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Model for dynamics in supercooled water
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We propose a phenomenological model for the intermediate scattering function~ISF! associated with density
fluctuation in low temperature water. The motivation is twofold: to extract various physical parameters asso-
ciated with the ISF computed from extended simple-point-charge model water at supercooled temperatures,
and to apply this model to analyze high resolution inelasticx-ray scattering data of water in the future. The ISF
of the center of mass of low temperature water computed from 10M-step molecular dynamics~MD! data
shows clearly time-separated two-step relaxation with a well-defined plateau in-between. We interpret this
result as due to the formation of a stable hydrogen-bonded, tetrahedrally coordinated cage around a typical
molecule in low temperature water. We thus model the long-time cage relaxation by the well-known Kohl-
rausch form exp@2(t/t)b# with an amplitude factor which is ak-dependent Debye-Waller factorA(k), and treat
the short-time relaxation as due to molecular collisional motions within the cage. The latter motions can be
described by the generalized Enskog equation, taking into account the confinement effect of the cage. We shall
show that the effect of the confinement changes the collisional dynamics by modifying certain input parameters
in the kinetic theory by a factor@1-A(k)#1/2. We solve the generalized Enskog equation approximately but
analytically by aQ-dependent triple relaxation time kinetic model. This kinetic model was previously shown
to account for the largek behavior of Rayleigh-Brillouin scattering from moderately dense, simple fluids. We
find that our model fits well with the MD generated collective as well as single-particle ISFs. For the short-time
collisional dynamics, we fix values of the hard sphere diameters and pair correlation function at contactg(s),
without introducting any adjustable parameters. The calculated ISFs reproduce the correct Brillouin peak
frequencies at lowk values. From the long-time dynamics, we deduce values of the Debye-Waller factorA(k),
the Kohlrausch exponentb(k), and the cage relaxation timet(k). @S1063-651X~99!13412-3#

PACS number~s!: 61.20.Ja, 64.70.Pf
e
n
th
re
e

-

je
ity
a
as
ulk
ex
led
n
to

-
pe
in

th
n

of

of
c-
of

ral
ture
li-

ass

al,
ter-

ti-
ved
olu-

ge
ral

er-

nse
c-
iled
on
I. BACKGROUND

The anomalous transport behavior of water upon sup
cooling @1,2# has attracted a great deal of attention amo
physical chemists and biophysicists. It has been found
the shear viscosity of supercooled water shows an appa
power law divergence on approaching a singular but exp
mentally inaccessible temperature of aboutTs5227 K at am-
bient pressure@3#. In a related fashion, the self-diffusion con
stant tends to zero atTs also with a power law@4,5#. These
experimental facts have stimulated some theoretical con
tures in an attempt to explain the origin of this singular
@2#. One of us@6# has recently noted that some dynamic
properties of interfacial water measured by incoherent qu
elastic neutron scattering show similarities to that of b
supercooled water at a lower temperature. In this cont
investigation of dynamical properties of bulk supercoo
water may lead to a better understanding of the correspo
ing properties of interfacial water which are of relevance
biotechnology, pharmaceutical, and the food industry.

Computer molecular dynamics~MD! has been used ex
tensively in the past to explore the phase behavior of su
cooled water, but few of them has been directed toward
vestigation of dynamics of water nearTs . The computation
of the long-time behavior of correlation functions, bo
single-particle and collective, needs to be made for a
meaningful studies of dynamical properties of water nearTs .
Very recently one such attempt has been made by some
using the extended simple-point-charge~SPC/E! model wa-
PRE 601063-651X/99/60~6!/6776~12!/$15.00
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ter @7–10#. One of the interesting findings of this series
MD simulations is an unambiguous identification of a stru
tural arrest temperature at 50 K below the temperature
maximum density of SPC/E water~250 K!. This implies that
the mode coupling theory, which predicts on fairly gene
ground the existence of such a structural arrest tempera
in sufficiently supercooled simple liquids, may also be app
cable to describe long-time dynamics of the center of m
motion of a subtle molecular liquid such as water.

The objective of this article is to propose an analytic
physical model to analyze these numerically computed in
mediate scattering functions~ISF’s! by molecular dynamics
both for the collective and single-particle data. This is mo
vated by a hope that the simple physical model we deri
here can be used to analyze present and future high res
tion quasielastic and inelastic neutron~or x-ray! scattering
experiments on bulk supercooled and interfacial water.

