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Molecular mode-coupling theory for supercooled liquids: Application to water
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We present mode-coupling equations for the description of the slow dynamics observed in supercooled
molecular liquids close to the glass transition. The mode-coupling tH&&®T) originally formulated to study
the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear
molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of
the theory for theg-vector dependence of the molecular nonergodicity parameters, calculated by solving
numerically the molecular MCT equations in two different approximation schemes, with “exact” results
calculated from a molecular dynamics simulation of supercooled water. The agreement between theory and
simulation data supports the view that MCT succeeds in describing the dynamics of supercooled molecular
liquids, even for network forming onegS1063-651X99)06210-9

PACS numbses): 61.25.Em, 64.70.Pf, 61.43.Fs, 61.20.Ja

[. INTRODUCTION cooled molecular glass-forming liquid. We then compare the
theoretical predictions with equivalent quantities calculated

In recent years, the problem of a detailed theoretical defrom extensive molecular dynamiedD) simulations. We
scription of the dynamics ofolecularsupercooled liquids choose to compare theory and MD results for liquid water.
has been an area of renewed interest. The success of modd1€ choice of water as molecular liquid is particularly rel-

coupling theory(MCT) [1—6] for simple liquids in describ- evant for testing the quality of the MMCT approach, due to

ing the weakly supercooled regime has stimulated a consi he presence of an extended network of hydrogen bonds and

erable amount of work to extend this approach to molecular® the peculiar local tetrahedral ordering. The intermolecular
PP Avater-water interaction is defined by the SPC/E potential

liquids. Recent contrlbutlons lncl_ude the extension of MCT[lZ], which describes the molecule as a rigid planar body and
to describe the rotational dynamics of one linear probe moly,,qels the pair interactions as a sum of electrostatic and
ecule in an atomic liquid7], the extension of MCT to de- | ennard Jones terms. Due to the partial charges of the atoms,
scribe the dynamics — both self and collective — of liquidsthe molecule possesses a dipole moment which is directed
of linear molecule$8,9], and the MCT extension to treat the ajong the twofold rotational symmetry axis. When referring
dynamics of full molecular systems using a site-site repreto a body-fixed frame of reference for the molecule, we will
sentatior{ 10]. In the first part of this article we report on one always choose the direction of the dipole asztaxis. Thez
further step taken in the description of the dynamics of suaxis and thex axis define the plane which is spanned by the
percooled molecular liquids, i.e., the extension of MCT tomolecule.
describe the orientational and translational dynamics for lig- The test of MCT and MMCT can be done in two different
uids composed by rigid molecules afbitrary shape. Within  ways. First, one can investigate the validity of some qualita-
the framework of “nonlinear fluctuating hydrodynamics” tive predictions which aréndependenof the system, i.e.,
this has already been achieved by Kawasgali. However, which are the same for both theories. These are, e.g., the
the connection with thenolecularcorrelation functiongsee  power law dependence of the various relaxation timed on
below), which are important also from an experimental point—T., whereT, is the critical temperature for an ideal glass
of view has not been worked out. This extension will betransition, and the universal relationship between the corre-
calledmolecular mode coupling theo§IMCT). sponding exponents and their connection with the so-called

The theoretical predictions formulated in all these ap-exponent parametex, etc. Second, one may calculate the
proaches, and the proposed approximations are currently unumerical value of, e.g.,A or of the q dependence of the
der investigation by several research groups. Detailed tests ofitical nonergodicity parameters, critical amplitudes, etc.
all these approaches are requested to estimate the quality 8fnce these quantities depend on the system, one has to use
the approximations, the predictive power of these differenfMMCT in the case of molecular liquids. In this first sense, it
approachesi.e., the detail of the theoretical descriptipes  has been shown in previous papdid3—17 that mode-
well as the limit imposed by the complexity of the MCT coupling theory appears to be the correct theoretical frame-
equations and the feasibility of their solution. Furthermorework for the description of thex-relaxation behavior of
the quality of the approximations may depend on the moSPC/E water. Indeed, the results from a MD simulation are
lecular liquid under investigations, for example on the fragil-satisfactory compared to the predictions of MCT. The com-
ity of the liquid in Angell’s classification scheme. parison has been performed both for center of n{&M)

In the second part of this article we present thdepen-  self- and collective correlatorgl3—15 and g-independent
dence of molecular nonergodicity parameters calculatedotational correlatorgl6]. Moreover, thegeneralpredictions
from the MMCT equations for a model system of a super-of MCT for the g-dependent molecular correlators
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Sin,i'n’(Q,m,t) have been tested up te=2 in Refs.[17] and  longitudinal current density modelq). For molecular lig-
[18], finding again a remarkable agreement, both from theuids this has to be modified. Besides translational degrees of
qualitative and the semiquantitative point of view. This widefreedom (TDOF), the molecules also possess orientational
spectra analysis has confirmed the validity of the universalitydegrees of freedorfODOF), and thus we will have to con-
of MCT predictions and has stimulated a deeper, more quarsider two different kinds of current densities. The transla-
titative understanding of the MCT approach, which wetional current density modes
present in this article.

