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We propose a phenomenological model for the intermediate scattering fufi@®rassociated with density
fluctuation in low temperature water. The motivation is twofold: to extract various physical parameters asso-
ciated with the ISF computed from extended simple-point-charge model water at supercooled temperatures,
and to apply this model to analyze high resolution inelastiay scattering data of water in the future. The ISF
of the center of mass of low temperature water computed fronMiflep molecular dynamicgVD) data
shows clearly time-separated two-step relaxation with a well-defined plateau in-between. We interpret this
result as due to the formation of a stable hydrogen-bonded, tetrahedrally coordinated cage around a typical
molecule in low temperature water. We thus model the long-time cage relaxation by the well-known Kohl-
rausch form exjp—(t/7)?] with an amplitude factor which is lkedependent Debye-Waller factéik), and treat
the short-time relaxation as due to molecular collisional motions within the cage. The latter motions can be
described by the generalized Enskog equation, taking into account the confinement effect of the cage. We shall
show that the effect of the confinement changes the collisional dynamics by modifying certain input parameters
in the kinetic theory by a factdrl-A(k)]*2 We solve the generalized Enskog equation approximately but
analytically by aQ-dependent triple relaxation time kinetic model. This kinetic model was previously shown
to account for the largk behavior of Rayleigh-Brillouin scattering from moderately dense, simple fluids. We
find that our model fits well with the MD generated collective as well as single-particle ISFs. For the short-time
collisional dynamics, we fix values of the hard sphere diametand pair correlation function at contagpto’),
without introducting any adjustable parameters. The calculated ISFs reproduce the correct Brillouin peak
frequencies at lovk values. From the long-time dynamics, we deduce values of the Debye-Waller Ad&jor
the Kohlrausch exponerg(k), and the cage relaxation time&k). [S1063-651X%99)13412-3

PACS numbdps): 61.20.Ja, 64.70.Pf

I. BACKGROUND ter [7-10]. One of the interesting findings of this series of
MD simulations is an unambiguous identification of a struc-

The anomalous transport behavior of water upon supertural arrest temperature at 50 K below the temperature of
cooling [1,2] has attracted a great deal of attention amongnaximum density of SPC/E wat€250 K). This implies that
physical chemists and biophysicists. It has been found thdhe mode coupling theory, which predicts on fairly general
the shear viscosity of supercooled water shows an apparegtound the existence of such a structural arrest temperature
power law divergence on approaching a singular but experiin sufficiently supercooled simple liquids, may also be appli-
mentally inaccessible temperature of abdyt227 K at am-  cable to describe long-time dynamics of the center of mass
bient pressurg3]. In a related fashion, the self-diffusion con- motion of a subtle molecular liquid such as water.
stant tends to zero &t also with a power law4,5]. These The objective of this article is to propose an analytical,
experimental facts have stimulated some theoretical conjedhysical model to analyze these numerically computed inter-
tures in an attempt to explain the origin of this singularity mediate scattering functior$SF's) by molecular dynamics
[2]. One of us[6] has recently noted that some dynamicalboth for the collective and single-particle data. This is moti-
properties of interfacial water measured by incoherent quasiated by a hope that the simple physical model we derived
elastic neutron scattering show similarities to that of bulkhere can be used to analyze present and future high resolu-
supercooled water at a lower temperature. In this contextjon quasielastic and inelastic neutrgor x-ray) scattering
investigation of dynamical properties of bulk supercooledexperiments on bulk supercooled and interfacial water.
water may lead to a better understanding of the correspond-
ing properties of interfacial water which are of relevance to
biotechnology, pharmaceutical, and the food industry.

Computer molecular dynamid®ID) has been used ex-
tensively in the past to explore the phase behavior of super- MCT is a theory that focuses its attention on the cage
cooled water, but few of them has been directed toward ineffect in the liquid state which can be pictured as a temporal
vestigation of dynamics of water ne@g. The computation trapping of a molecule by its neighbors as a result of lower-
of the long-time behavior of correlation functions, bothing the temperature or increasing the densit§,12. Mo-
single-particle and collective, needs to be made for anyecular scale density fluctuations of high temperature dense
meaningful studies of dynamical properties of water rigar  fluids usually relax rapidly in a time scale of few picosec-
Very recently one such attempt has been made by some of uhds. The MCT does not attempt to address the detailed
using the extended simple-point-char@PC/B model wa-  molecular dynamics in this time regime. However, upon

II. COMMENTS ON THE USE OF MODE-COUPLING
THEORY (MCT) AND KINETIC THEORY

1063-651X/99/6(B)/677612)/$15.00 PRE 60 6776 © 1999 The American Physical Society