II. COMMENTS ON THE USE OF MODE-COUPLING
THEORY „MCT … AND KINETIC THEORY

MCT is a theory that focuses its attention on the ca
effect in the liquid state which can be pictured as a tempo
trapping of a molecule by its neighbors as a result of low
ing the temperature or increasing the density@11,12#. Mo-
lecular scale density fluctuations of high temperature de
fluids usually relax rapidly in a time scale of few picose
onds. The MCT does not attempt to address the deta
molecular dynamics in this time regime. However, up
6776 © 1999 The American Physical Society
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PRE 60 6777MODEL FOR DYNAMICS IN SUPERCOOLED WATER
lowering the temperature below the freezing point, there
rapid increase in the local order surrounding a parti
~called a cage!, leading to a substantial increase of the loc
structural relaxation time. In the supercooled liquid regim
trapped particle in a cage can migrate only through re
rangement of a large number of particles surrounding
There is thus a strong coupling between the single part
motion and the density fluctuations in the fluid. MCT pr
dicts primarily physical processes in this time regime. A
cording to MCT, the equilibrium structure factorS(k) of the
liquid completely determines the long-time cage structu
relaxation behavior. The existence of the crossover temp
tureTc from normal liquid behavior to a non-ergodic state
a major prediction of MCT and has been observed to exis
some experiments@12#. At Tc , the coupling of density fluc-
tuation modes leads to a structural arrest, characterize
the emergence of a nondecaying plateau in ISF with a p
tive value of a non-ergodicity parameter. On approachingTc
from above, there will be an increasing separation betw
the time scales describing the rattling motion of a particle
the cage and the eventual structural relaxation time of
cage. The ISF decays from the well-defined plateau at
intermediate time to zero through ana relaxation that can be
described approximately by a Kohlrausch formula exp@2(t/
t)b#. This has been shown numerically for various mod
systems, such as a hard sphere system@13#, a mixed
Lennard-Jones system@14#, and supercooled water@7#. The
initial part of this long-time decay is a time fractal, calle
von Schweidler’s law, which can be derived throu
asymptotic expansions of the MCT equation@15#.

Although an asymptotic solution of the MCT equatio
near theTc provides time fractals for approaching thea re-
laxation and for theb relaxation approaching the plateau, t
initial decay of the ISF remains the region covered by c
ventional kinetic theory. Kinetic theory has been employ
successfully in describing density fluctuations in dense
@16# and normal liquid region@17#. The theory usually writes
the collision kernel explicitly and uses some approximatio
to solve an integro-differential equation for the ISF. Due
complications, the collision kernel can be written explicit
only in a simple hard sphere case and only considering
uncorrelated binary collisions. This is called the generaliz
Enskog equation, which has been solved numerically by
method of kinetic model@18,19#.

To have a complete description of the dynamics of sup
cooled liquids, one needs an appropriate collision kernel
account for the microscopic time scale relaxation and
mode-coupling term as well to account for the cooperat
molecular movements. With a very tedious computati
these dynamic equations can be solved self-consistently
numerically @20#. In this paper we shall introduce an a
proximation to reduce the complete dynamic equation i
one effective kinetic equation without the mode-coupli
terms. The addition of the mode-coupling terms in t
memory function only affects the kinetic equation by givin
rise to a well-defined non-ergodicity factor~or the Debye-
Waller factor! and eventually thea relaxation. We take this
into account as a multiplicative factor. This drastic appro
mation seems applicable to supercooled water, as we s
demonstrate in the following analysis.

Application of the MCT to supercooled water represe
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an interesting special case. It is well known that upon sup
cooling, water undergoes an expansion or lowering of d
sity. At the molecular level this can be traced to a tenden
for water to form hydrogen-bonded, tetrahedrally coor
nated first- and second-neighbor shells around a given m
ecule, on lowering the temperature below the freezing po
This configuration is a more open structure as compare
five or six neighbor configurations which are known to
present with higher probability at higher temperatures@21#.
Thus the so-called cage in water has a qualitatively differ
property from the corresponding hard sphere or Lenna
Jones fluids. In the latter cases, density of the liquid actu
increases upon cooling. The structural relaxation time of w
ter increases rapidly upon supercooling because the tetr
drally coordinated hydrogen-bonded structure~a lower den-
sity structure! is an inherently more stable structure loca
and has a longer lifetime.

III. A PHENOMENOLOGICAL THEORY FOR DYNAMICS
IN SUPERCOOLED WATER

The ISF is defined as the time-dependent autocorrela
function of thekth Fourier component of the number dens
fluctuation. In this paper the ISF is normalized by its initi
value which is the static structure factorS(k) @for the self-
part of ISF,S(k)51# and therefore is unity att50. The ISF
or its time-Fourier transform~the dynamic structure factor! is
measurable by coherent inelastic neutron orx-ray scatterings.
According to our MD simulation@10#, the ISF of super-
cooled water initially decays within 1 ps to a plateau val
determined by the Debye-Waller factorA(k). Then it relaxes
slowly, according to a stretched exponential time dep
dence, with ak-dependent relaxation timet(k) and a stretch
exponentb(k). The evolution of the ISF can therefore b
expressed as a product of two factors: the relaxation func
representing motions within the cage and thek-dependent
cage relaxation function. The in-cage relaxation function
cays from an initial value of unity to the Debye-Waller fact
in a short-time scale defined by the potential well of t
confining cage. The cage relaxation or the local structu
relaxation can be described by the Kohlrausch form
exp@2(t/t)b#.

To calculate the short-time relaxation, we adopt
Q-dependent triple relaxation time~QTRT! kinetic model of
Furtedo, Mazenko, and Yip@22# and Boon and Yip@23#
which is an approximate solution of the generalized Ensk
equation. The QTRT calculates the dynamic structure fac
from a givenS(k). The dynamic structure factor gives th
correct second momentk2v0

2/S(k) and third moment for the
hard sphere system as well@24#. QTRT is known to describe
the density fluctuation of moderately dense hard sphere
ids well @25,16# even at largek. The normalized ISF for the
entire time range is therefore written as

F~k,t !5$@12A~k!#F̃QTRT~k,t !1A~k!%exp@2~ t/t!b#,
~1!

where F̃QTRT(k,t) is the normalized ISF calculated by
modified QTRT model to be explained in Sec. IV. Equati
~1! can also be written alternatively as
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F~k,t !5@12A~k!#F̃QTRT~k,t !1A~k!exp@2~ t/t!b#.
~18!