The structure of the article is as follows: In Sec. Il we - .
present the complete set of MMCT equations for the slow jMan=i'2 +1)1/2j§=:1 X{'(HePODR(Q;(1), (3)
dynamics in supercooled homogeneous liquids composed by

molecules of arbitrary shape. In Sec. lll we discuss the WQyaqriine the change of the density(d,t) due to transla-
different approximations which we employ to numerically tional motion of molecules, while the rotational current
solve the MMCT equations for the general molecule Cas§odes

and discuss some of the numerical techniques used to solve

the MMCT equations. Finally, in Sec. IV we solve the equa- N .

tions for the molecular nonergodicity parameters jR«(qt)=i'(2l +1)1/22 w’j““(t)eiqxj(t)Dln‘f;n+M(Qj(t))’
Finin(q,m) for SPC/E water and we compare the calcu- =1

lated predictions with the corresponding quantities evaluated (4)
from the analysis of the MD trajectories.

N

are responsible for the change of the density due to molecu-
lar reorientation. Hera;j’ denotes the angular velocity in the
body-fixed frame. Consequentlyﬁf“ is also a vector in the

A. Collective correlation functions body-fixed frame. We have skipped the prime because of

notational reasons. As in the theory of angular momentum in

We consider a system & identical, rigid molecules of uantum mechanics, it is more suitable to use spherical com-
arbitrary shape described by the center of mass position% ' b

- . . . ponents u=0,+1, defined by a’=a,,a"'=1/\/2 (a,
X;(t) and the orientations given by the Euler ang(@gt) i . f th | . i
= (,(1),6,(t),x;(1)); j=1.2.....N. The microscopic den- *iay), instead of the usual cartesian vector components

] A L ) ay,ay,a,. The connection between density and current
sity  p(X,Q,t)=Z;8(x—x;(1)) o(Q,Q(t)) in  the  modes is given by the continuity equation

6N-dimensional configuration space is expanded with re-

spect to the complete set of functions given by the plane L L . .

waves and the Wigner matricdd), (Q) [19], to get the pda = 2 X ai (@), (5
tensorial density modes «mTRp==L

Il. THEORY

N with the m-independent coefficients
P8O =pima(0,1) =1'(21+1)Y2>, e9OD X (1)), S
=1 _ 3
1) E(qxilqy) a=Tpu==x1
which are the starting point of a generalized theory. Here, a, a=T,u=0
runs over all positive integers including zero, amdas well () = ¢
asn takes integer values betweenl andl. To simplify the din (4 1
notation we often combing m, andn in the superindex« —V(l+1)—n(n+u) a=Ru=xl
=(I,m,n). Our aim is to give a closed set of equations for V2
the matrixS: n a=R,u=0
\
R 1 R R (6)
SK,K/(q’t):N<p:(q’t)pk‘,(q)> (2)

Apart from the separation into translational and rotational
currents that was already necessary in the case of the liquid
of molecular correlation functions. The strategy to deriveof linear molecules, we will considetll components of the
ﬁUC%equgi?nS of moltionlis thedsar;:e afS was usrzd_ for latolmimrrents as slow variables instead of the longitudinal
iquids and linear molecules and, therefore, explicit calcula ; oSy Tk 2\ Tl
tions shall not be given here. A survey of the MCT formal_‘[ranslatlonal Aok "(qit) (Wa)= e (q.)RJK» (@0,
ism for simple liquids can be found in Réfl] and detailed @"d__ combined —rotational  currents j,(q,t)=1/
calculations for a molecular system can be found in & VI(+H1)Z a7 (0)j #(a.t), only.
We restrict ourselves to pointing out where modifications This increase of the number of relevant variables for the
have to be made in order to treat molecules of arbitraryprojection operator formalism is enforced by the following
shape. considerations. For general molecules possessing three dis-
In the choice of “slow variables” for the projection op- tinct moments of inertid; #1,#13, it is important to con-
erator formalisn{20,21] one is already forced to make some sider thesinglecomponentg?* as slow variables, instead of
further considerations. In the MCT for atomic one-jf from above, because the long time dynamics becomes
component liquids, one uses the density mgefgy and the independent of the moments of inertia only in the first case,
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which is demanded by experimental observations. It is ab?vhereJ”‘”’f”’(ﬁ Z)=1/N<i””*(§)ja:”,(a)> is the matrix

sensible to conS|dIer the corrr:pone;?:fé. of thfe rt]rar:jslatlpnal of static current correlations. The reader should note that the
currents separately, since the evolution of the density Cort e rpay ok,J, andM stands for the additional superscripts
elators is influenced by dynamic correlationsatif compo-

nents of the currents, as can be seen from the following*# ande@’' s’ _ _ A
equation: Thus, the derivation of an equation of motion §(q,t)
has been reduced to finding an expression for the memory
d? > - > a2 kerneIM(ﬁ t), also called the fluctuating force kernel, since
. * , —— ap a ok - 3 3 y
dt2<p"(q’t)p" (@)=-2 2 i @i, " (@ it is the correlation function of a fluctuating force. The ap-

