weaker dependence onT.

The theoretical predictions forF(q,m), in the different
approximation schemes, are shown in Figs. 1, 2, 3, and 4
comparison to the corresponding quantities as evalu
from the MD simulation, fitting the time evolution of th
correlators in the earlya region to the von Schweidler law
@17#:

Sln,l 8n8~q,m,t !2Fln,l 8n8~q,m!

>2Hln,l 8n8
(1)

~q,m! t̂ b1Hln,l 8n8
(2)

~q,m! t̂2b1O~ t̂3b!.

~28!

FIG. 1. Critical center of mass nonergodicity parame
F00,00(q,m50) as calculated from the MD simulation~symbols!
compared with the theoretical predictions obtained in two differ
approximation schemes: MMCT in the diagonal-dipole approxim
tion ~dashed line! and MMCT in the pure dipole approximatio
~dotted line!.

FIG. 2. Diagonal critical nonergodicity parameters withl 5 l 8
51 @F10,10(q,m)# as calculated from the MD simulation~symbols!
compared with the theoretical predictions of MMCT in th
diagonal-dipole approximation~dashed line! and MMCT in the pure
dipole approximation~dotted line!.
s

-

to

in
ed

In Fig. 1, the theoretical predictions for the COM nonergo
icity parameter in the two approximations examined in t
article are compared to the MD data. Both approximatio
are excellent in the lowq range~up to around 30 nm21). The
MMCT approximations allow the calculation, beside th
COM nonergodicity parameter, also of the angular non
godicity parameters. Of course, in the diagonal-dipole
proximation, only the diagonal elementsFl0,l0 of the noner-
godicity matrixF can be evaluated. The results are shown
Figs. 2 and 3 together with the predictions for the sa
quantities as evaluated relaxing the diagonality approxim
tion. The agreement with the numerical data~symbols in the
figures! is satisfactory for thel 51 nonergodicity parameter
~both for m50 and m51), while the predictions corre
sponding tol 52 are less satisfactory. It is reasonable
expect that the worse results obtained forl 52 are due to the

r

t
-

FIG. 3. Diagonal critical nonergodicity parameters withl 5 l 8
52 @F20,20(q,m)# as calculated from the MD simulation~symbols!
compared with the theoretical predictions of MMCT in th
diagonal-dipole approximation~dashed line! and MMCT in the pure
dipole approximation~dotted line!

FIG. 4. Off-diagonal critical nonergodicity parameters (lÞ l 8)
as calculated from the MD simulation~symbols! compared with the
theoretical predictions of MMCT in the pure dipole approximati
~dotted line!.
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fact that this is exactly the cut-off value, and it is thus mo
sensitive to ‘‘boundary’’ effects. The comparison betwe
theoretical predictions and MD data for the off-diagon
terms ofF, a comparison which is possible to perform on
in the dipole approximation scheme, is shown in Fig.
Again, the agreement between MD data and theoretical
sults becomes worse on increasingl towardsl co . By com-
paring the results for the two different approximations,
note that for both the COM~Fig. 1! and angular~Figs. 2 and
3! nonergodicity parameters, the coupling to the nondiago
correlators introduced in the pure dipole approximation c
tribute very little to the determination of the diagonal term
of the glass-form factor. This result, as well as the sm
variation of the critical temperature within the two approx
mations, is due to the small amplitudes of the off-diago
terms with respect to the diagonal ones, and supports the
that the critical behavior of the system is mainly driven
the more intense structure factors. This consideration s
gests the use of only the strongestSln,l 8n8(q,m) as input for
the calculation, which may allow the choice of higher valu
for the cut-off l co .

V. SUMMARY AND CONCLUSIONS

In the present paper we have performed a quantitative
of MMCT for the SPC/E model for water in the supercool
regime. MMCT is an extension of mode-coupling theory f
simple liquids to molecular systems. It provides equations
motion for the molecular correlatorsSk,k8(q