PRE 60 MODEL FOR DYNAMICS IN SUPERCOOLED WATER 6777

lowering the temperature below the freezing point, there is @an interesting special case. It is well known that upon super-
rapid increase in the local order surrounding a particlecooling, water undergoes an expansion or lowering of den-
(called a cagg leading to a substantial increase of the localsity. At the molecular level this can be traced to a tendency
structural relaxation time. In the supercooled liquid regime dor water to form hydrogen-bonded, tetrahedrally coordi-
trapped particle in a cage can migrate only through rearhated first- and second-neighbor shells around a given mol-
rangement of a large number of particles surrounding itécule, on lowering the temperature below the freezing point.
There is thus a strong coupling between the single particd NS configuration is a more open structure as compared to
motion and the density fluctuations in the fluid. MCT pre- five or six neighbor configurations which are known to be
dicts primarily physical processes in this time regime. Ac-Present with higher probability at higher temperatyi2s|.
cording to MCT, the equilibrium structure factstk) of the Thus the so-called cage in water has a qualitatively different
liquid completely determines the long-time cage structuraProPerty from the corresponding hard sphere or Lennard-
relaxation behavior. The existence of the crossover tempera®nes fluids. In the latter cases, density of the liquid actually
ture T, from normal liquid behavior to a non-ergodic state is NCréases upon cpolmg. The structura}l relaxation time of wa-
a major prediction of MCT and has been observed to exist iff€" increases rapidly upon supercooling because the tetrahe-
some experiment&l2]. At T, the coupling of density fluc- d_raIIy coordlnated hydrogen-bonded struct@aelower den-
tuation modes leads to a structural arrest, characterized By Structure is an inherently more stable structure locally
the emergence of a nondecaying plateau in ISF with a posfnd has a longer lifetime.
tive value of a non-ergodicity parameter. On approacHigg
from.above, there wiI.I pe an incregsing s_eparation bgtwe.erm- A PHENOMENOLOGICAL THEORY FOR DYNAMICS
the time scales describing the rattling motion of a particle in IN SUPERCOOLED WATER
the cage and the eventual structural relaxation time of the
cage. The ISF decays from the well-defined plateau at the The ISF is defined as the time-dependent autocorrelation
intermediate time to zero through arrelaxation that can be function of thekth Fourier component of the number density
described approximately by a Kohlrausch formula[exgy ~ fluctuation. In this paper the ISF is normalized by its initial
nP]. This has been shown numerically for various modelvalue which is the static structure factg¢k) [for the self-
systems, such as a hard sphere sys{@®], a mixed partof ISF,S(k)=1] and therefore is unity &t=0. The ISF
Lennard-Jones systefi4], and supercooled watér]. The  or its time-Fourier transforrtthe dynamic structure factois
initial part of this long-time decay is a time fractal, called measurable by coherent inelastic neutrom-oay scatterings.
von Schweidler's law, which can be derived throughAccording to our MD simulation10], the ISF of super-
asymptotic expansions of the MCT equatidrb]. cooled water initially decays within 1 ps to a plateau value

Although an asymptotic solution of the MCT equation determined by the Debye-Waller factatk). Then it relaxes
near theT, provides time fractals for approaching there-  slowly, according to a stretched exponential time depen-
laxation and for thes relaxation approaching the plateau, the dence, with &-dependent relaxation time(k) and a stretch
initial decay of the ISF remains the region covered by con€xponent3(k). The evolution of the ISF can therefore be
ventional kinetic theory. Kinetic theory has been employedexpressed as a product of two factors: the relaxation function
successfully in describing density fluctuations in dense gakepresenting motions within the cage and #hdependent
[16] and normal liquid regiof17]. The theory usually writes cage relaxation function. The in-cage relaxation function de-
the collision kernel explicitly and uses some approximationgays from an initial value of unity to the Debye-Waller factor
to solve an integro-differential equation for the ISF. Due toin a short-time scale defined by the potential well of the
complications, the collision kernel can be written explicitly confining cage. The cage relaxation or the local structural
only in a simple hard sphere case and only considering theelaxation can be described by the Kohlrausch formula
uncorrelated binary collisions. This is called the generalized®xf —(t/7)"].
Enskog equation, which has been solved numerically by the To calculate the short-time relaxation, we adopt a
method of kinetic mod€]18,19. Q-dependent triple relaxation tiM{@TRT) kinetic model of

To have a complete description of the dynamics of superFurtedo, Mazenko, and Yip22] and Boon and Yip[23]
cooled liquids, one needs an appropriate collision kernels twhich is an approximate solution of the generalized Enskog
account for the microscopic time scale relaxation and thequation. The QTRT calculates the dynamic structure factor
mode-coupling term as well to account for the cooperativérom a givenS(k). The dynamic structure factor gives the
molecular movements. With a very tedious computationcorrect second momekfvZ/S(k) and third moment for the
these dynamic equations can be solved self-consistently arttard sphere system as wg4]. QTRT is known to describe
numerically [20]. In this paper we shall introduce an ap- the density fluctuation of moderately dense hard sphere flu-
proximation to reduce the complete dynamic equation intdds well [25,16 even at largek. The normalized ISF for the
one effective kinetic equation without the mode-couplingentire time range is therefore written as
terms. The addition of the mode-coupling terms in the
memory function only affects the kinetic equation by giving
rise to a well-defined non-ergodicity factéor the Debye-
Waller factoy and eventually ther relaxation. We take this
into account as a multiplicative factor. This drastic approxi- 5
mation seems applicable to supercooled water, as we shallhere Fqrrr(k,t) is the normalized ISF calculated by a
demonstrate in the following analysis. modified QTRT model to be explained in Sec. IV. Equation

Application of the MCT to supercooled water represents(1) can also be written alternatively as

F(k,t>={[1—A<k>]ﬁQTRT<k,t)+A<k>}exr{—(t/ﬂﬂ],(l)
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F(k,t)=[1—A(K) [Forri(k,t) +A(K)exd — (t/7)7]. nential decay to the right-hand side of E8) to describe the
’ QTRT™ 1) ISF in the supercooled liquid phase and obtain @&g.