aa’ pp' S ) )
proximation scheme of MCT consists of a separation of

XA (04" (), (7 37 Yq)M(q,t)I"Y(q) into a regular parm™9(q,t), which
in which the termS(jﬁ”*((i,t)jI,ﬂ(ﬁ)#O oceur. This dy- accounts for the fast motion and the contrlbutl_nfq,t), due

namic coupling to the transversal currents is induced by th&P SloW pairs of density modes. For an evaluatiomf, t),
anisotropy of the molecule and exists also in the case ofhe fluctuating force is projected onto pairs of density modes
linear molecules. pKl(ﬁl)pKz((iz). This projection, which introduces the first
The projection operator formalism then leads to ;the fo"approximation, leads to @ime-dependenfour-point cor-
lowing continued fraction for the Laplace transfo(q,z)  relator and a vertex function which involvesatic two-,
=iff§S(ﬁ,t)eiZt, Imz>0 of the molecular correlation func- three- and four-point correlators. In a second approximation,
tions: both four-point correlators, static and dynamic ones, are fac-
. . . _ torized into a product of two-point correlators. In a final step,
S(9,2)=—[zS M) +S HPK(9,2S H(@)]"', (8  one can approximate the static three-point correlator by use
of the generalized convolution approximation which is easily
NN apmy oy @ T apal p eneralized from linedi8] to arbitrary molecules. As alread
Kew(@2)=2 2 dit@ai, " (@K (d2), gointed out above, we will not givgthe complete derivati)(;n
(9) here since it is rather involved and analogous to the case of

- _q, > s g g linear molecules. The result fan(q,t) can be expressed as
k(d,2)=—[2" ) +I HDM[@2I DT 10 fHiows: —

aa’ pp'

ror s 1
ap,a -
mK,K' (Qat) 2N

2
Po , B A A - -
ﬁ) aZ 2 2 Vkﬁlkz(qlqllqz)VK’KiKé(q7ql’qZ)SKl,Ki(ql’t)SKZ,Ké(qZYt)' (ll)

a1.02 k1,67 K2.Kp

Here, the prime denotes summation such that q,=d. W (GG =i (21, +1)(21,+1)\ 2
Besides the time-dependent molecular correlators, the num- Uxicix,\ 491,92 21+1
ber densitypy=N/V and the vertex functions appear, which .
are products of X C(Hqlolmimom) ™ (ay)
C(|1|2|;n1n2n) a=T
X
- .. . . C(lqlolini+unant ) a=R,
Vi’K‘le(q,ql,qu% Urtkgrep (0 01:02) ey, (A1) +(122), (14
(12)
and(C(l41,l;m;m,m) denotes the usual Clebsch—Gordan co-
efficients[19].
wherec(q) denotes the matrix of direct correlation functions, Equat|on§(8)—(10), together with Eq(11), form a closed
which is related to the static structure factors by set of equations for the correlation matfg,t). The vertex

functions given by Eqs(12)—(14) are determined by the
number density, and the static structure factoséq), only.
> ’7T2 -
c(q)= p—o(l— S (). (13 B. Tagged particle correlation function
We will now examine the motion of aingle molecule

that is immersed in a molecular liquid. Again we have a
The coefficientas are given by liquid of N—1 identical, rigid molecules of mas¥l and
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moments of inertid 1, |5, 13, whose center of mass coordi- projection operator formalism are analogous to the equations
nates are denoted ag(t), and whose orientations are given for the coherent correlations. As a further simplification the
by the Euler angle$);(t). In addition we have, as theth  static self-correlations are given l&;“ (Q)=6, . - Thus,

particle, a molecule of madd ' and moments of inertif , we get

I,, 13. As a special case we get the self-correlator of a . .

selected particle within a homogeneous liquid if the tagged S9(q,2)=—-[21+K®(q,2)] 7%, (19

particle is identical to the molecules of the surrounding lig-

uid. (S) am a'w'x 2 (S)awa w2
Besides the quantities we have already introduced in the Kicw (a.2)= g} g Gin (Q)q"”’ (ke (Q.2),

previous subsection, we have to consider the density modes (20)

for the tagged patrticle: R L -
KO(d,2)=~[239 (@) +39 ()M O(G,2)39 "(a)] 2,
p{(d,) =€ PNODL (A (1), (1 - - - - (21)

and the corresponding tagged particle correlation function: with the same coefficients**(q) as above.
(S) (9% = The correlations of the tagged particle will be controlled
S (a0 =(pP* (q,1)p}> (). (160 by the coherent correlations. Therefore, in the mode-

(s)
The slow variables for the projection operator formalism are couplmg apprOX|mat|on for the memory function (q v,

given by the density moded5) and the current densities  the slow part o8 (q)M(q,t)3® (q), the fluctuating
forces are projected onto bilinear products of tagged particle

JOTE(g,t) =xE(1) e PNOD (O (1)), (170 and coherent density modes. In the thermodynamic limit, the
effect of the tagged particle on the surrounding liquid can be
(Qn(1), (18 neglected and the coherent correlator is identical to the cor-
relation function for the homogeneous liquid. The mode cou-
of the tagged particle. In this case it is necessary to use aflling approximation for the four-point correlation functions
components of the rotational currents separately to avoid inthus leads to the following expression for the memory func-
ertia effects in the long-time behavior. The results of thetion