W ,t) which form a
completeset for any time–dependent two-point correlat
Of course, there are an infinite number of them, which for
the truncation of the set of MMCT equations at a cut-
value l co for l and l 8. In our case, we have chosenl co52.
From a pragmatic point of view, this may be justified by t
fact that up to today there seems to be no experime
method which allows for the determination of those corre
tors for l andl 8 at larger than two, although this can be do
for any numerical simulation. Instead of using the molecu
correlators, one also could use correlators in asite-siterep-
resentation@20#. MCT for molecular systems in a site-sit
description has recently been worked out@10#. This type of
approach has the advantage that for molecules with a
atoms, the number of correlators is small, e.g., for wa
there are six correlators at maximum, where one has to
into account that both protons can be distinguished fo
classical system. A site–site description, however, has
disadvantage that it is incomplete, i.e., information has b
lost. For instance, light scattering, dielectric spectrosco
NMR, ESR, etc., directly yieldmolecular correlators.
Whereas the site-site correlators can be represented by
molecular ones, the reverse is not possible@26#. Hence, from
a site-site description, noexact information can be deduce
for the experimental techniques mentioned above. Never
less, it would be worthwhile to solve the molecular MC
equations in the site-site representation, e.g., for water
order to compare the critical temperatureTc , the critical
nonergodicity parameters, etc., with the corresponding qu
tities from MMCT.

Despite the cutoff forl and l 8 the MMCT equations are
still rather involved. Therefore we decided to perform as
first step, a further approximation, which is thatn andn8 are
l
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put at zero for the static correlators and the nonergodi
parameters. Because of this approximation, we neglect r
tions of both protons around the molecular symmetry ax
Within these approximations, we have calculated the~unnor-
malized! critical nonergodicity parametersFl0,l 80(q,m) in
theq frame by solving the corresponding MMCT equation
As we have found that thediagonal, static correlators
Sl0,l 80(q,m), compared with the nondiagonal ones, are m
dominant with respect to their intensity and temperature
pendence@17#, we have additionally solved the MMCT
equations by assuming all static correlators and the no
godicity parameters to be diagonal inl and l 8. The reader
should note that the diagonality of the nonergodicity para
eters is an additional approximation. This latter approxim
tion has been motivated by a similar investigation for a
percooled liquid of diatomic molecules@22#.

The solution of the MMCT equations yields the critic
temperatureT8c

MMCT>208 K. In the diagonalization ap
proximation, we also obtained asingletransition temperature
Tc

MMCT>206 K, which does not differ much fromT8c
MMCT

andTc
MD>20063K. We consider this very good agreeme

as fortuitous, since usually the mode coupling theo
strongly overestimates the freezing@24,25#. That the diago-
nalization approximation almost does not affect the transit
temperature is quite different from what has been found i
similar study for diatomic molecules with Lennard-Jones
teractions. There, the diagonalization approximation cau
the separate freezing of the COM correlators (l 5 l 850) and
the ‘‘orientational’’ correlators withl 5 l 85” 0 @22#. This
quite different behavior is probably related to the mu
stronger translational–orientational coupling in the case
water.

Comparison of the MMCT results forFl0,l 80(q,m) with
the corresponding MD results leads to the following ma
conclusions:

~i! Fl0,l 80(q,m) obtained from MMCT, without and with
diagonalization approximation, differ only slightly from eac
other, which confirms the dominance of the diagonal corre
tors.

~ii ! The qualitativeq dependence ofFl0,l 80(q,m) from the
MD simulation is well reproduced by the correspondi
MMCT result. This is even true for some fine structure su
as the shoulder atq>20 nm21 of F10,10(q,m50).

~iii ! A goodquantitativeagreement between the MD– an
MMCT results is found for the fullq range forF10,10(q,m
51) andF10,00(q,m50). For the other cases, except tho
with l 5 l 852, a reasonable agreement is found forq
,30 nm21. For F20,20(q,m), the deviations are rather large
particularly forq,40 nm21.

This behavior forFl0,l 80(q,m) is in full accordance with that
for diatomic molecules@22,25#. The larger discrepancy fo
the case ofl 5 l 852 is probably due to the cutoff atl co52.
For a single dumbbell in an isotropic liquid of hard spher
it has been shown that MMCT yields accurate results f
e.g.,Fl0,l0(q,m) if one choosesl co5 l 12 @27#.

Since this first quantitative comparison of MMCT and t
MD results for water is encouraging, we are planning
extend our MMCT study for water to includen andn8. This
will offer the possibility of answering the interesting que
tion of whether the 180° jumps of the protons, which lea
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the molecule invariant, freeze at the same critical tempe
ture at which all the other degrees of freedom freeze, o
they will freeze at a lower temperature. Besides the non
godicity parameters, it would also be interesting to calcul
from MMCT the critical amplitudesHln,l 8n8(q,m) and the
exponent parameterl, from which the critical exponenta,
the von Schweidler exponentb, as well asg which charac-
terizes the power law divergence of thea-relaxation times-
cale, can be obtained. Finally, a solution of the tim
dependent MMCT equations would be desirable. Th
extensions will be hard to achieve without further appro
mation schemes. Our results give a strong indication that
could be possible. As the comparison of the different
proximations presented in this paper demonstrates, the s
tions of the MMCT are not strongly affected if small an
temperature insensitive components of thestatic structure
factors Sln,l 8n8(q,m) are neglected. Therefore it should b
possible to restrict the MMCT to the most relevant comp
nents, where the question of relevance is decided on the b
of the static correlation functions. Depending on the syst
this procedure can lead to a dramatic reduction of mem
functions to be calculated. This could enable us to cap
more qualitative features of the nonergodicity parame
and dynamics, by including the relevant components witl
.2, thereby neglecting irrelevant components withl<2.