This latter form is plausible when the ISF shows a cle
two-step relaxation with a widely separated time scale. T
ISF satisfies the initial condition that att50, the normalized
ISF is unity. Since the correct short-time behavior of the I
requires that the second derivative of the total ISF att50 be
2k2v0

2/S(k), the second derivative att50 of the

F̃QTRT(k,t) should be 2k2v0
2/$S(k)@12A(k)#%. This

amounts to modifying the thermal speedv0 by a factor
1/@12A(k)#1/2, an important point which is verified in ou
subsequent analysis of ISF obtained by MD.

We may digress here by commenting that the structure
the MCT equation also indicates that Eqs.~1! and ~18! are
plausible. The equation of the motion for the ISF in the sc
matic MCT is written as@15#

] t
2F~k,t !1V2~k!F~k,t !1n~k!] tF~k,t !

1V2~k!E
0

t

m~k,t2t8!] t8F~k,t8!dt850, ~2!

where the parameterV(k)5Ak2v0
2/S(k).0 is the micro-

scopic frequency defining the frequency or time scale of
model, n(k).0 the stochastic friction constant describin
the binary collisions between particles, andm(k,t) the
mode-coupling relaxation kernel describing the coopera
molecular motions. At the point of the structural arrest,
total ISF F(k,t) can be written as the sum of the Deby
Waller A(k) and a short-time correlation function@1
2A(k)#F̂(k,t) @15#

F~k,t !5A~k!1@12A~k!#F̂~k,t !, ~3!

where the reduced short-time correlation functionF̂(k,t) can
be shown to satisfy the same equation of motion as Eq.~2!,
except that the microscopic frequency is modified toV̂(k)
5V(k)/@12A(k)#1/2 to give the correct second derivative
F(k,t50), and the mode-coupling kernel changes to anot
form m̂(k,t),

] t
2F̂~k,t !1V̂2~k!F̂~k,t !1n~k!] tF̂~k,t !1V̂2~k!

3E
0

t

m̂~k,t2t8!] t8F̂~k,t8!dt850. ~4!

For the short-time correlation functionF̂(k,t), the mode-
coupling term plays less important role and can be ignor
By ignoring in Eq. ~4! the modified mode-coupling terms
the equation reduces schematically to a kinetic equa
which has the same binary collision termn(k) as the original
equation@Eq. ~2!#. The reduced kinetic equation can be wr
ten explicitly in the hard sphere case where the uncorrela
binary collision term is known, and QTRT provides an a
proximate solution of it. In the supercooled liquid regim
above the structural arrest temperature, the long-time pa
the ISF decays to zero eventually, approximatedly
exp@2(t/t)b#. Hence, one can multiply the stretched exp
r
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nential decay to the right-hand side of Eq.~3! to describe the
ISF in the supercooled liquid phase and obtain Eq.~1!.

IV. QTRT KINETIC MODEL

Since the QTRT model is expected to find useful appli
tions in analyses of data generated by the recently develo
and rapidly growing inelasticx-ray scattering technique@26#,
we shall describe in detail a practical implementation of
theory in this section. It is well known that the Boltzman
equation can be used to describe the collective density fl
tuation of fluids@23#. The linearized Boltzmann equation
valid in the case of thermal density fluctuations in dilu
gases where the wavelength of the fluctuation is much la
than the molecular size and the frequency is smaller than
inverse of the molecular collision time. In the case of den
fluids where the intermolecular collision frequency is co
parable to the inverse collision time between two molecu
and the mean free path between two successive collisions
large compared to the molecular dimension, the Boltzma
equation description breaks down. Instead, the appropr
kinetic equation for calculation of transport coefficients
dense fluids is the Enskog model. Within the Enskog mod
when the collision kernel is properly modified to take in
account the mean field effect, the finite diameter of the p
ticles, and the spatial correlation of the colliding pair of pa
ticles at contact, the so-called generalized Enskog equatio
obtained which has been shown to provide an accu
means for calculating dynamic structure factorS(k,v), of
moderately dense hard sphere fluids@22,23,16,17#. For a
hard sphere system, the generalized Enskog equation t
the particle collisions as binary but uncorrelated. It is the
fore unable to describe the long-time structural relaxat
phenomenon. This deficiency of the generalized Ens
equation can be improved by taking into account the
called ring ~or repeated, correlated! collision effects in the
memory function@23#. This route leads to a greatly increase
complexity in numerical computations and is not suited fo
practical analysis of experimental data. Instead, it is m
tractable to approximate the ring collision effects by usi
the mode-coupling theory. Even this latter approximation
much too complicated for the practical treatment of largek
Rayleigh-Brillouin scattering encountered in the inelas
x-ray scattering~IXS! data. In this paper we find that the bu
of this ring collision effect can be incorporated into th
QTRT framework by adding phenomenologically a term re
resenting thea relaxation weighted by the Debye-Waller fa
tor. This simplified treatment seems good enough for
analyses of our MD data in supercooled water.

The generalized Enskog equation deals with dynam
processes of a fluid system in the phase space. The b
dynamical variable in a kinetic theory description is t
phase-space density defined as

r~rWpW t !5(
i 51

N

d„rW2rW i~ t !…d„pW 2pW i~ t !…. ~5!

From the phase-space density, the number density at the
sition rW can be obtained by integrating the momentum va
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able out, which givesn(rW,t)5( i 51
N d„rW2rW i(t)…. One then

proceeds to construct the time-dependent phase-space
sity correlation function,

C~rW2rW8,pW pW 8,t !5^dr~rWpW t !dr~rW8pW 80!&, ~6!

where dr is the deviation of phase-space density from
equilibrium value,

dr~rWpW t !5r~rWpW t !2^r~rWpW t !&. ~7!