This latter form is plausible when the ISF shows a clear
two-step relaxation with a widely separated time scale. This

ISF satisfies the initial condition that & 0, the normalized Since the QTRT model is expected to find useful applica-
ISF is unity. Since the correct short-time behavior of the ISRjons in analyses of data generated by the recently developed
requires that the second derivative of the total ISE=a0 be  and rapidly growing inelastig-ray scattering techniques,
—k?v3/S(k), the second derivative at=0 of the we shall describe in detail a practical implementation of the
EQTRT(k,t) should be —kzvgl{S(k)[l—A(k)]}. This theory in this section. It is well known that the Boltzmann
amounts to modifying the thermal speeg by a factor €quation can be used to describe the collective density fluc-
1[1—A(k)]¥2 an important point which is verified in our tuation of fluids[23]. The linearized Boltzmann equation is
subsequent analysis of ISF obtained by MD. valid in the case of thermal density fluctuations in dilute
We may digress here by commenting that the structure ofases where the wavelength of the fluctuation is much larger
the MCT equation also indicates that Eq$) and (1') are  than the molecular size and the frequency is smaller than the
plausible. The equation of the motion for the ISF in the scheinverse of the molecular collision time. In the case of dense

IV. QTRT KINETIC MODEL

matic MCT is written ag15] fluids where the intermolecular collision frequency is com-
parable to the inverse collision time between two molecules
GEF (K, 1) + Q2(K)F (K, t) + v(K) 3;F (K, t) and the mean free path between two successive collisions not

large compared to the molecular dimension, the Boltzmann
equation description breaks down. Instead, the appropriate
kinetic equation for calculation of transport coefficients in

dense fluids is the Enskog model. Within the Enskog model,

where the parametef (k)= Vk2v2/S(k)>0 is the micro- when the collision kernel is properly modified to take into

. L - ccount the mean field effect, the finite diameter of the par-
scopic frequency defining the frequency or time scale of th icles, and the spatial correlation of the colliding pair of par-

model, »(k)>0 the stochastic friction constant describing ticles at contact, the so-called generalized Enskog equation is

the binary collisions between particles, ama(k,t) the X . .

. . > . obtained which has been shown to provide an accurate
mode-coupling relaxation kernel describing the cooperatlvemeans for calculating dynamic structure facBik, ), of
molecular motions. At the point of the structural arrest, the 9 dy o

total ISF F(k,t) can be written as the sum of the Debye- hmogerathely dense harrfi sphere I]‘Iw[a&,23l,(16,1]’. For a
Waller A(k) and a short-time correlation functiohl ard sphere system, the generalized Enskog equation treats
the particle collisions as binary but uncorrelated. It is there-

+02(k) j;m(k,t—t’)&t,F(k,t’)dt’ =0, (2

—A(K)1F(k,t) [15] fore unable to describe the long-time structural relaxation
R phenomenon. This deficiency of the generalized Enskog
F(k,t)=A(k)+[1—-A(k)]F(k,1), (3) equation can be improved by taking into account the so-

called ring (or repeated, correlatgatollision effects in the
where the reduced short-time correlation functie(k,t) can ~ memory functior{23]. This route leads to a greatly increased
be shown to Satisfy the same equation of motion as(m_ complexity in numerical Computations and is not suited for a

except that the microscopic frequency is modifiec(tk) practical analysis o_f experime_ntal da_ta_. Instead, it is more
=Q(K)/[1—A(k) ]2 to give the correct second derivative of tractable to approximate the ring collision effects by using

F(k,t=0), and the mode-coupling kernel changes to anothetrhe mode-coupling theory. Even this latter approximation is
forn’1 f(k l[) much too complicated for the practical treatment of lakge

Rayleigh-Brillouin scattering encountered in the inelastic
x-ray scatterindIXS) data. In this paper we find that the bulk
of this ring collision effect can be incorporated into the
t R QTRT framework by adding phenomenologically a term rep-
X J m(k,t—t")d, F(k,t")dt’=0. (4)  resenting they relaxation weighted by the Debye-Waller fac-
0 tor. This simplified treatment seems good enough for the
R analyses of our MD data in supercooled water.

For the short-time correlation functida(k,t), the mode- The generalized Enskog equation deals with dynamical
coupling term plays less important role and can be ignoredprocesses of a fluid system in the phase space. The basic
By ignoring in Eq.(4) the modified mode-coupling terms, dynamical variable in a kinetic theory description is the
the equation reduces schematically to a kinetic equatiophase-space density defined as
which has the same binary collision teur(k) as the original
equationEg. (2)]. The reduced kinetic equation can be writ- N
ten explicitly in the hard sphere case where the uncorrelated L .o I,
binary collision term is known, and QTRT provides an ap- P(rpt):; S =1i(1))8(p—Pi(1)). 5)
proximate solution of it. In the supercooled liquid regime
above the structural arrest temperature, the long-time part of
the ISF decays to zero eventually, approximatedly ad-rom the phase-space density, the number density at the po-
exd —(t/7)?]. Hence, one can multiply the stretched expo-sition ' can be obtained by integrating the momentum vari-

P2 (k,t) + Q2(K)F (k,t) + (k) aF (k, 1)+ Q2(k)
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able out, which given(F,t)=3N,8(F—F;(t)). One then equation with a given initial condition, Eq12). Direct so-
proceeds to construct the time-dependent phase-space ddwtion of the equation is very tedio(i22]. Fortunately, it has

sity correlation function, been known that the Born-Green-KirkwogBGK) method
[23,17 is an approximate but practical method for solving
C(r—r",pp’,t)={(Sp(rpt)Sp(r'p’'0)), (6) the above equation. It begins by regarding the above equa-

_ o . tion as a linear operator equation represented in the continu-
where dp is the deviation of phase-space density from theous momentum space. To see this, we rewrite the first term

equilibrium value, on the right-hand sidéhs) of Eq. (10) as
3p(FPt) = p(FPt)— (p(FP1)). () 6\ (-
I _ | ctkop'2) = [ opr| 2=
The (,,) denotes theN-particle equilibrium canonical en- M M

semble average. In a homogeneous fluid, the correlation
function depends only on the positional difference and the
time difference. So it can be written simply &¢r,pp’,t),
taking the origin as a reference point.