To summarize, we can say that this first quantitative t
of MMCT for water has demonstrated reasonable agreem
of both the critical temperature and critical nonergodic
parameters obtained from MMCT and a MD simulation,
though the agreement of the transition temperatures sh
not be overestimated.
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APPENDIX A: SIMPLIFICATION OF THE MMCT
EQUATIONS FOR WATER MOLECULES

The C2v symmetry of the water molecule leads to t
consequence that the molecular correlation funct
Sk,k8(q

W ,t) for n andn8 odd are given by the self-correlation
and vanish forn odd, n8 even orn even,n8 odd, i.e., the
matrix S(qW ,t) has the block structure

n8 even n8 odd

S̃~qW ,t ! 0 n even

S~qW ,t !5

0 S̃(s)~qW ,t ! n odd ~A1!

Thus the direct correlation functionsck,k8(q
W ) are nonzero for

n andn8 even, only. From Eq.~12!, we can conclude that th
functionsvkk1k2

am (qW ,qW 1 ,qW 2) vanish ifn1 andn2 are odd. As a

consequence, the memory functions cannot contain terms of
the kind v* v* S̃(s)* S̃(s). Considering that the factorsu @see
Eqs. ~12!, ~14!# contain the Clebsch-Gordan coefficien
a-
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C( l 1l 3l ;n1n3n) or C( l 1l 3l ;n11m n3 n1m) or the corre-
sponding ones with (1↔2), wheren3 has to be even since i
occurs also as an index of the direct correlation function@see
Eq. ~12!# one concludes that terms of the kind

v * v * S̃* S̃ ~A2!

are only contained in memory functions withn andn8 even.
Furthermore, one finds that memory functions withn andn8
odd contain only terms of the kind

v * v * S̃* S̃(s), ~A3!

while memory functions with differentn even,n8 odd orn
odd, n8 even, vanish. We can summarize those findings
the schematic representation

n8 even n8 odd

vvS̃S̃ 0 n even

m~qW ,t !5

0 vvS̃S̃(s) n odd ~A4!

Since this block structure is also preserved under matrix
version, the whole set of equations is split into two parts. T
first part, which consists of the block with evenn and n8,
forms a closed set of equations, since also in the calcula
of the memory kernels~A2! only matrix elements with even
n andn8 occur. The second block depends on the solution
the first set because of the structure of the memory functi
~A3! and can be shown to be identical to the tagged part
equations for the self-part.

APPENDIX B: Q-FRAME REPRESENTATION

In contrast to the case of simple liquids, the density c
relatorS(qW ,t) as defined in Sec. II depends on modulus a
orientation of the vectorqW . Therefore, a direct numerica
implementation of the equations given above is not suita
but further reformulations are necessary. The dependenc
the direction of the ‘‘outer’’qW vector is easily removed by
choosing thez axis of the laboratory frame of reference
direction ofqW . The choice of theq frame further offers the
advantage that the matrixS(qW ,t) becomes diagonal with re
spect tom andm8, i.e.,

Slmn,l 8m8n8~qêz ,t ![Sln,l 8n8
m

~q,t !dm,m8

[Sln,l 8n8~q,m,t !dm,m8 . ~B1!

To get a reformulation of the equations of motion in terms
the q-frame quantities, we still have to care about the ‘‘i
ner’’ qW vectorsqW 1 andqW 2 appearing in the summation of th
MCT memory functions@cf. Eq. ~11!#. This can be done by
using the transformation law of the tensorsS(qW ,t) under ro-
tations, which gives a relation betweenSln,l 8n8(q,m,t) and
the molecular correlation function for general direction ofqW :
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Slmn,l 8m8n8~qW ,t !

5(
m9

Dmm9
l

~Vq!Dm8m9
l 8* ~Vq!Sln,l 8n8~q,m9,t !,

~B2!

whereVq denotes the polar angles of the vectorqW with re-
spect to the laboratory frame.