The ^, ,& denotes theN-particle equilibrium canonical en
semble average. In a homogeneous fluid, the correla
function depends only on the positional difference and
time difference. So it can be written simply asC(rW,pW pW 8,t),
taking the origin as a reference point.

From the time-dependent phase-space density correla
function, one can generate the van Hove space-time cor
tion function of interest by integrating out the momentu
variables,

G~rW,t !5
1

n E d3pE d3p8C~rW,pW pW 8,t !, ~8!

wheren is the average number density. The dynamical str
ture factorS(k,v) is then defined as

S~k,v!5
1

2p E d3r E
2`

`

ei ~kW•rW2vt !G~rW,t !dt. ~9!

With the above definition, the generalized Enskog kine
equation can be written in the following form:

S z2
kW•pW

M
DC~kWpW pW 8z!2E d3p9F~kWpW pW 9z!C~kWpW 9pW 8z!

52C~kWpW pW 8!, ~10!

where a (kW ,z)-dependent correlation function is obtaine
from the (rW,t)-dependent correlation function by

C~kWpW pW 8z!5 i E d3r E
0

`

dt e2 i ~kW•rW2zt!C~rW,pW pW 8,t !, ~11!

and the initial condition in Eq.~10! is given by

C~kWpW pW 8!5E d3r e2 ikW•rWC~rW,pW pW 8,t50!5n f0~p!d~pW 2pW 8!

1n f0~p! f 0~p8!@S~k!21#, ~12!

wheref 0(p) is the normalized Maxwell-Boltzmann distribu
tion.

The functionF(kWpW pW 8z) containing the mean field term
and collision terms is called the phase-space collis
memory function in this paper. Generally speaking, the c
lision memory function is a wave number and frequen
dependent. In the case of hard spheres, collisions in the
eralized Enskog theory are the binary collisions which
nonlocal in space but instantaneous in time. This implies
the memory function is independent of frequency. The g
eralized Enskog equation, Eq.~10!, is an integro-differential
en-

e
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equation with a given initial condition, Eq.~12!. Direct so-
lution of the equation is very tedious@22#. Fortunately, it has
been known that the Born-Green-Kirkwood~BGK! method
@23,17# is an approximate but practical method for solvin
the above equation. It begins by regarding the above eq
tion as a linear operator equation represented in the cont
ous momentum space. To see this, we rewrite the first t
on the right-hand side~rhs! of Eq. ~10! as

S k2
kW•pW

M
DC~kWpW pW 8z!5E d3p9S z2

kW•pW

M
D

3d~pW 2pW 9!C~kWpW 9pW 8z!. ~13!

Then Eq.~13! can be written as a matrix equation,

@V̂~kz!2F̂~kz!#•Ĉ~kz!52Ĉ~k!, ~14!

where operatorsV̂(kz),F̂(kz),Ĉ(kz),Ĉ(k) are matrix repre-
sentations ofV(kWpW pW 8z),F(kWpW pW 8z),C(kWpW pW 8z),C(kWpW pW 8) in
the continuous momentum space, andV(kWpW pW 8z)5(z
2kW•pW /M )d(pW 2pW 8). For example, one can explicitly write

F~kWpW pW 8z!5^pW uF̂~kz!upW 8&, ~15!

where the set of bases$upW &% span a complete linear vecto
space. In the momentum space, Eq.~14! is equivalent to an
infinite number of linear algebraic equations. To solve E
~14! approximately, one would like to find a suitable discre
set of momentum eigenfunctions$ua&%, spanning a subspac
in which the memory function operatorF̂(kz) can be well
approximated by a sum of two operators: one can be re
sented as a finite,Nth-order matrix and the other an infinit
diagonal matrix. Thus in theNth order BGK method, the
memory function operator becomes

F̂~k!5F̂N3N~k!2 iaN~k! Î , ~16!

whereF̂N3N(k) is the operator that is aN3N matrix in the
new basis$ua&%, and

2 iaN~k!5^aN11uF̂uaN11&. ~17!

The matrix elements of the operator in this approximation
therefore

^a i uF̂N3N~k!ua j&5^a i uF̂~k!ua j&1 iaN~k!d i , j

when i , j ,N. ~18!

One can then apply Eq.~16! to Eq. ~14! and get a matrix
equation

@V̂~kz!1 iaN~k! Î #•Ĉ~kz!5F̂N3N~k!•Ĉ~kz!2Ĉ~k!.
~19!

The matrixĈ(kz) can then be solved from Eq.~19! as

Ĉ~kz!52@ Î 2R̂~kz!F̂N3N~k!#21
•R̂~kz!•Ĉ~k!, ~20!

where theR̂(kz) matrix is given by
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R̂~kz!5@V̂~kz!1 iaN~k! Î #21. ~21!

In the bases$ua&%, the operatorF̂N3N(k) is a N3N matrix,
and the infinite matrix of the operatorR̂(kz) can be truncated
to a N3N matrix directly. Thus, Eq.~20! is a N3N matrix
equation.

QTRT ~Q-dependent triple-relaxation-time kinetic mode!
is a seventh order BGK method. In the QTRT, the Herm
polynomials in the Cartesian coordinate are chosen to c
struct a complete set of orthonormal functions of momentu

Ca~pW !5
Hl~px /& !Hm~py /& !Hn~pz /& !