From the time-dependent phase-space density correlation
function, one can generate the van Hove space-time correla-
tion function of interest by integrating out the momentum

X 8(p—p")C(kp"p'2). (13
Then Eq.(13) can be written as a matrix equation,
[V(kz)—®(k2)]-C(kz)=—C(k), (14)

where operator¥(kz),®(kz),C(kz),C(k) are matrix repre-

variables, 2 - N -
sentations ofV(kpp'z),®(kpp’z),C(kpp’'z),C(kppP’) in
1 i <GB’ Z) =
G(F )= _f dgpf &’ C(F.B5' 1), ® the ﬁcontmuaousa momentum space, ar\d(kp.p.z) (.z
n —k-p/M)S(p—p'). For example, one can explicitly write
wheren is the average number density. The dynamical struc- @(Rﬁﬁ’z)z(ﬁ@(kzﬂﬁ’) (15)

ture factorS(k,w) is then defined as
1 L where the set of basd$p)} span a complete linear vector
S(k,w)= _J d3rJ ei(k-rlme(r» t)dt. 9) space. In the momentum space, Et{) is equivalent to an
' 2 —» ’ infinite number of linear algebraic equations. To solve Eq.
_ o _ (14 approximately, one would like to find a suitable discrete
With Fhe above def|n|t|0_n, the gengrallzed Enskog kineticset of momentum eigenfunctio@m», spanning a subspace
equation can be written in the following form: in which the memory function operatdp(kz) can be well
Lo approximated by a sum of two operators: one can be repre-
(Z_ k_p) C(Eﬁpﬁz)_f d3p”<D( "ﬁpﬁ/z)c(k’pﬁ/pﬂz) sented as a ﬁnitd\,lth-order matrix and the other an infinite
diagonal matrix. Thus in th&th order BGK method, the
N memory function operator becomes
=—C(kpp’), (10
" B (k) =Dpen(k) —ian(k)T, (16)
where a k,z)-dependent correlation function is obtained NN N
from the ,t)-dependent correlation function by whered . (k) is the operator that is B N matrix in the
B ) new basig|e)}, and
C(Eﬁﬁ'z)=if d3rJ dte " T=2C(F,pp’ 1), (11) _ .
0 —ian(k)=(an 1| Playyy). (17)

and the initial condition in Eq(10) is given by The matrix elements of the operator in this approximation is
therefore

DR 3 —ilZ~F 2 R ¢ _ 2 2
Clkap )_J dre C(r.pp" t=0)=nfo(p) &(p—p") <01i|CbNxN(k)|aj>:<ai|‘i)(k)|aj>+iaN(k)5i,j

+nfo(p)fo(p")[S(k)—1], (12 when i,j<N. (18)

wherefy(p) is the normalized Maxwell-Boltzmann distribu- One can then apply Eq16) to Eq. (14) and get a matrix
tion. equation

The functionCD(IZf)ﬁ’z) containing the mean field term R o R R R
and collision terms is called the phase-space collision [V(kz)+iay(k)I]-C(kz)=®yxn(k)-C(kz)—C(K).
memory function in this paper. Generally speaking, the col- (19
lision memory function is a wave number and frequency R
dependent. In the case of hard spheres, collisions in the gefthe matrixC(kz) can then be solved from E¢L9) as
eralized Enskog theory are the binary collisions which are R . R R R
nonlocal in space but instantaneous in time. This implies that C(k2)=—[1—-R(k2)®yxn(k)] 1-R(kz)-C(k), (20)
the memory function is independent of frequency. The gen- A
eralized Enskog equation, E(L0), is an integro-differential where theR(kz) matrix is given by
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R(kz)=[V(kz)+iay(k)1] L. (21) where the primed quantities are defined in terms of unprimed
N ones by
In the basegd|a)}, the operatorD (k) is aNX N matrix,

and the infinite matrix of the operat&(kz) can be truncated C(Kpp'2)

to aN XN matrix directly. Thus, Eq(20) is aNX N matrix C'(kpp'2)= [fo(p)fo(p' )Y
equation.

QTRT (Q-dependent triple-relaxation-time kinetic model D(Rpp'2)o(p")
is a seventh order BGK method. In the QTRT, the Hermite &' (Kpp'z) = 0

S _ _ = T S 12
polynomials in the Cartesian coordinate are chosen to con- [fo(p)fo(p")]™

struct a complete set of orthonormal functions of momentum.

