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Inherent Structure Entropy of Supercooled Liquids
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We present a quantitative description of the thermodynamics in a supercooled binary Lennard-Jones
liquid via the evaluation of the degeneracy of the inherent structures, i.e., of the number of potential
energy basins in configuration space. We find that the contribution of the inherent structures to the
free energy of the liquid almost completely decouples from the vibrational contribution. An important
by-product of the presented analysis is the determination of the Kauzmann temperature for the studied
system.
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In recent years, a significant effort has been devoted
to understand the fundamental nature of glass-forming
materials, a long-standing open problem in condensed
matter physics [1]. Theoretical [2–4], experimental [5],
and numerical efforts [6] have broadened our knowledge
of the physical mechanisms responsible for the dramatic
slowing down of the dynamics in supercooled liquids
(more than 15 orders of magnitude) upon a small change
in temperature T , as the glass transition temperature is
approached.

Some recent theoretical approaches build upon ideas
which were presented several decades ago [7–12]. In
these works, the slowing down of the dynamics was
connected to the presence of basins in configuration space.
The short time dynamics (on a ps time scale) was related
to the process of exploring a finite region of phase
space around a local potential energy minimum, while
the long time dynamics was connected to the transition
among different local potential energy minima [10,12]. In
this picture, upon cooling the intrabasin motion becomes
more and more separated in time from the slow (and
strongly T dependent) interbasin motion. The decrease
of the entropy of supercooled liquids on cooling [8] was
associated with the progressive ordering of the system in
configuration space, i.e., in the progressive population of
basins with deeper energy but of lower degeneracy [9].

Following these ideas, Stillinger and Weber [12] in-
troduced the concept of inherent structure (IS), defined
as local minimum configuration of the 3N-dimensional
potential energy surface. A basin in configuration space
was defined as the set of points that—via a steepest de-
scent path along the potential energy hypersurface—maps
to the same IS. This precise operational definition of a
basin allows one to partition configuration space into an
ensemble of nonoverlapping basins. Thus, the canonical
partition function Z for a system of N atoms at inverse
temperature b � 1�kBT can be written as

Z � l23N
X
a

exp�2bFa�
Z

Ra

exp�2bDa�rN �� drN

(1)
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where Ra is the set of points composing the basin a,
Fa is the potential energy of minimum a, and the non-
negative quantity Da�rN � measures the potential energy
at a point rN belonging to the basin a relative to the
minimum. The integration over the momenta introduces
the thermal wavelength l �

p
bh2�2pm, where m is the

mass. Equation (1) shows that both the IS energy and the
thermal excitation within the basin region Ra contribute
to Z. Stillinger and Weber also noted that, if the value
of the potential energy minimum uniquely characterizes
the properties of the basin, then a strong simplification of
Eq. (1) can be performed. By introducing a density of
states V�eIS� with IS energy eIS, Z can be written as

Z �
Z

deIS V�eIS� exp�2beIS 2 bf�b, eIS�� (2)

where

2bf�b, eIS� � ln

√Z
R�eIS�

exp�2bDeIS�rN ��
drN

l3N

!
(3)

can be interpreted as free energy of the system when
confined to one of the characteristic basins with IS
energy eIS. Then, the probability that a configuration
of the liquid extracted from an equilibrium ensemble of
configurations at temperature T is associated to an IS with
energy between eIS and eIS 1 deIS is

P�eIS, T � �
V�eIS�deIS exp�2beIS 2 bf�b, eIS��

Z�b�

�
exp�2b���eIS 2 TSconf�eIS� 1 f�b, eIS�����

Z�b�
(4)

where we have defined Sconf�eIS� � kB ln�V�eIS�deIS�,
since V�eIS�deIS is the number of states between eIS and
eIS 1 deIS.

The formalism proposed by Stillinger and Weber, al-
though often used in the past to clarify structural issues
in liquids [13,14], for a long time was not quantitatively
applied to computer studies of the glass transition prob-
lem, due to the significant computational effort required
© 1999 The American Physical Society
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in equilibrating atomic configurations at low T . Only re-
cently, Sastry et al. [15] addressed the problem of evalu-
ating the T dependence of the average IS energy (ēIS) in
supercooled states in a binary mixture of Lennard-Jones
particles, observing a significant decrease of ēIS on su-
percooling. This result, also observed for other models
for liquids, e.g., in models for water [14] and orthoter-
phenyl [16], furnishes strong evidence of the relevant role
played by the low-energy basins on cooling. In a recent
work [17], we proposed to invert the relation between the
ēIS energy and T to define an effective temperature at
which the configurational part of the system is in equilib-
rium. This hypothesis, which has been proven useful in
interpreting the aging process in a model liquid in terms
of progressive thermalization of the IS [17], supports the
validity of Eq. (2) and, together with the work of Sastry
et al., calls for an effort in the direction of checking the
formal expression for the supercooled liquid free energy,
i.e., the T range of validity, and an effort in the direction
of evaluating the eIS dependence of the configurational
entropy. This article is a first effort in this direction.