J9R(d,0 = (D eNOD

m n+pu

mSama’s’ (g t)= 2 > > v (q,dp,0vYS s (6,01,028 (A0S, e (dait), (22
’ 877 1%2 142 1K1 2%

q1 d2 k1, Kl K9, K2

with the vertex functions IIl. APPROXIMATIONS

The aim of our numerical investigations was to examine
y(San = = () the long-time behavior of the solutions of the equations of
""1"2<q 41,02)= E u""s"l(q’qz’ql)c"s "z(qZ)' motion presented in Sec. Il A, i.e., to calculate the critical

(23)  nonergodicity parametef&(q) =lim,_...(q,t) and the tran-
sition temperaturel.. As input for these calculations we

The coefficientss are the same as given above and the direchave determined the static structure fact8g) from a MD

correlation function that describes the interaction betweegimulation, as described in detail in a previous publication

the tagged particle and the surrounding liquid is defined by[17]. As discussed there, the,, symmetry of the water
molecule leads to the consequence that the distinct part

po€(A)S(A)) s =(PD* (D) pr (@)~ S v (29) S9(q) of the structure factors vanishes foand/orn’ odd,
i.e., Smni'mn’(0) with n andn’ odd, only contains infor-

In the special case in which the tagged particle has the sanfB2tion taboult tthe selﬁ- or;elation ofltfhe tmolec]:cutlﬁs These
properties as the molecules of the liqui(q) is just the o) ety rerations afiow for-a simpiication ot the equa-

ordinary direct correlation function of the homogeneous “q_nons. As shown in Appendix A, the matrix eguaﬂon splits

uid. into two parts. The matrix elemen&,, ' m/n/(q,t) with n
Detailed investigations for the tagged particle correlatoreand n’ even, are determined by a closed set of equations

have been done for a dumbbell molecule in a simple isotrowhich is independent of the correlators wittand/orn” odd.

pic liquid [7]. The equations given here are the generalizaThe remaining part of the equations, i.e., foandn’ odd, is

tion of this theory(for a linear molecule in a simple liquid identical to the corresponding tagged particle equations for

to the general case of an arbitrary shaped molecule in a mahe self-correlators as presented in Sec. Il B.

lecular liquid. For these numerical studies, it is further useful to trans-



5772 L. FABBIAN et al. PRE 60

form the equations to the-frame representation, i.e., to water molecules is reduced to the motion of their dipole
choose the axis of the laboratory frame in the direction of moments. Thus, we will refer to this first simplification as

the vectorg. The resulting set of equations and some detaildhe dipole approximation _ _

of their derivation are given in Appendix B. Thg frame An even stronger approximation is defined by assuming,

offers the advantage of the correlation matrices dependin?f additior_l,_that both the static structure factors, _the Cl’ltlca!
- . - . onergodicity parameters, and the memory functions are di-
only on the modulusgy=|q|, and in addition are diagonal

. o agonal inl andl’, i.e.,
with respect to the indicem andm’. Thus we have to solve 9
self-consistently a set of equations for the nonergodicity pa-

~ ’ ,m)= ,m)5 1y (25)
ra-me'[erg:ln,l’n’(qvm)EFImn,I'mn’(qez)- . SIOJ o(Gm) SlOJO(q !
The main computational problem in solving the equations
for the glass-form factor is the calculation of the memory Fioyro(d,m)=Fgj0(d,m) &y, (26)
matrix mff:f“'”'(q), due to the enormous number of terms in
the summation of Ec_(_’ll). Of course, any attempt at numeri- mm;"f,ﬁ,o,(q)z ml‘mﬁmffo,(q)g”, . (27
cal calculation requires the introduction of an upper cutoff
I, inl,1", in order to have a finite number of coupled equa-

ThusS(g,m) becomes a diagonal matrix with six nonvanish-
ing elementgthe diagonal ongswhile m(q) is still nondi-

It has been estimated in several MCT calculations that, ifgonal with respect taru and a."“.,' This approximation
order to have a reasonable convergence towards the fix@d"d also the even stronger'restnctlon of additional diagonal-
point, it is necessary to perform several hundreds of iteralty Of _the memory kernel with respect u h"_"s also been
tions. Although it is possible to considerably reduce thetSed in the study of a dumbbellin a simple liqfid, and a
number of elements in the sum of EQ.1) by taking into  duid of diatomic molecule$22]. .
account the symmetries of the molecule, a full solution for W€ have iteratively solved the equations for the noner-
l.,=2 is still not feasible. god|C|ty7plarar_ne_ters on a grid of 1@Q/e_ctor§ ranging up t.o

As discussed in Sec. II, it is necessary to take into account10 NM ~. Within the diagonal approximation, one iteration
the components of the rotational curreffé separately to  SLEP requires about 15 minutes on anstation. The dipole

avoid inertia effects in the long-time behavior. Thus we have?PProximation requires about two hours of CPU time, and

taken into account all corresponding memory functions V€ €stimated that a full solution of the MMCT equations

With respect to the translational currents, we have decided tcluding n would require about 4 days per iteration.
take into account only the longitudinal componepts i.e.,

all memory functions witha=T,u=*1 or a'=T,u’ IV. RESULTS

==+1 are neglected.