- C(kpp')
- Hi(px/V2)H(py IV2)Hn(p,/v2) C'(kpp')= . 28
VP = i T (22 KPP~ () ol 1™ 29

whereH;(x) is the Hermite polynomial ane stands for the ~From Eq.(27) we see that the solution of EG0) is still
set of three indicesl(m,n). The orthogonality condition is valid, if we only replace C(kz),C(k),®(k) with
C'(k2),C’(k),®' (k). The matrix element of the memory
d3p, W ()W 4(p)f =5, 23)  function operator present in the generalized Enskog equa-
f P1¥o(P)V4(P)TolP) i @3 tion, Eq.(27), is defined as

It is useful to introduce the Dirac notation for the eigenket -
|a)=|1,m,n), which has a momentum representation given P s(k)=(a|d'(k)|B)

by
o i - [ [ @ ko W (07% 010l
(pla)y=(p[l.m,n)="w ,(p)[ fo(p)]"2 (24) f b 0
The first five functions in this complete set of momentum (29)
basis functions are the five hydrodynamical momentum ) . i
states, namely, and the matrix element of the operator in Eq(21)
Voo é)=1, Vo (P)W 5()fo(p)

Rualk) = (alRtp|g)= [ oPp— P EAP
Voo E)=&,, z—k-p/M+iay(k)

|E)=1#3(|2,0,00+]0,2,00+0,0,2)), _ f e ‘I’a(é).‘l'ﬁ(f)fo(g)' 30
v2kv, X+iy—§&,/vV2
Wy 0,08)=éx,
where
Wo1dé) =6y, (25
. z
where £&=p/Mv, is a dimensionless momentum. The first X= ,
three momentum states are associated with longitudinal hy- V2kvo
drodynamical modegsnumber density, longitudinal current,
energy. The last two are associated with transverse currents. an(k)
In addition, the states that correspond to the part of the stress y= )
tensor related to the shear viscosity and to the energy current V2kvo
are the sixth and seventh basis functions,
62 2sinko)
_ = 2 D S
[my=10.13), an(k) = Vmno?vog(0)| 2= - (3D
k)= i[|2'0,1>+|0,2,1>+‘/§|0'0,3>]_ (26)  The matrix element for the initial correlation function
V5 C(kpp') is
Before applying the above complete set of momentum A,
basis functions to obtain the matrix representation of the ki- C“'ﬁ(k)_<a|c (k)B)
netic equation, one should rewrite HG0) as . 5 L R .
R =f d pJ d°p’ C(kpp" )V o(P) V¥ p(P")
kﬁ [ ’ "R (LRRN P LRINRT
(z— V)C (kpp Z)—f d®p"®’' (kpp"z)C’" (kp"p'2) =[S0 5+ (S(K)—1) 801 81]. (32

=— C’(Eﬁﬁ’), (27 The matrix element of the phase-space correlation function is



TABLE |. Memory elements of the generalized memory function for hard splde(;%[\/?n(rzvog(o)]‘l. Q=ko; j1(Q) is the spherical Bessel function of order $(k)=[1 %
—nC(k)] % m
2
0,0,0 0,0, [E) 0,1,0 |7)=10,1,2) |
|0,0,0 0 0 0 0 0 0
kC(k) 11 d? \/; 4i 1 d?
0,0, *\/;Tg(a) —8i 3t WJ()(Q)} 4 EJl(Q) 0 0 *\/?) 3t WJ()(Q)}
8
I®) 0 4\/211@) -3 [1-i(Q)] 0 0 6V 15i1(Q
[2 d’ | d
10,1,0 0 0 0 —4l[§— 1+ d_QZ) Jo(Q)} \/_dQ{le(Q)} 0
4 & (1. S
|7 0 ~47 45 { Ja Q>} 16{15 sz(Qn(@” 0 8
| ) 0 4i {l dz } \F 0 0 15|59+ 8155 dzzjo(Q)} 3
BN 37" d—QzJo(Q) 6\ 151:(Q dQ g
_<
pd
>
<
o)
%)
TABLE II. Matrix elements ofD ,5(x,y). W(2) is the plasma dispersion functiow, (z2) = —2[1+2zwW(2)], z=x+1iy. é
T
0,0,0 0,0, |E) 0,1,0 01,2 | AL
@]
V3 o
0,0,0 -w(2) W@ }\/g[w(z)+zw’(z)] 0 0 V20 1+ ——z )W'(Z) e
10 g
V2
0,0.9 W (2) zw'(2) \[[(2z271)w "(2)-2] 0 0 f£2[2+(§ z-Z)wW'(2)] S
_|
m
|E) \[[w(z)+zw "(2)] %\/%[(222—1)W/(Z)—2] 3 (z —z)W'(z)— z——W(Z) 0 0 \/3?[1 272+ 5—42 +27 )w’(z) °
0,1,0 0 0 0 -w(2) gw'(z) 0
[0,1,2) 0 0 0 ‘gw’(z) W (2) 0
2|3 13
2 2 |1 5_53 T 3 5 ’
) —%’ 1+ E—f)w’(z)} —\[g 2+ 22—23)w’(z)} %){1—22% ;—422+zz4)w'(z)} 0 0 5[2°77 +(4 e )W(Z)