Thus we get the following set of MMCT equations in th
q-frame representation:

S~q,m,z!52@zS21~q,m!

1S21~q,m!K ~q,m,z!S21~q,m!#21, ~B3!

Kln,l 8n8~q,m,z!

5(
aa8

(
mm8

qln
am~qêz!ql 8n8

a8m8* ~qêz!klmn,l 8mn8
am,a8m8 ~q,z!,

~B4!

k52@zJ211m~q,z!#21, ~B5!
with J as given in Sec. II A. The memory functions are st
nondiagonal with respect tomandm8. But one can show tha
they are different from zero only in the following cases:

~B6!

Besides theq–frame representation, we have maintained t
the restricted summation overqW 1 andqW 2, which becomes an
integration in the thermodynamic limitV,N→` with r0
5const, can be reduced to a double integral. The gen
expression for the memory functions in theq frame is given
by
mlmn,l 8m8n8
am,a8m8 ~q,t !5

r0

~8p2!3E0

`

dq1E
uq2q1u

q1q1
dq2

q1q2

q (
m1m2

(
l 1l 18 l 2l 28

(
n1n18n2n28

v ln,l 1n1 ,l 2n2

am ~qq1q2 ;mm1m2!

3v l 8n8,l
18n

18 ,l
28n

28
a8m8*

~qq1q2 ;m8m1m2!Sl 1n1 ,l
18n

18
~q1 ,m1 ,t ! Sl 2n2 ,l

28n
28
~q2 ,m2 ,t !, ~B7!

with the vertex functions

v ln,l 1n1 ,l 2n2

am ~qq1q2 ;mm1m2!5(
l 3n3

@uln,l 3n3 ,l 2n2

am ~qq1q2 ;mm1m2! cl 3n3 ,l 1n1
~q1 ,m1!

1~21!muln,l 3n3 ,l 1n1

am ~qq2q1 ;mm2m1! cl 3n3 ,l 2n2
~q2 ,m2!#. ~B8!

The coefficientsu are given by

uln,l 1n1 ,l 2n2

am ~qq1q2 ;mm1m2!5 i l 11 l 22 l~21!m2F ~2l 111!~2l 211!

2l 11 G1/2

ql 1n1

am* ~q1!

3(
m9

d
m9m1

l 1 ~u1!d
m2m9m2

l 2 ~2u2!C~ l 1l 2l ;m9 m2m9 m!H C~ l 1l 2l ;n1n2n! a5T

C~ l 1l 2l ;n11m n2 n1m! a5R
.

~B9!

The quantitiesdmn
l are the reduced Wigner matrices@19# and the anglesu i are determined by

cos~u1!5
q21q1

22q2
2

2qq1
, sin~u1!5A12cos~u1!2, ~B10!

and the corresponding relations with (1↔2). Furthermore, we have
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qln
am~qi !55

1

A2
qisin~u i ! a5T,m561

qicos~u i ! a5T,m50

1

A2
Al ~ l 11!2n~n1m! a5R,m61

n a5R,m50.

~B11!

It should be immediately obvious that a numerical solution of the equations of motion given here poses a formidab
Due to the large number of summations and the occurrence of special functions, the evaluation of the memory funct
be the main computational problem.

The first step in an analysis of the equations forS(q,m,t) is the localization of the critical temperatureTc at which a
bifurcation of the long-term behavior of the solutions takes place. Therefore, one studies the nonergodicity paramet

F~q,m!5 lim
t→`

S~q,m,t !52 lim
z→0

zS~q,m,z!, ~B12!

which obey the following equations:

F~q,m!5@S21~q,m!1S21~q,m!K ~q,m!S21~q,m!#21, ~B13!

Kln,l 8n8~q,m!5(
aa8

(
mm8

qln
am~q!ql 8n8

a8m8* ~q!~m21~q!! lmn,l 8mn8
am,a8m8 , ~B14!

mlmn,l 8m8n8
am,a8m8 ~q!5

r0

~8p2!3E0

`

dq1E
uq2q1u

q1q1
dq2 (

m1m2
(

l 1l 18 l 2l 28
(

n1n18n2n28
v ln,l 1n1 ,l 2n2

am ~qq1q2 ;mm1m2!

3v l 8n8,l
18n

18 ,l
28n

28
a8m8*

~qq1q2 ;m8m1m2!Fl 1n1 ,l
18n

18
~q1 ,m1 ,t ! Fl 2n2 ,l

28n
28
~q2 ,m2 ,t !, ~B15!

that have to be solved self-consistently.
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