~ l !m!n! !1/22~ l 1m1n!/2 , ~22!

whereHi(x) is the Hermite polynomial anda stands for the
set of three indices (l ,m,n). The orthogonality condition is

E d3p1 Ca~pW !Cb~pW ! f 0~p!5dab . ~23!

It is useful to introduce the Dirac notation for the eigenk
ua&5u l ,m,n&, which has a momentum representation giv
by

^pW ua&5^pW u l ,m,n&5Ca~pW !@ f 0~p!#1/2. ~24!

The first five functions in this complete set of momentu
basis functions are the five hydrodynamical moment
states, namely,

C0,0,0~jW !51,

C0,0,1~JW !5jz ,

uE&51/)~ u2,0,0&1u0,2,0&1u0,0,2&),

C1,0,0~jW !5jx ,

C0,1,0~j$ !5jy , ~25!

where jW5pW /Mv0 is a dimensionless momentum. The fir
three momentum states are associated with longitudinal
drodynamical modes~number density, longitudinal curren
energy!. The last two are associated with transverse curre
In addition, the states that correspond to the part of the st
tensor related to the shear viscosity and to the energy cu
are the sixth and seventh basis functions,

uh&5u0,1,1&,

uk&5
1

A5
@ u2,0,1&1u0,2,1&1)u0,0,3&]. ~26!

Before applying the above complete set of moment
basis functions to obtain the matrix representation of the
netic equation, one should rewrite Eq.~10! as

S z2
kW•pW

M
DC8~kWpW pW 8z!2E d3p9F8~kWpW pW 9z!C8~kWpW 9pW 8z!

52C8~kWpW pW 8!, ~27!
e
n-
.

t
n

y-

s.
ss
nt

i-

where the primed quantities are defined in terms of unprim
ones by

C8~kWpW pW 8z!5
C~kWpW pW 8z!

@ f 0~p! f 0~p8!#1/2,

F8~kWpW pW 8z!5
F~kWpW pW 8z! f 0~p8!

@ f 0~p! f 0~p8!#1/2 ,

C8~kWpW pW 8!5
C~kWpW pW 8!

@ f 0~p! f 0~p8!#1/2. ~28!

From Eq. ~27! we see that the solution of Eq.~20! is still
valid, if we only replace Ĉ(kz),Ĉ(k),F̂(k) with
Ĉ8(kz),Ĉ8(k),F̂8(k). The matrix element of the memor
function operator present in the generalized Enskog eq
tion, Eq. ~27!, is defined as

Fa,b~k!5^auF̂8~k!ub&

5E d3pE d3p8F~kWpW pW 8!Ca~pW !Cb~pW 8! f 0~p8!

~29!

and the matrix element of theR̂ operator in Eq.~21!

Ra,b~kz!5^auR̂~k,z!ub&5E d3p
Ca~pW !Cb~pW ! f 0~p!

z2kW•pW /M1 iaN~k!

5
1

&kv0
E d3j

Ca~jW !Cb~jW ! f 0~j!

x1 iy2jz /&
, ~30!

where

x5
z

&kv0

,

y5
aN~k!

&kv0

,

aN~k!5Apns2v0g~s!F62

15
2

2 sin~ks!

ks G . ~31!

The matrix element for the initial correlation functio
C(kpp8) is

Ca,b~k!5^auĈ8~k!ub&

5E d3pE d3p8C~kWpW pW 8!Ca~pW !Cb~pW 8!

5n@da,b1~S~k!21!da1db1#. ~32!

The matrix element of the phase-space correlation functio



T spherical Bessel function of order 1;S(k)5@1
2n

u0,1,1& uk&

u0,0 0 0

u0,0 0 2
4i

A10
F1

3
1

d2

dQ2 j 0~Q!G
uE& 0 6Ap

15
j 1~Q!

u0,1 F 1

Q
j 1~Q!G 0

uh&
2

Q2 S 1

Q
j 1~Q! D G 0

uk& 0 2
i

15F59181
d2

dQ2 j 0~Q!G

z)#, z5x1 iy .

,1,1& uk&

u0,0 0
A20

10 F11S 3

2
2z2Dw8~z!G

u0,0 0 2
A2

5
@21~

3
2 z2z3!w8~z!#

uE& 0
A30

30 F122z21S 7

2
24z212z4Dw8~z!G

u0,1 w8~z! 0

u0,1 w8(z) 0

uk& 0
2

5 F3

2
z2z31S 13

4
z23z31z5Dw8~z!G
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ABLE I. Memory elements of the generalized memory function for hard sphereFa,b@Apns2v0g(s)#21. Q5ks; j 1(Q) is the
C(k)#21.

u0,0,0& u0,0,1& uE& u0,1,0& uh&5

,0& 0 0 0 0

,1& 2
kC~k!

Aps2g~s!
28i F1

3
1

d2

dQ2 j 0~Q!G 4Ap

6
j 1~Q! 0

0 4Ap

6
j 1~Q! 2

8i

3
@12 j 0~Q!# 0

,0& 0 0 0 24i F2

3
2S 11

d2

dQ2D j 0~Q!G 24Ap
d

dQ

0 24Ap
d

dQ F 1

Q
j 1~Q!G 216i F 4

15
1

d

d

0 2
4i

A10
F1

3
1

d2

dQ2 j 0~Q!G 6Ap

15
j 1~Q! 0

TABLE II. Matrix elements ofDab(x,y). W(z) is the plasma dispersion function,w8(z)522@11zw(

u0,0,0& u0,0,1& uE& u0,1,0& u0

,0& 2w(z)
&

2
w8~z!