The structure of the MMCT equations further offers the We have foundT}"'“T=206 K in the diagonal-dipole
possibility of several approximation schemes, differing in theapproximation. At this temperature, the solution of the non-
choice of the molecular static structure factors which areergodicity parameter equations has been iterated until the
taken into account. In this article we present MMCT calcu-average difference over the whaderange between then(
lations for two different approximations, which bring the nu- +1)th iterationF"*1)(q,m) and thenth F"(q,m) was of
merical calculations to the frontier of the present computeorder 10 *°. Since the MCT approach to, e.g., a hard sphere
facilities. In both approximations we neglect the third angu-system 23], binary liquids[24], and diatomic moleculgd25]
lar indexn in the static quantities, i.e., we include as input of has shown that MCT overestimates the freezing into a glassy
the calculation only the static structure fact@s;o(q,m) state, we consider fortuitous the agreement between the esti-
and, thus, the direct correlation functiot\g, o(q,m). In ad- matedTYMCT and the numerical estimate of the critical tem-
dition, we putF, .,.(q,m) at zero forn andn’ different  perature from the analysis of the molecular dynamics data,
from zero. This approximation is reflected in the reduction ofTQ"D=200t3 K, for SPC/E water. We want to highlight that
the number of independent memory kernels to be calculatedlespite the diagonalization approximation, in contrast to

We have examined the intensity and the temperature dewvhat has been found for the liquid of Lennard-Jones dumb-
pendence of the static correlation functions, and we havéells described in Ref22], in the case of water the theory
given some justification for this approximation in a previousdoes not yield an unphysical splitting of rotational and trans-
publication[17]. Still it has to be noted that it is mainly lational transition temperatures, i.e., all the elements of the
motivated by the need to reduce the computational burdetheoretical nonergodicity matrix=(q,m) simultaneously
and we plan to put a significant effort in the direction of ajump from zero to a nonzero value at the same temperature,
full solution of the MMCT equations, including also the an- or in other wordsall degrees of freedom freeze asigle

tions. The stable solutioR(q,m) is found as the fixed point
of the iterative solution of the given equations.

gular indexn. temperature.
In Ref.[17], it has been shown that the distinct part of the  In the dipole approximation, i.e., relaxing the diagonality
structure factors vanishes for oddand/orn’. Thus, withl approximation, the equations féi(q,m) have been solved

<2, the approximatiom=n'=0 essentially means neglect- in a similar way. In this approximation the value of ttwiti-

ing the coupling with the correlators wittn|=2 and/or  cal F(q,m) was evaluated, stopping the iterative calculation
[n’|=2. This approximation is equivalent to neglecting thewhen the average difference between two consecutive itera-
third Euler angley, i.e., the rotations of the water molecules tions was of order 10°. In the dipole approximation, the
around the dipolar axes. This means that the motion of théheoretical critical temperature has been found to be about
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FIG. 1. Critical center of mass nonergodicity parameter - 0 ‘ :
Fooodd,m=0) as calculated from the MD simulatioisymbol$ 0 40 80
compared with the theoretical predictions obtained in two different q(nm-l)
approximation schemes: MMCT in the diagonal-dipole approxima-
tion (dashed ling and MMCT in the pure dipole approximation FIG. 3. Diagonal critical nonergodicity parameters withl’

(dotted line. =2 [F249,m)] as calculated from the MD simulatidsymbols

compared with the theoretical predictions of MMCT in the
T'MMCT_ 508 K. which is not so different frorm™MCT in diagonal-dipole approximatiof@ashed lineand MMCT in the pure
C 1 C . . . .
the diagonal approximation or from the numerical one. Ascl'poIe approximatiordotted ling
discussed in Ref(17], it is reasonable to suppose that the . . -
transition is driven by the diagonal structure factors, espe!—n. Fig. 1, the thgoreucal pred|ct|on_s for the COM. nongrgog—
cially the ones with =0 or | =2, which are the most sensi- icity parameter in the two approximations examlneq in .thIS
tive to variations of temperature. It is thus not surprising toa:gcéicirlfeﬁ?ir:?ﬁéelg tc;;zee'(\ﬂ[) tg??éui?jtgoaﬁpmrlc;mehagons
observe that the critical temperature is almost insensitive t MCT appro 'mat'o\r?s all% ?he calculation beé‘de the
the introduction of the off-diagonal terms, which display a pproximat w uation, :
weaker dependence dn COM.nonergodlcny parameter, a]so of the angula_lr noner-
The theoretical predictions fof(q,m), in the different god|qty parameters. O.f course, in the diagonal-dipole ap-
approximation schemes, are shown in Figs. 1, 2, 3, and 4, iRroxlmanon, .only the diagonal elemerfig, o of the noner- .
comparison to the corresponding quantities as evaluate _d|C|t2y ma(;ngFtcanﬂt])e evi'#a;fd' Thg_rf_sultsfaretﬁhown n
from the MD simulation, fitting the time evolution of the Igs. 2 an ogether with he predictions for the same
correlators in the early region to the von Schweidler law quantiies as evaluated relaxing the diagonality approxima-
[17]: tion. The agreement with the numerical dégmbols in the
' figure9 is satisfactory for thé=1 nonergodicity parameters
(both for m=0 and m=1), while the predictions corre-
Sin 17/ (@,M, 1) —F (g, m) sponding tol=2 are less satisfactory. It is reasonable to
' ' expect that the worse results obtainedIfer2 are due to the