1819
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Caﬁ(kz)=(a|é’(kz)|ﬂ) that. hopefully one can still use a concept of effective hard
collisions. Looking at the experimental data, we see that the
_ 3 s s . - density fluctuation spectrum still qualitatively displays a trip-
_f d pf d°p’C(kpp'2)Wu(P)Wp(P'). (33 et with Lorentzian line shapes at sufficiently lok and
makes a transition to a Gaussian line shape at sufficiently
Because theV ,_;(p)=%¥(0dP)=1, and by applying Egs. highk, as predicted by the hard sphere kinetic theory. This
(8), (9), (11), and(33), the dynamic structure factor can be means that the concept of the collision mean free path is still
calculated as valid in the latter systems. The general structure of the hard
sphere kinetic theory is probably still valid for the latter sys-
tems provided we introduce an appropriate “collision fre-
quency,” Jmho?vog(o), which appears as a scaling factor
in the collisional memory matrix given in Table I.
If we combine Eqs(30), (31), (32), (34), and(20), we finally In order to apply the QTRT model in the framework of
get a closed-form matrix equation: Eqg. (1), we need to modify two input parametevg and
g(o) that enter into the calculation of the dynamic structure
S(K) factor. First of all, in order to preserve the second moment,
S(k,w) =~ ik as we have already mentioned in Sec. lll, the thermal speed
mV2kvo Vo has to be multiplied by a factor[ti— A(k)]¥2. Also for

y - - -1 a hard sphere system, the third moment exjigs4 and is

(k) D(X,y) - ®Pnxn proportional tono?vyg(o)(kve)?. In order to preserve the
third moment as well, we need to multipiy( o) by a factor
[1—A(k)]Y2 This shows that the Debye-Waller factor,
) (35 which is determined largely by the plateau value of the
(1.1, z=w+i0¥ F(k,t) at the intermediate time, also has a subtle effect on
the short-time part of the ISF through its effects on the modi-
fication of vy and g(o). We note that these changes are
(B (&) o(d) equivalent mathematically to the multiplication of the fre-
! ! 0 =v2kvgR, i(k,2). guency matrix (including free streaming and mean field
X+iy—§&,1V2 ! terms in the generalized Enskog equation by the factor
(36  1[1—A(k)]¥2 which is suggested by the modification of
: . . Q(k) to (k) in MCT.

Ong notes thakaOS(k,w)/S(lf) IS a dlmen§|onless In order to calculate the self-part of ISF by QTRT, we can
quantity. The elements of the matdxy, y(ko) andD(X,y)  pyt the direct correltion functio©(k)=0 in the collision
are given in Tables | and II, respectively. One can see th%emory function matrixTable ) and take the largk limit
the matrix® (ko) [includingiay(k)]is a function ok of the matrix element§18]. This means that we should put
and S(k). Thus if the thermodynamic state in terms of theall the spherical Bessel functions and their derivatives to
number density and the thermal speed are specified for theero. In addition, to account for the cage confinement effect
system under study, three system parameters: the hard-sphéfiesupercooled water, one has to modifyandg(o) by the
diametero, the pair correlation function at contagto), and  same factors as the density fluctuation case.
the static structure factd(k), have to be given in order to
calculate the dynamic structure fact8fk,w).

We can summarize the merit of the QTRT as follows: it
gives correct transport coefficients and thermodynamic prop-
erties of a hard sphere system; it gives correct short- and The ISFs are taken from MD simulation using a SPC/E
long-time properties of the intermediate scattering functionmodel potentia[8,10]. We analyzed both the collective and
and it gives an analyticab(k,w) accurate to within about self-part of ISFs calculated at four temperatures. These tem-
5% of the numerically converged solution of the generalizecberatures are 238 K-12 K below temperature of maximum
Enskog equatiof25]. density(TMD)], 225 K(—25 K below TMD), 215 K(—35 K

We need to comment here, in addition, on our applicatiorbelow TMD), and 207 K(—43 K below TMD). At these
of a hard sphere kinetic theory to a system of moleculesemperatures, the ISF at eadh shows clearly a time-
interacting with a hard core plus an attractive potential suclseparated two-step relaxation with a well-defined intermedi-
as the SPC/E water and real water. In these systems ttate plateau that defines the value of the Debye-Waller factor.
nature of the molecular collisions is obviously different from The long-timea relaxation can be well fitted by a stretched
purely binary collisions of a hard sphere system. One caexponential for both the self-part and collective ISFs
imagine that there will be “hard collisions” as well as “soft [27,7,8,9. To use Eq.1) to calculate the ISF, we take the
collisions” with systems having continuous potentials. Usecenter of mass structure fact&(k) from the MD calcula-
of the hard sphere kinetic theory amounts to ignoring all thetion. The hard sphere diameteris taken to be 0.275 nm
soft collisions and the possibility of formation of bound which is the size of a water molecule, and the pair correlation
states in the latter systems. This could result in a serioufunction at contacg(o) to be 3.2, as calculated from the
deficiency of the model at very low temperatures. But theCarnahan-Stirling equation of state for hard sphd&.
systems we are considering are at moderate temperatures Ebe three fitting parameters are the Debye-Waller factor

1
S(k,w)= Elm[cl,l(kz)]z=w+i0+- (34

D

X1m

XD (X,y)

where

Di,j<x,y):f d3é

V. DATA ANALYSIS
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FIG. 1. Collective ISFs afT=207 K. The
symbols denote the MD data(circle k
=3.33nm}, right trianglek=5.56 nm'%, square
k=6.67 nm%, down triangle 22.23 nit, cross
44.46 nnd). The solid lines are the calculation of
Eqg. (D).

