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Aging as dynamics in configuration space
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Abstract. – Using molecular dynamics computer simulation we calculate for a simple glass
former eIS, the energy of the inherent structure, in equilibrium and in the out-of-equilibrium
situation. We show that eIS can be used to define for the aging system an effective time-
dependent temperature Te(t). In particular we demonstrate that during the aging process
the system visits at time t configurations which are typical for the equilibrium system at
temperature Te(t).

In the last few years our understanding of the dynamics of supercooled liquids has increased
significantly. This progress has become possible due to novel experimental techniques to
investigate such systems [1] and to remarkable advances to describe them theoretically [2].
Very recently strong efforts have been made to investigate also the out-of-equilibrium dynamics
(OOED) of supercooled liquids [3–5]. One motivation for these attempts is the analytic
result [3] that for certain simple models this OOED can be described by equations which are
formally very similar to the ones found in the so-called mode-coupling theory (MCT) [2], the
theory which is so successful to describe the (supercooled) equilibrium dynamics. A further
reason is that it is believed that the long-time OOED is dominated by the structure of the
phase space of the system (i.e. the way the local minima are connected with each other, or the
distribution of the barrier heights between them) and that this information can then be used
to gain a better understanding of the equilibrium dynamics at low temperatures and hence
the glass transition. For the case of spin glasses such connections between the OOED and the
equilibrium properties of the system have already been shown to exist [6,7], but for structural
glasses only the first attempts in this direction have been made.

In the present paper we discuss the results of computer simulations in order to demonstrate
that the concept of the inherent structure (IS), introduced by Stillinger and Weber [8] and
discussed in more detail below, can be used to make interesting connections between the
equilibrium properties of supercooled liquids and their OOED dynamics. Thus our results
establish a link between the properties of such systems above the glass transition temperature
and the ones below it and hence should allow us to get a better understanding of this transition
as well as of the dynamics above and below it.
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The idea of the IS can be described as follows: For any configuration of particles the IS is
given by that point which is reached by a steepest descent procedure in the potential energy if
one uses the particle configuration as starting point for the minimization. By this method the
configuration space can thus be decomposed in a unique way into the basins of attraction of
all IS of the systems. In this framework, the time evolution of a system in configuration space
can therefore be described as a progressive exploration of different IS. In the following we will
determine the properties of the IS in equilibrium as well as in the out-of-equilibrium situation.
From the comparison of the IS in these different situations we will gain a better understanding
of the dynamics of the system during the aging and hence improve our understanding of the
structure of configuration space and thus the glassy dynamics.

The microscopic model we consider is a binary (80:20) mixture of Lennard-Jones particles,
which in the following we will call type-A and type-B particles. The interaction between two
particles of type α and β, with α, β ∈ {A,B}, is given by Vαβ = 4εαβ [(σαβ/r)12 − (σαβ/r)6].
The parameters εαβ and σαβ are given by εAA = 1.0, σAA = 1.0, εAB = 1.5, σAB = 0.8,
εBB = 0.5, and σBB = 0.88. The potential is truncated and shifted at rcut = 2.5σαβ . In the
following we will use σAA and εAA as the unit of length and energy, respectively (setting the
Boltzmann constant kB = 1.0). Time will be measured in units of

√
mσ2

AA/48εAA, where m
is the mass of the particles.

In the past the equilibrium dynamics of this system has been investigated in great detail [9,
10] and it has been found that this dynamics can be described very well by MCT with a critical
temperature Tc = 0.435. This system has also been used to study the OOED of simple glass
formers [5] and it was shown that this dynamics is in qualitative agreement with the one
predicted by recent mean-field theories. In the present study the system was equilibrated at a
(high) temperature Ti = 5.0, using 1000 particles in a box of size of (9.4)3, and subsequently
quenched to a temperature Tf ∈ {0.1, 0.2, 0.3, 0.4, 0.435}. This quench was done by means
of a stochastic heat bath in which every 50 time steps the velocities of all the particles were
exchanged with the ones drawn from a Maxwell-Boltzmann distribution corresponding to a
temperature Tf . Between these exchanges the system was propagated in the microcanonical
ensemble by means of the velocity form of the Verlet algorithm, using a step size of 0.02.

By using copies of the system at different times t since the quench, we calculated the IS
of the system by means of a conjugate gradient method. To improve the statistics of the
results we averaged them over 8-10 independent runs. The same procedure was also used to
determine the IS for the system at equilibrium in the temperature range 5.0 ≥ T ≥ 0.446.

In fig. 1 we show eIS, the average energy per particle in the IS, as a function of T (equilib-
rium case —panel a) and as a function of time (out-of-equilibrium case —panel b), respectively.
In agreement with the results of ref. [10] we find that in equilibrium eIS is almost indepen-
dent of T for T ≥ 1.0, i.e. when the thermal energy kBT is larger than the depth of the
Lennard-Jones pair potential. At lower T , eIS shows a significant T -dependence confirming
that on decreasing T the system is resident in deeper minima. In this temperature range
the relation eIS(T ) can be inverted, T = T (eIS), and we propose to use this relation to asso-
ciate, in the non-equilibrium case, to each value of eIS(t) an effective temperature Te(eIS(t))
(see fig. 1) [11]. By associating an equilibrium T value to an eIS(t) value, we can describe
the (out-of-equilibrium) time dependence of eIS during the aging process as a progressive
exploration of configuration space valleys with lower and lower energy or, equivalently, as a
progressive thermalization of the configurational potential energy. We find that, for all stud-
ied Tf , the equilibration process is composed of three regimes (fig. 1b): An early-time regime,
during which the equilibrating system explores basins with high IS energy and in which eIS(t)
shows little t-dependence. This regime is followed by one at intermediate time in which eIS(t)
decreases with a time dependence which is compatible with a power law with an exponent
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Fig. 1 – eIS, the potential energy of the inherent structure in equilibrium as a function of temperature
(panel a) and as a function of time during the aging process (panel b). The dashed line is used to
define the effective temperature Te(t) in the non-equilibrium case.