~ (1) b (2) 22b 23b
=- H,nll,n,(q,m)t + Hln’l,n,(q,m)t +0(t°").
(28)
Fozo,m(q)
+— MD data
=== MMCT (n=n'=0) i=I"
@é Ll ~——— MMCT (n=n"=0) 1,1
o
0
—e 2 0
2r I m?fu(nme()) 1= 0 F o000(®
@- e MMCT (n=n"=0) LI’
2 . 0.0
—u-:-
+—e MDdata -0.2
0 0 4‘0 “—“ﬁ;‘ e MMCT (n=n’=0) LI
-1 0.2 ) -04 '
q(nm ) 0 50, 100 0 50, 100
qum ) q(nm )

FIG. 2. Diagonal critical nonergodicity parameters with|’
=1[Fy9.dq.,m)] as calculated from the MD simulatiqgymbolg FIG. 4. Off-diagonal critical nonergodicity parametets#(")
compared with the theoretical predictions of MMCT in the as calculated from the MD simulatigegymbolg compared with the

diagonal-dipole approximatiof@ashed linfand MMCT in the pure  theoretical predictions of MMCT in the pure dipole approximation
dipole approximatior(dotted line. (dotted line.
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fact that this is exactly the cut-off value, and it is thus moreput at zero for the static correlators and the nonergodicity
sensitive to “boundary” effects. The comparison betweenparameters. Because of this approximation, we neglect rota-
theoretical predictions and MD data for the off-diagonaltions of both protons around the molecular symmetry axis.
terms ofF, a comparison which is possible to perform only Within these approximations, we have calculated(th@or-

in the dipole approximation scheme, is shown in Fig. 4.malized critical nonergodicity parameters,q, o(g,m) in
Again, the agreement between MD data and theoretical rethe g frame by solving the corresponding MMCT equations.
sults becomes worse on increasintpwardsl.,. By com- As we have found that theliagonal static correlators
paring the results for the two different approximations, weSy;.o(g,m), compared with the nondiagonal ones, are most
note that for both the COMFig. 1) and angulafFigs. 2 and  dominant with respect to their intensity and temperature de-
3) nonergodicity parameters, the coupling to the nondiagongbendence[17], we have additionally solved the MMCT
correlators introduced in the pure dipole approximation conequations by assuming all static correlators and the noner-
tribute very little to the determination of the diagonal termsgodicity parameters to be diagonal lirand|’. The reader

of the glass-form factor. This result, as well as the smallshould note that the diagonality of the nonergodicity param-
variation of the critical temperature within the two approxi- eters is an additional approximation. This latter approxima-
mations, is due to the small amplitudes of the off-diagonation has been motivated by a similar investigation for a su-
terms with respect to the diagonal ones, and supports the idgercooled liquid of diatomic moleculg¢&2].

that the critical behavior of the system is mainly driven by  The solution of the MMCT equations yields the critical
the more intense structure factors. This consideration sugemperatureT’M""=208 K. In the diagonalization ap-
gests the use of only the strong&gt | ,/(q,m) as input for  proximation, we also obtainedsingletransition temperature
the calculation, which may allow the choice of higher valuesTMMCT=206 K, which does not differ much from’MMcT

for the cut-offl . andTMP=200+3K. We consider this very good agreement
as fortuitous, since usually the mode coupling theory
V. SUMMARY AND CONCLUSIONS strongly overestimates the freezif@d,25. That the diago-