F(k,D/S(K)

(] 1 2 3

]
Time (ps)

10

A(k), the a relaxation timer(k), and the stretched exponent of S(k,w) shown in Fig. 4. We denote also with arrows the
B(k). These three parameters are largely determined by thgositions of the corresponding frequencies where the damped
long-time part of the ISF, althoughA(k) does come into oscillations marked in Fig. 3 occur. One can therefore see
calculation of the short-time part through the modification ofthat these damped oscillations in the time domain are not due
v andg(o). Our calculation shows that these modificationsto the MD artifact but correspond to genuine Brillouin peaks
are absolutely essential in order to fit the short-time piece of
ISF. 1
Figure 1 shows the comparison of the MD calculated col-
lective ISFs(symbolg at five differentk values and the the-
oretical fits(solid lineg by using Eq.(1) at T=207 K (—43
K below TMD). The fits are reasonable considering that
there are no adjustable parameters for the short-time(art o
to 1 p9. The oscillations around 0.6 ps occurring at the low-
est curve is not reproduced in the fit. This curve correspond
to k=44.46 nm, too large to have a well-defined Brillouin
peak. We think the oscillation is due to spurious effects in
MD simulation as will be discussed later.

0.5

Equation(1) can fit the data with the collective ISFsinall 10" . ‘ . ‘ . . /
four temperatures and thevalues ranging from 3.33 to 100 0. 10 20 30 40 50 60 70
nm~* with only three parameters. The variations of the three . ,
parameters with temperatures and wave numbers shown g Yy B
Fig. 2 confirm the results obtained in R¢LO]. The three 07 mj; ;‘Dnuégg%m%‘?zv *Z:Vvvv T

i i i . i 0.6 aone] = By milhgy o asaataiaiS e J
parameters oscillate with the same period as3fi§. While OoooooooooooooooooooooOOOOoOSmnnﬂ :

one cannot see any significant variation of the Debye-Walle
factor andS(k) with the temperatures, the relaxation time
and stretch exponent change drastically with the temperatur
As water is supercooled, the relaxation time increases an
the stretch exponent decreases.

Figure 3 is the short-time part of the collective ISFTat
=215K (—35 K below TMD). The oscillations at the time
aroundt=0.6 ps are due to artifacts of MD simulation using
a finite simulation size. This type of artifact has already beer
discussed in one of our previous publicati¢@g]. In Fig. 3,

one can see that there is another type of oscillation overlap-

0.5
0.4

0.3
0

60 70

L
20 30

k (1/nm)

40

50

L
60 70

ping with this artifact, but showing a systematic change with £, 2. Three fitting parameters for collective ISF: Debye-

k. We marked the peaks of these damped oscillations witlajler factorA(k), the stretch exponens, the « relaxation time
arrows. The occurrence time of these oscillations becomescale 7, are plotted together with the structure fac&(k). The

earlier when theé increases. Ak becomes large enough, the symbols denote different temperaturésircle T=—43K below
oscillation becomes invisible. Through the QTRT calcula-TMD, squareT= —35K below TMD, pentago = — 15K below
tion, we find that these oscillations correspond to side peaksMD, triangle T=—12 K below TMD).
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0.9

0.89

o
3

FIG. 3. Short-time part of collective ISF at
T=215K (=35 K below TMD). The symbols
denote the MD datéeircle k=3.33 nm%, penta-
gon k=4.45nnm%, triangle 22.23 nm?'). Solid
lines are the calculations of El). The arrows
mark the damped oscillation corresponding to
Brillouin peaks inS(k, ).

F(k,t)/S(k)

0.5

0.4

0.3

0.2 ; .
10 10 107 10
Time (ps)

in the dynamic structure factor. It should be noted that since The self-ISF for the four different temperatures can also
the stretched exponential part in the ISF has a much longdye well fitted using Eq(1) with the three adjustable param-
relaxation time, its contribution t&(k,w) is limited to the eters. One such example Bt238 K (—12 K below TMD)

very low frequency region and does not affect the position ois shown in Fig. 6. The agreement between the phenomeno-
the Brillouin peak calculated from QTRT. We therefore canlogical theory[Eq. (1)] and the MD data is remarkable. Fig-
extract the sound speed from the positions of these peaks ime 7 shows the results of the three parameters extracted
the dynamic struture factor. Figure 5 shows the Brillouinfrom the fittings. It is noted that the Debye-Waller factor can
peak positions extracted from the QTRT calculations at dif-be fitted by the expression expk®a?/3) (solid lines, with
ferent k values and temperatures. The apparent Brillouina? denoting the mean square vibrational amplitude within the
peaks are only visible fdc below 8 nn ™. The uncerteinty in  cage. a has a value of 0.047 nm at temperaturd2 K
determining the peak positions is indicated by the error barshelow the TMD, decreasing slightly as the temperature is
The sound speed aboke=3.3nnmi ! can be calculated from lowered. We check that the stretch expongnapproaches
the slope of the peak position Ms curve. This givesc unity and the power law behavior ofAapproaches the form
=3600+300m/s. One can see that there is no significank? ask— 0 [27]. Thus, the diffusion limit is restored at low
difference in the Brillouin peak positions and the soundenoughk.

speed at different temperatures. The best experimental value Lastly, we come to discuss the possible source of the
for the high frequency sound speed in water at 5°C is 320@rtifacts occurring around=0.6 ps, shown in the lowest

m/s[26]. curve in Fig. 1. The origin of the oscillation can be attributed
x10™
5 T T T T T
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3 S O O e 4
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= 3k OOO ....... VVVOO LT ................ e 4 FIG. 4. S(k,w) Calculated by the QTRT Ki-
< %, OZVV 5 ﬁg,h;**l f : netic theory afl = 215 K (—35 below TMD. The
5?5‘;;%;;%;“ 00000 Yo *** vvvvvvvvvvv SRS S i symbols denote the differevalues as in Fig. 3.
R ?’f??#w#ff?"v ,,,,,,,, 6 DO U S S ] The arrows mark the frequency position where
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25 T T T T T T T