1

2
A2

3
@w~z!1zw8~z!# 0

,1&
&

2
w8~z! zw8(z)

1

2
A1

3
@~2z221!w8~z!22# 0

1

2
A2

3
@w~z!1zw8~z!#

1

2
A1

3
@~2z221!w8~z!22#

1

3 F ~z32z!w8~z!2z2
5

2
w~z!G 0

,0& 0 0 0 2w(z)
A2

2

,1& 0 0 0
&

2
w8~z! z

2
A20

10 F11S 3

2
2z2Dw8~z!G 2A2

5 Fz1S 3

2
z2z3Dw8~z!G A30

30 F122z21S 7

2
24z212z4Dw8~z!G 0
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Ca,b~kz!5^auĈ8~kz!ub&

5E d3pE d3p8C~kWpW pW 8z!Ca~pW !Cb~pW 8!. ~33!

Because theCa51(pW )5C0,0,0(pW )51, and by applying Eqs
~8!, ~9!, ~11!, and ~33!, the dynamic structure factor can b
calculated as

S~k,v!5
1

np
Im@C1,1~kz!#z5v1 i01. ~34!

If we combine Eqs.~30!, ~31!, ~32!, ~34!, and~20!, we finally
get a closed-form matrix equation:

S~k,v!52
S~k!

p&kv0

3ImF S IJ2
y

iaN~k!
DJ ~x,y!•FJ N3ND 21

3DJ ~x,y!G
~1,1!, z5v1 i01

, ~35!

where

Di , j~x,y!5E d3jW
C i~jW !C j~jW ! f 0~jW !

x1 iy2jz /&
5&kv0Ri , j~k,z!.

~36!

One notes that&kv0S(k,v)/S(k) is a dimensionless
quantity. The elements of the matrixF̂N3N(ks) andD̂(x,y)
are given in Tables I and II, respectively. One can see
the matrixF̂N3N(ks) @including iaN(k)# is a function ofks
and S(k). Thus if the thermodynamic state in terms of t
number density and the thermal speed are specified for
system under study, three system parameters: the hard-s
diameters, the pair correlation function at contactg(s), and
the static structure factorS(k), have to be given in order to
calculate the dynamic structure factorS(k,v).

We can summarize the merit of the QTRT as follows:
gives correct transport coefficients and thermodynamic pr
erties of a hard sphere system; it gives correct short-
long-time properties of the intermediate scattering functi
and it gives an analyticalS(k,v) accurate to within abou
5% of the numerically converged solution of the generaliz
Enskog equation@25#.

We need to comment here, in addition, on our applicat
of a hard sphere kinetic theory to a system of molecu
interacting with a hard core plus an attractive potential s
as the SPC/E water and real water. In these systems
nature of the molecular collisions is obviously different fro
purely binary collisions of a hard sphere system. One
imagine that there will be ‘‘hard collisions’’ as well as ‘‘so
collisions’’ with systems having continuous potentials. U
of the hard sphere kinetic theory amounts to ignoring all
soft collisions and the possibility of formation of boun
states in the latter systems. This could result in a seri
deficiency of the model at very low temperatures. But
systems we are considering are at moderate temperatur
at

he
ere

t
p-
d
,

d

n
s
h
he

n

e

s
e

so

that hopefully one can still use a concept of effective ha
collisions. Looking at the experimental data, we see that
density fluctuation spectrum still qualitatively displays a tri
let with Lorentzian line shapes at sufficiently lowk and
makes a transition to a Gaussian line shape at sufficie
high k, as predicted by the hard sphere kinetic theory. T
means that the concept of the collision mean free path is
valid in the latter systems. The general structure of the h
sphere kinetic theory is probably still valid for the latter sy
tems provided we introduce an appropriate ‘‘collision fr
quency,’’ Apns2v0g(s), which appears as a scaling fact
in the collisional memory matrix given in Table I.

In order to apply the QTRT model in the framework
Eq. ~1!, we need to modify two input parametersv0 and
g(s) that enter into the calculation of the dynamic structu
factor. First of all, in order to preserve the second mome
as we have already mentioned in Sec. III, the thermal sp
v0 has to be multiplied by a factor 1/@12A(k)#1/2. Also for
a hard sphere system, the third moment exists@24# and is
proportional tons2v0g(s)(kv0)2. In order to preserve the
third moment as well, we need to multiplyg(s) by a factor
@12A(k)#1/2. This shows that the Debye-Waller facto
which is determined largely by the plateau value of t
F(k,t) at the intermediate time, also has a subtle effect
the short-time part of the ISF through its effects on the mo
fication of v0 and g(s). We note that these changes a
equivalent mathematically to the multiplication of the fr
quency matrix ~including free streaming and mean fie
terms! in the generalized Enskog equation by the fac
1/@12A(k)#1/2, which is suggested by the modification o
V(k) to V̂(k) in MCT.

In order to calculate the self-part of ISF by QTRT, we c
put the direct correltion functionC(k)50 in the collision
memory function matrix~Table I! and take the largek limit
of the matrix elements@18#. This means that we should pu
all the spherical Bessel functions and their derivatives
zero. In addition, to account for the cage confinement eff
in supercooled water, one has to modifyv0 andg(s) by the
same factors as the density fluctuation case.