nalization approximation almost does not affect the transition
In the present paper we have performed a quantitative tegémperature is quite different from what has been found in a
of MMCT for the SPC/E model for water in the supercooled similar study for diatomic molecules with Lennard-Jones in-
regime. MMCT is an extension of mode-coupling theory for teractions. There, the diagonalization approximation causes
simple liquids to molecular systems. It provides equations othe separate freezing of the COM correlatdrs (' =0) and
motion for the molecular correlatofsm,(ﬁ,t) which forma the “orientational” correlators withl=1'#0 [22]. This
completeset for any time—dependent two-point correlator.quite different behavior is probably related to the much
Of course, there are an infinite number of them, which forcestronger translational—orientational coupling in the case of
the truncation of the set of MMCT equations at a cut-off water.
valuel, for I andl’. In our case, we have chosén=2. Comparison of the MMCT results fdfg;.o(g,m) with
From a pragmatic point of view, this may be justified by thethe corresponding MD results leads to the following main
fact that up to today there seems to be no experimentaionclusions:
method which allows for the determination of those correla- (i) Fg;/o(0,m) obtained from MMCT, without and with
tors forl andl’ at larger than two, although this can be donediagonalization approximation, differ only slightly from each
for any numerical simulation. Instead of using the molecularother, which confirms the dominance of the diagonal correla-
correlators, one also could use correlators isita-siterep-  tors.
resentation20]. MCT for molecular systems in a site-site  (ii) The qualitativeq dependence df g, (q,m) from the
description has recently been worked ¢1®]. This type of MD simulation is well reproduced by the corresponding
approach has the advantage that for molecules with a feWIMCT result. This is even true for some fine structure such
atoms, the number of correlators is small, e.g., for wateas the shoulder aj=20 nni * of F10149,m=0).
there are six correlators at maximum, where one has to take (iii) A goodquantitativeagreement between the MD- and
into account that both protons can be distinguished for aMMCT results is found for the fullj range forF g4 q,m
classical system. A site—site description, however, has the-1) andFq,4q,m=0). For the other cases, except those
disadvantage that it is incomplete, i.e., information has beewith |=1"=2, a reasonable agreement is found fopr
lost. For instance, light scattering, dielectric spectroscopy< 30 nmi *. For F,q,4q,m), the deviations are rather large,
NMR, ESR, etc., directly yieldmolecular correlators. particularly forq<40 nm *.
Whereas the site-site correlators can be represented by the
molecular ones, the reverse is not possj@@. Hence, from  This behavior foiF4,/¢(0,m) is in full accordance with that
a site-site description, nexactinformation can be deduced for diatomic molecule§22,25. The larger discrepancy for
for the experimental techniques mentioned above. Neverthehe case of =1'=2 is probably due to the cutoff &,=2.
less, it would be worthwhile to solve the molecular MCT For a single dumbbell in an isotropic liquid of hard spheres,
equations in the site-site representation, e.g., for water, it has been shown that MMCT vyields accurate results for,
order to compare the critical temperatufe, the critical  e.g.,Fq,0(q,m) if one choose$.,=I1+2 [27].
nonergodicity parameters, etc., with the corresponding quan- Since this first quantitative comparison of MMCT and the
tities from MMCT. MD results for water is encouraging, we are planning to
Despite the cutoff fot andl’ the MMCT equations are extend our MMCT study for water to includeandn’. This
still rather involved. Therefore we decided to perform as awill offer the possibility of answering the interesting ques-
first step, a further approximation, which is timeandn’ are  tion of whether the 180° jumps of the protons, which leave
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the molecule invariant, freeze at the same critical temperag(l,I,1;n,;ngn) or C(l4l5l;n;+wngn+u) or the corre-
ture at which all the other degrees of freedom freeze, or ikponding ones with (&>2), wherens has to be even since it
they will freeze at a lower temperature. Besides the noneroccurs also as an index of the direct correlation funcizee

godicity parameters, it would also be interesting to calculateeq. (12)] one concludes that terms of the kind
from MMCT the critical amplitudedH, ;/(q,m) and the

exponent parametex, from which the critical exponers, VFy*S*S (A2)
the von Schweidler exponeht as well asy which charac-

terizes the power law divergence of therelaxation times- .o only contained in memory functions withandn’ even.

cale, can be obtained. Finally, a solution of the time-g,hermore, one finds that memory functions witandn’
dependent MMCT equations would be desirable. These 4 -ontain only terms of the kind

extensions will be hard to achieve without further approxi-
mation schemes. Our results give a strong indication that this
could be possible. As the comparison of the different ap-
proximations presented in this paper demonstrates, the solu- ) ) )
tions of the MMCT are not strongly affected if small and While memory functions with different even,n’ odd orn
temperature insensitive components of #tatic structure  0dd, n’ even, vanish. We can summarize those findings in
factors Sy, /(q,m) are neglected. Therefore it should be the schematic representation

possible to restrict the MMCT to the most relevant compo-

v*yr S8 (A3)

!

nents, where the question of relevance is decided on the basis n' even| n’ odd

of the static correlation functions. Depending on the system, ws 0 n even
this procedure can lead to a dramatic reduction of memory _

functions to be calculated. This could enable us to capture m(q,t)=

more qualitative features of the nonergodicity parameters
and dynamics, by including the relevant components With
>2, thereby neglecting irrelevant components wih2.

To summarize, we can say that this first quantitative test.. . . -
ince this block structure is also preserved under matrix in-
of MMCT for water has demonstrated reasonable agreemen

g o .. _version, the whole set of equations is split into two parts. The
of both the critical temperature and critical nonergodlcnyﬁrst part, which consists of the block with evenand n’

parameters obtained from MMCT and a MD simulation, al- . ) ) .
f rms a closed set of equations, since also in the calculation

though the agreement of the transition temperatures shou . .
. of the memory kernelg§A2) only matrix elements with even

not be overestimated. , .
nandn’ occur. The second block depends on the solution of

the first set because of the structure of the memory functions

(A3) and can be shown to be identical to the tagged particle
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0 vwS3® | n odd  (A4)
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In contrast to the case of simple liquids, the density cor-
APPENDIX A: SIMPLIFICATION OF THE MMCT > . .
EQUATIONS FOR WATER MOLECULES relator §(q,t) as defined in Sec. Il depends on modulus and
orientation of the vectoq. Therefore, a direct numerical
The C,, symmetry of the water molecule leads to thejmplementation of the equations given above is not suitable,
consequence that the molecular correlation functioryyt further reformulations are necessary. The dependence on
S,,«'(a,t) for nandn’ odd are given by the self-correlations the direction of the “outer’q vector is easily removed by
and vanish fom odd, n" even orn even,n’ odd, i.e,, the  choosing thez axis of the laboratory frame of reference in
matrix S(q,t) has the block structure direction ofg. The choice of they frame further offers the
advantage that the matrB(ﬁ,t) becomes diagonal with re-

n" even| n’ odd A
spect tomandm’, i.e.,

S(a.t) 0 n even
gd’!t): Slmn,l’m’n’(q’ézat)ES|n:L|,n,(q,t)5mymr
0 [S9q,t) | nodd (A1) =S (AM) S m . (BD)