20 i _

15F ‘ § 8 FIG. 5. Extracted Brillouin peak positions
i~ from the QTRT calculation. The symbols denote
E § the different temperatures as in Fig. 2. The sound
e - : speedc is calculated to be 36@0300 m/s. The

10r 1 dotted line indicates the dispersion relatian

: =ck.
5F ¢=3625 m/s 1
o Al - 1 1 1 1 1 1 1 ]
¢} 1 2 3 4 5 [} 7 8
k (nm™)

to reflection of a propagating density disturbance at a pointravels exactly a distande The edge of the cubic simulation
within the box by the walls of the simulation box due to the box is L=18.65A. The speed of high frequency sound
imposition of the periodic boundary conditions. For example known to propagate in the water is abast 3200 m/s[26].

a disturbance propagating along the positivedirection  The time it takes for the disturbance to travel to the wall and
when it reaches the boundary of the simulation will become back to the same pointligc=0.6 ps. We have also
brought back to the opposite boundary by the periodidried to simulate a larger system (2264 particles. The
boundary condition. Then it continues to propagate inxhe preliminary result shows that the spurious oscillation no
direction and comes back to the point where it started after itonger occurs at 0.6 ps.

H20 at -12 K below TM

FIG. 6. Self-part ISFs af =207 K (—43 be-
low TMD). The symbols denote the MD data, the
solid lines are the theoretical calculatioksval-
ues are from 3.3—29.7 rim from the top to the
bottom. The inset figure shows the expanded
curves focusing on the short-time part.

F (k)

0.4
0

~0.2 N | Ll M | N | 1 .......|
10 10° 10 10 10
Time (ps)
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correlated binary collisions or MCT with a schematic short-

ook time behavior but deals correcly with the long-time structural
relaxation, is insufficient for this purpose. One needs, in fact,
o8 both theories. Strictly speaking, it would be more consistent
orr theoretically to incorporate the effects of the uncorrelated
06 binary collisions and the cooperative mode coupling effects
05, at the level of the memory function in the generalized kinetic
equation description. Then at the level of intermediate scat-
. — . . . . tering functions, the two effects will be coupled to a certain
.l g B . - extent. Calculations of the ISF will then be very cumbersom_e
' o o Y v v numerically because one needs to solve two coupled nonlin-
08y o o * v v = ear integro-differential equatioig0]. Fortunately, in the su-
orf i ° " 3 * * i percooled liquid regime or in low temperature water, the
o6 © ° o g (”) time scales representing the two respective effects are widely
05 . . . . . separated that they are effectively decoupled and become
° 5 10 15 20 % %  additive even at the level of the ISF. In this sense, a descrip-
o — . . . . tion of the physical processes in supercooled liquids is sim-
o 2 (p9) pler.
10'f o -0 o o o o . . On the other hand, the generalized Enskog theory applied
. * o o 9 to the short-time part of the ISF in supercooled water must
0 v * Y ° o o a s .: be modified to account for the cage effect. The modified
10°F v v * * x N R kinetic theory has the same collision term as the original one,
1 . . Vv v o - 3 and the only modification is to multiply by k-dependent
% 5 10 15 20 25 30  factor to the QTRT input parametey to preserve the sec-
k (nm™) ond moment and tg(o) to preserve the third moment of the

dynamic structure factor for the hard sphere system. The
modification factor is related to the Debye-Waller factor. The

The symbols denote the different temperatures as in Fig. 2. Th ebye-Waller factor gives the probability of the formation of

solid lines in the Debye-Waller factor curves are the fits to the pointt e periodic cages With_ wave vectér This makes the_
using the function of form expfk?a?3). a=0.038nm atT Debye-Waller factor an important parameter for describing

=207K, a=0.042nm atT=215K, a=0.043nm atT=225kK, the short-time dynamics by affecting the free streaming term

FIG. 7. Three parameters for the self-part I18F): Debye-
Waller factor; B8: the stretched exponent; the « relaxation time.

anda=0.047 nm aff =238 K. and the mean field term in the kinetic theory. This results in
the modification ofvy and g(o) by a k-dependent factor.
VI. DISCUSSION AND CONCLUSION Without this modification to the kinetic theory, the fit to the

We have shown by analyzing MD-generated ISFs of suS0t-time piece of the ISF would never be achieved. .
y yzing g We want to emphasize that the formalism described in

percooled water that the incorporation of both the appropri- tails in thi . Mtical tical. and straihtf
ate short-time collisional dynamics and a long-time structurafje alis In this paper is analytical, practical, and straightior-

relaxation represented by anrelaxation process is essential wgrd to |mplement_, adm|_ttedly phenomenogmal, when ap-
in the construction of an analytical model aiming at thepI|ed to the analysis of high resolution IXS spectra of low

analyses of coherent inelastic neutf@9] andx-ray scatter- temperature water. We have made analyses of a series of IXS

ing spectra of low temperature water. For both the INS an pectra of low temperature water' with the present theory.
IXS spectra, the characteristic feature of the unusually stron he results are satisfactory and will be reported elsewhere.
central peak demands the presence of a component havmg ACKNOWLEDGMENTS
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