V. DATA ANALYSIS

The ISFs are taken from MD simulation using a SPC
model potential@8,10#. We analyzed both the collective an
self-part of ISFs calculated at four temperatures. These t
peratures are 238 K@212 K below temperature of maximum
density~TMD!#, 225 K ~225 K below TMD!, 215 K ~235 K
below TMD!, and 207 K~243 K below TMD!. At these
temperatures, the ISF at eachk shows clearly a time-
separated two-step relaxation with a well-defined interme
ate plateau that defines the value of the Debye-Waller fac
The long-timea relaxation can be well fitted by a stretche
exponential for both the self-part and collective IS
@27,7,8,9#. To use Eq.~1! to calculate the ISF, we take th
center of mass structure factorS(k) from the MD calcula-
tion. The hard sphere diameters is taken to be 0.275 nm
which is the size of a water molecule, and the pair correlat
function at contactg(s) to be 3.2, as calculated from th
Carnahan-Stirling equation of state for hard spheres@28#.
The three fitting parameters are the Debye-Waller fac
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FIG. 1. Collective ISFs atT5207 K. The
symbols denote the MD data~circle k
53.33 nm21, right trianglek55.56 nm21, square
k56.67 nm21, down triangle 22.23 nm21, cross
44.46 nm1!. The solid lines are the calculation o
Eq. ~1!.
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A(k), thea relaxation timet(k), and the stretched expone
b(k). These three parameters are largely determined by
long-time part of the ISF, althoughA(k) does come into
calculation of the short-time part through the modification
v0 andg(s). Our calculation shows that these modificatio
are absolutely essential in order to fit the short-time piece
ISF.

Figure 1 shows the comparison of the MD calculated c
lective ISFs~symbols! at five differentk values and the the
oretical fits~solid lines! by using Eq.~1! at T5207 K ~243
K below TMD!. The fits are reasonable considering th
there are no adjustable parameters for the short-time par~up
to 1 ps!. The oscillations around 0.6 ps occurring at the lo
est curve is not reproduced in the fit. This curve correspo
to k544.46 nm21, too large to have a well-defined Brilloui
peak. We think the oscillation is due to spurious effects
MD simulation as will be discussed later.

Equation~1! can fit the data with the collective ISFs in a
four temperatures and thek values ranging from 3.33 to 10
nm21 with only three parameters. The variations of the th
parameters with temperatures and wave numbers show
Fig. 2 confirm the results obtained in Ref.@10#. The three
parameters oscillate with the same period as theS(k). While
one cannot see any significant variation of the Debye-Wa
factor andS(k) with the temperatures, the relaxation tim
and stretch exponent change drastically with the tempera
As water is supercooled, the relaxation time increases
the stretch exponent decreases.

Figure 3 is the short-time part of the collective ISF atT
5215 K ~235 K below TMD!. The oscillations at the time
aroundt50.6 ps are due to artifacts of MD simulation usin
a finite simulation size. This type of artifact has already be
discussed in one of our previous publications@27#. In Fig. 3,
one can see that there is another type of oscillation over
ping with this artifact, but showing a systematic change w
k. We marked the peaks of these damped oscillations w
arrows. The occurrence time of these oscillations beco
earlier when thek increases. Ask becomes large enough, th
oscillation becomes invisible. Through the QTRT calcu
tion, we find that these oscillations correspond to side pe
he
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re.
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n
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of S(k,v) shown in Fig. 4. We denote also with arrows th
positions of the corresponding frequencies where the dam
oscillations marked in Fig. 3 occur. One can therefore s
that these damped oscillations in the time domain are not
to the MD artifact but correspond to genuine Brillouin pea

FIG. 2. Three fitting parameters for collective ISF: Deby
Waller factorA(k), the stretch exponentb, the a relaxation time
scale t, are plotted together with the structure factorS(k). The
symbols denote different temperatures~circle T5243 K below
TMD, squareT5235 K below TMD, pentagonT5215 K below
TMD, triangleT5212 K below TMD!.
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FIG. 3. Short-time part of collective ISF a
T5215 K ~235 K below TMD!. The symbols
denote the MD data~circle k53.33 nm21, penta-
gon k54.45 nm21, triangle 22.23 nm21!. Solid
lines are the calculations of Eq.~1!. The arrows
mark the damped oscillation corresponding
Brillouin peaks inS(k,v).
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in the dynamic structure factor. It should be noted that si
the stretched exponential part in the ISF has a much lon
relaxation time, its contribution toS(k,v) is limited to the
very low frequency region and does not affect the position
the Brillouin peak calculated from QTRT. We therefore c
extract the sound speed from the positions of these peak
the dynamic struture factor. Figure 5 shows the Brillou
peak positions extracted from the QTRT calculations at
ferent k values and temperatures. The apparent Brillo
peaks are only visible fork below 8 nm21. The uncerteinty in
determining the peak positions is indicated by the error b
The sound speed abovek53.3 nm21 can be calculated from
the slope of the peak position vsk curve. This givesc
536006300 m/s. One can see that there is no signific
difference in the Brillouin peak positions and the sou
speed at different temperatures. The best experimental v
for the high frequency sound speed in water at 5 °C is 3
m/s @26#.
e
er

f

in

-
n

s.

t
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0

The self-ISF for the four different temperatures can a
be well fitted using Eq.~1! with the three adjustable param
eters. One such example atT5238 K ~212 K below TMD!
is shown in Fig. 6. The agreement between the phenome
logical theory@Eq. ~1!# and the MD data is remarkable. Fig
ure 7 shows the results of the three parameters extra
from the fittings. It is noted that the Debye-Waller factor c
be fitted by the expression exp(2k2a2/3) ~solid lines!, with
a2 denoting the mean square vibrational amplitude within
cage. a has a value of 0.047 nm at temperature212 K
below the TMD, decreasing slightly as the temperature
lowered. We check that the stretch exponentb approaches
unity and the power law behavior of 1/t approaches the form
k2 ask→0 @27#. Thus, the diffusion limit is restored at low
enoughk.