. To get a reformulation of the equations of motion in terms of
Thus the direct correlation functiors ... (q) are nonzero for the g-frame quantities, we still have to care about the “in-

nandn’ even, only. From Eq(12), we can conclude thatthe ner” g vectorsq, andd, appearing in the summation of the
functionsvﬁfjl,(z(q,ql,qz) vanish ifn; andn, are odd. Asa MCT memory functiongcf. Eq. (11)]. This can be done by
consequence, the memory functions catcontain terms of  using the transformation law of the tens&g,t) under ro-
the kindv*v*S+S(. Considering that the factors[see  tations, which gives a relation betwe&, ., (q,m,t) and
Egs. (12), (14)] contain the Clebsch-Gordan coefficients the molecular correlation function for general directiorgof
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Simn i mn (a t) with J as given in Sec. Il A. The memory functions are still
nondiagonal with respect tmandm’. But one can show that
they are different from zero only in the following cases:

—2 DL QgD (Qq)Sinr(q,m",1),

(B2)
. a=T|d=T|m+p=m"+p
where (), denotes the polar angles of the vectpwith re-
spect to the laboratory frame. a=T|d =R| m+p=m'
Thus we get the following set of MMCT equations in the
g-frame representation a=R|d=T|| m=m'+p
S(q,m,z)=—[zS *(q,m) a=R|d =R m=m
+S %(q,mK(q,m,2)S *(q,m]7*, (B3 (86)
KIn,I’n’(Q:m,Z)
A al A apal ! Besides the—frame representation, we have maintained that
:g, E Qin (A€) G0~ (A€)Kimp 1 mey (0:2), the restricted summation ovey andds,, which becomes an
integration in the thermodynamic limi¥/,N—«~ with pg
(B4) =const, can be reduced to a double integral. The general
k=—[z"14+m(q.2)] L, (B5) g;(/pressmn for the memory functions in thdrame is given

ap,a q+q1 QlQZ
mIn’flln I’ﬁ 'n’ (q’t)_ E 2 2 VIn Iingl 2n2(qqlq2 mmlmz)
la— Q1| MM 11171515 ngnjnons
><V|/ Hinl oy (90102 M MM2) S 0, 1107 (A1, M t) Sn, 120 (G2,M2, ), (B7)

with the vertex functions

Vimiyng 1,n,(A0102;MMymy) = E (Ui ng 10, (G102 MM My) € n o5, (01,My)

1M1 22

+ (=)™ (AG201;MMMy) €1 10, (A2,M2) ] (B8)

3Nz ling
The coefficientas are given by

1/2

a’hr(ay)

1“1

21, +1)(21,+1
(Qth0; mrmmz)—ll”z"(—l)mZ[( : 2|)i12 )

usy
In I4nq,Ion,

C(|1|2|;nln2n) a=T

X _ s —m” .
Edm,, (6002 (= 0)Clhm m=m m)fc(lllzl;nlwnznm) R

(B9)
The quantitiesj'mn are the reduced Wigner matricg9] and the angle®, are determined by
2+ 2_ 2
cos )= % i g)— (T cod 6% ®10

290,

and the corresponding relations with<¢12). Furthermore, we have
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( 1
—=Q;Sin( 6;) a=T,u==*1
\/qu |
gicog 6;) a=T,u=0
i (i) =§ L (B11)
—JI(I+1)=n(n+pu) a=Ru=*xl
N ®
n a=R,u=0.
\

It should be immediately obvious that a numerical solution of the equations of motion given here poses a formidable task.
Due to the large number of summations and the occurrence of special functions, the evaluation of the memory functions will
be the main computational problem.

The first step in an analysis of the equations $0g,m,t) is the localization of the critical temperatufie at which a
bifurcation of the long-term behavior of the solutions takes place. Therefore, one studies the nonergodicity parameters

F(g,m)=IlimS(g,m,t)=—1imzS(q,m,z), (B12)
t—oo z—0
which obey the following equations:
F(g,m) =[S *(g,m)+S *(q,mK(q,mS *(q,m)] % (B13)
Kinsn(@m)=2 2 g (@) (@(m @)t (B14)
aa’ pp' -
apa gq+ay
rnImnl’m n’ q)_ 2 3f qu qu 2 2 2 VIn Aang .l ZnZ(qq1QZ7mmlm2)

(87°) la—ay MiM2 11171515 ninjnong

><V|, o (qqlq2;m,mlmZ)Fllnl,lini(qlrmlvt) Fion, 15ny(d2,m2, 1), (B15)

that have to be solved self-consistently.
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