The model system we study is the well-known
80-20 Lennard-Jones A-B binary mixture [18], composed
of 1000 atoms in a volume V0 � �9.4�3. Units of length
and energy are defined by the s and e parameters of
the A-A Lennard Jones interaction potential. The mass
of atom A is chosen to be 1. In these units, kB � 1.
Simulations, covering the range 0.446 , T , 5, have
been performed in the canonical ensemble by coupling
the system to a Nose-Hoover thermostat. This system
is well characterized and its slow dynamics has been
studied extensively [18]. The critical temperature of
mode coupling theory TMCT for this system is 0.435 [18].

Between 500 and 1000 equilibrium configurations for
each T (covering more than 80 million integration time
steps for each T ) have been quenched to their local min-
ima by using a standard conjugate-gradient minimization
algorithm. By performing this large number of quenches
we are able to determine not only ēIS and its T de-
pendence but also the probability distribution P�eIS, T �,
shown in Fig. 1A.

In the T region where Eq. (4) is supposed to
hold, curves of ln�P�eIS, T �� 1 beIS are equal to
Sconf�eIS��kB 2 bf�b, eIS�, except for the T -dependent
constant ln�Z�b��. If f�b, eIS� has only a weak depen-
dence on eIS, then it is possible to superimpose P�eIS, T �
curves at different temperatures which overlap in eIS.
The resulting eIS-dependent curve is, except for an un-
known constant, Sconf�eIS��kB in the eIS range sampled
within the studied T interval. This procedure is displayed
in Fig. 1B. We note that while below T � 0.8 curves
for different T lie on the same master curve, curves for
T . 0.8 have different eIS dependence, thus showing the
progressive eIS dependence of f�b, eIS�. The overlap
between different P�eIS, T � curves below T � 0.8 indi-
cates that the obtained master curve is indeed, except for
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FIG. 1. (a) Distributions P�eIS, T� of the IS energy (per atom)
for different temperatures T . From left to right: T � 0.446,
0.466, 0.5, 0.55, 0.6, 0.8, 1.0, 2.0, and 4.0. (b) ln�P�eIS, T �� 1
beIS 1 C�T �, for different T . The curves which do not lie
on the continuous line correspond to T � 4.0, 2.0, 1.5, 1.0,
and 0.8 (bottom to top). The constant C�T � has been chosen
to maximize the overlap between curves with different T and
the overlap with Sconf�eIS� (in absolute units) calculated from
DS�T �, as discussed in the text. Sconf�eIS� is shown as a
continuous line both in (b) and in the enlarged eIS range in
(c). Note that, when eIS � 27.82, Sconf � 0.

an unknown constant, the eIS configurational entropy,
i.e., the logarithm of the number of basins with the same
eIS value.

It is particularly relevant that, for T , 0.8, f�b, eIS� �
f�b� and thus Z [Eq. (2)] is well approximated by
the product of a vibrational contribution [e2bf] and
of a configurational contribution depending only on the
IS energies and their degeneracy [

R
deIS V�eIS�e2beIS].

Thus the liquid can be considered as composed by two
independent subsystems, respectively described by the IS
and by the vibrational part. The IS subsystem can be
considered as a continuum of levels characterized by an
energy value eIS and an associated degeneracy V�eIS�.
When the IS subsystem is in thermal equilibrium with
the vibrational subsystem, then the T dependence of the
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average configurational entropy S̄conf can be evaluated
using the standard thermodynamic relation

dS̄conf�T �
dēIS

�
1
T

, (5)

i.e., by integrating the T dependence of dēIS�T .
While the evaluation of the T dependence of Sconf

already furnishes relevant information, the evaluation of
the unknown integration constant would allow for a
determination of the number of IS with the same eIS and,
via a suitable low T extrapolation, to the determination
of the so-called Kauzmann temperature TK , i.e., the T
at which the configurational entropy appears to approach
zero. To do so we exploit the fact that Eq. (2) predicts
that the liquid free energy Fliquid�T � can be written as
[19,20]

Fliquid�T � � 2kBT ln�Z�T��

� ēIS�T � 2 TSconf�ēIS�T �� 1 f�b, ēIS�T ��
(6)

where ēIS�T � is the eIS value which maximizes the
integrand in Eq. (2). We assume that at the lowest
studied T , the unknown f�b, ēIS� can be approximated
by the harmonic free energy of a disordered system
characterized by the eigenfrequencies spectrum calculated
from the distribution of IS at the corresponding T [21]. In
this approximation, the entropy of the liquid, which can
be calculated via thermodynamic integration, minus the
entropy of the corresponding harmonic disordered solid,
provides an estimate of the configurational entropy in
absolute units.