Lastly, we come to discuss the possible source of
artifacts occurring aroundt50.6 ps, shown in the lowes
curve in Fig. 1. The origin of the oscillation can be attribut
re
FIG. 4. S(k,v) calculated by the QTRT ki-
netic theory atT5215 K ~235 below TMD!. The
symbols denote the differentk values as in Fig. 3.
The arrows mark the frequency position whe
the damped oscillations occur in Fig. 3.
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FIG. 5. Extracted Brillouin peak position
from the QTRT calculation. The symbols deno
the different temperatures as in Fig. 2. The sou
speedc is calculated to be 36006300 m/s. The
dotted line indicates the dispersion relationv
5ck.
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to reflection of a propagating density disturbance at a p
within the box by the walls of the simulation box due to t
imposition of the periodic boundary conditions. For examp
a disturbance propagating along the positivex direction
when it reaches the boundary of the simulation will
brought back to the opposite boundary by the perio
boundary condition. Then it continues to propagate in thx
direction and comes back to the point where it started afte
t

,

c

it

travels exactly a distanceL. The edge of the cubic simulatio
box is L518.65 Å. The speed of high frequency sou
known to propagate in the water is aboutc53200 m/s@26#.
The time it takes for the disturbance to travel to the wall a
come back to the same point isL/c50.6 ps. We have also
tried to simulate a larger system (216364 particles!. The
preliminary result shows that the spurious oscillation
longer occurs at 0.6 ps.
e

ed
FIG. 6. Self-part ISFs atT5207 K ~243 be-
low TMD!. The symbols denote the MD data, th
solid lines are the theoretical calculations.k val-
ues are from 3.3–29.7 nm21 from the top to the
bottom. The inset figure shows the expand
curves focusing on the short-time part.
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VI. DISCUSSION AND CONCLUSION

We have shown by analyzing MD-generated ISFs of
percooled water that the incorporation of both the approp
ate short-time collisional dynamics and a long-time structu
relaxation represented by ana relaxation process is essenti
in the construction of an analytical model aiming at t
analyses of coherent inelastic neutron@29# andx-ray scatter-
ing spectra of low temperature water. For both the INS a
IXS spectra, the characteristic feature of the unusually str
central peak demands the presence of a component ha
the form of thea relaxation, besides the regular Rayleig
Brillouin components provided by the kinetic theory descr
tion of high temperature density fluctuations in dense flui
We stress here that in order to analyze experimental spe
which are invariably measured in the frequency domain,
have to have a theory that covers the ISF in their entire ti
domain, both short time and long time. In this regard, the
of either the kinetic theory that correctly treats only the u

FIG. 7. Three parameters for the self-part ISFA(k): Debye-
Waller factor;b: the stretched exponent;t: the a relaxation time.
The symbols denote the different temperatures as in Fig. 2.
solid lines in the Debye-Waller factor curves are the fits to the po
using the function of form exp(2k2a2/3). a50.038 nm at T
5207 K, a50.042 nm atT5215 K, a50.043 nm atT5225 K,
anda50.047 nm atT5238 K.
an
-
i-
l

d
g

ing

-
.
ra,
e
e
e
-

correlated binary collisions or MCT with a schematic sho
time behavior but deals correcly with the long-time structu
relaxation, is insufficient for this purpose. One needs, in fa
both theories. Strictly speaking, it would be more consist
theoretically to incorporate the effects of the uncorrela
binary collisions and the cooperative mode coupling effe
at the level of the memory function in the generalized kine
equation description. Then at the level of intermediate sc
tering functions, the two effects will be coupled to a certa
extent. Calculations of the ISF will then be very cumberso
numerically because one needs to solve two coupled non
ear integro-differential equations@20#. Fortunately, in the su-
percooled liquid regime or in low temperature water, t
time scales representing the two respective effects are wi
separated that they are effectively decoupled and bec
additive even at the level of the ISF. In this sense, a desc
tion of the physical processes in supercooled liquids is s
pler.

On the other hand, the generalized Enskog theory app
to the short-time part of the ISF in supercooled water m
be modified to account for the cage effect. The modifi
kinetic theory has the same collision term as the original o
and the only modification is to multiply by ak-dependent
factor to the QTRT input parameterv0 to preserve the sec
ond moment and tog(s) to preserve the third moment of th
dynamic structure factor for the hard sphere system. T
modification factor is related to the Debye-Waller factor. T
Debye-Waller factor gives the probability of the formation
the periodic cages with wave vectork. This makes the
Debye-Waller factor an important parameter for describ
the short-time dynamics by affecting the free streaming te
and the mean field term in the kinetic theory. This results
the modification ofv0 and g(s) by a k-dependent factor.
Without this modification to the kinetic theory, the fit to th
short-time piece of the ISF would never be achieved.

We want to emphasize that the formalism described
details in this paper is analytical, practical, and straightf
ward to implement, admittedly phenomenogical, when
plied to the analysis of high resolution IXS spectra of lo
temperature water. We have made analyses of a series of
spectra of low temperature water with the present theo
The results are satisfactory and will be reported elsewhe
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