To calculate the liquid entropy we perform a thermody-
namic integration first along the T � 5.0 isotherm, from
infinite volume down to V0, followed by a T integration of
the specific heat at fixed volume, down to the lowest stud-
ied temperature. Since the T dependence of the potential
energy E along the studied isochore is extremely well de-
scribed by the law E�T � � T3�5, in agreement with theo-
retical predictions [22], the potential energy contribution
to the liquid entropy follows the law T22�5. By adding
the kinetic energy contribution we obtain an analytic ex-
pression which can reliably be extrapolated to tempera-
tures lower than the studied ones.

The evaluated T dependence of liquid and disordered-
solid entropies is reported in Fig. 2. There we also show
the contribution to the disordered-solid entropy arising
from the T dependence of the eigenfrequencies spectrum,
to confirm that the T dependence of the harmonic solid
frequencies contributes only weakly to the entropy. The
T dependence of DS � Sliquid-Sdisordered-solid is shown in
Fig. 3A. We note that this difference vanishes at T �
0.297 6 0.02, which defines TK for the studied binary
mixture. An independent recent estimate of TK for this
system, based on an integral equation approach and on a
similar analysis of simulation data, is TK � 0.29 [23]. The
resulting ratio between TK and TMCT supports the view that
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FIG. 2. Disordered-solid (filled squares) and liquid
(filled circles) entropies as a function of T . Filled dia-
monds are Sdisordered-solid 2 3kB ln�T�T0�, with T0 � 1,
to demonstrate the weakness of the T contribution aris-
ing from the T dependence of frequency distribution.
Below T � 1, this weak T-dependent contribution is fit-
ted well (long-dashed line) by the quadratic polynomial
3201.62309 2 402.760885T 1 199.228407T2, providing a
reliable extrapolation of Sdisordered-solid to T lower than the
studied ones (dotted line). The liquid entropy is extrapolated
according to the theoretical predictions discussed in Ref. [22],
i.e., Sliquid 1 1.5kB ln�T�T0� � T22�5.

the studied system has intermediate fragility character, as
recently predicted by Angell and co-workers [24].

At the lowest studied temperatures, where the harmonic
approximation is valid [21], DS coincides with Sconf�T �.
We use this identity to calculate the unknown integration
constant for the inherent structure entropy. Moreover, by
integrating Td�DS�T ��, both the configurational energy
dependence of the configurational entropy (Fig. 1C) and
the T dependence of the configurational energy (3B) can
be evaluated, allowing one to bridge the gap between TK

and the lowest T at which we were able to equilibrate
the system. The present analysis predicts eIS�TK � �
27.82 6 0.01. Thus, both the configuration entropy and
energy around TMCT is halfway between TK and the high
T value, suggesting that, at the lowest temperature which
we have been able to equilibrate, the ordering process in
configuration space is far from being complete.

The data reported in this article offer a quantitative ther-
modynamic analysis of the supercooling state. This pic-
ture confirms the fruitful ideas put forward a long time
ago [8–12] and shows that a thermodynamic approach
for the inherent structures subsystem becomes possible in
supercooled states, since the thermodynamics of the in-
herent structures almost completely decouples from the
“vibrational” thermodynamics. In particular, the quantita-
tive evaluation of the degeneracy of the inherent structures
[25] for a well characterized system constitutes a basis for
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FIG. 3. Configurational entropy (a) and energy (b) as a
function of T calculated as differences of the liquid and
disordered-solid entropies and energies, respectively. The
arrow indicates TMCT for this system. The full circles in
(b) are ēIS�T�. Note that in the region where the harmonic
approximation for the disordered solid is expected to be valid
21, ēIS�T � coincides with the configurational energy.

a comprehensive description of the slow dynamics below
TMCT , the T range in which an accurate theoretical predic-
tion is still missing and for a microscopic understanding
of the out-of-equilibrium thermodynamics [26].
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