0.13±0.02, independent of Tf . This scale-free t-dependence is evidence that the aging process
is a self-similar process. At even longer t a third regime is observed for the lowest Tf , charac-
terized by a slower thermalization rate. Very recently similar results have been obtained for
a finite-size spin model [12].

We show next that during the equilibration process the system visits the same type of
minima as the one visited in equilibrium. For this we evaluate the curvature of the potential
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Fig. 2 – a) Temperature dependence of ν̄, the first moment of the density of states, in equilibrium.
b) Time dependence of ν̄ during the aging process.



W. Kob et al.: Aging as dynamics in configuration space 593

0.0 10.0 20.0 30.0 40.0
-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

T=0.446

T=5.0

0. 10. 20. 30. 40.
0.00

0.01

0.02

0.03

0.04

0.05

T=0.446
T=5.0

ν

(P
(ν

)-
P 0

(ν
))

×
10

3

P
(ν

)
ν

Fig. 3 – Frequency dependence in equilibrium of P (ν), the density of states at frequency ν. Main
figure: temperature dependence of P (ν) for all temperatures investigated. In order to see this depen-
dence more clearly we have subtracted from these distributions P0(ν), the equilibrium distribution
function at T = 0.446. Inset: comparison of P (ν) at T = 5.0 and T = 0.446.

energy at the IS as a function of T (for the equilibrium case) and as a function of time t (for
the out-of-equilibrium case) by calculating the density of states P (ν), i.e. the distribution
of normal modes with frequency ν. Before we discuss the frequency dependence of P (ν) we
first look at its first moment, ν̄, a quantity which can be calculated with higher accuracy
than the distribution itself. The T -dependence of ν̄ in equilibrium and its t-dependence in
non-equilibrium are shown in figs. 2a and b, respectively. Note that fig. 1 and fig. 2 are very
similar. This demonstrates that the aging system visits during the progressive thermalization
local minima which have the same curvature as the equilibrium system at the temperature
Te. This shows that Te(eIS) can indeed serve as a temperature which characterizes the typical
configuration occupied by the system.

Now we consider the full frequency dependence of P (ν), which is shown for the equilibrium
case in fig. 3. In the inset we show P (ν) at the highest and lowest temperatures investigated
and we find that the dependence of P (ν) on T is rather weak. To better visualize this weak T -
dependence of P (ν) we discuss in the following P (ν)−P0(ν), where P0(ν) is the (equilibrium)
distribution at T = 0.446, the lowest T at which we were able to equilibrate the system. In
fig. 3 we show P (ν) − P0(ν) and from it we see that the main effect of a change in T is that
with decreasing T the modes at high ν disappear and that more modes in the vicinity of the
peak appear. We also find that if an analogous plot is made for the out-of-equilibrium data
the same pattern is observed, i.e. that with increasing time P (ν) becomes narrower and more
peaked, in agreement with the experiments of ref. [13].

We next show that Te(eIS) completely determines P (ν) during the aging process. For this
we read off from fig. 1 that Te = 0.6 corresponds to t ≈ 1600 for Tf = 0.435, 0.4, and 0.3, and
to t ≈ 4000 and t ≈ 25000 for Tf = 0.2 and 0.1, respectively (see dashed lines in fig. 1). If Te

has a thermodynamic meaning, the non-equilibrium P (ν) at these times should be the same
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Fig. 4 – Comparison of P (ν) in the out-of-equilibrium situation at different values of Tf and different
times (but at the same Te) with P (ν) at equilibrium with T = Te. Open symbols: Te = T = 0.6.
Filled symbols: Te = T = 0.5.

as the equilibrium P (ν) at T = 0.6. These functions are plotted in fig. 4 (curves with open
symbols). We find that the different distribution functions are superimposed, demonstrating
the validity of the proposed interpretation of Te as an effective temperature. That this collapse
of the curves is not a coincidence can be recognized by the second set of curves which is shown
in fig. 4 (curves with filled symbols). These curves correspond to Te = 0.5 for which the
corresponding times from fig. 1 are t ≈ 16000 for Tf = 0.435, and 0.4, and the t ≈ 25000 for
Tf = 0.3 [14]. Also for Te = 0.5 the different P (ν) can be considered to be identical within the
accuracy of the data (fig. 4). Note that the two set of curves corresponding to the two values
of Te are clearly different, showing that our data has a sufficiently high precision to distinguish
also values of Te which are quite close together. From the present data we thus conclude that
minima with the same value of eIS do indeed have the same distribution of curvature [15].

To discuss the results of this paper it is useful to recall some of the insight gained from
the analysis of instantaneous normal modes (INM) of supercooled liquids [16]. The INM
studies have demonstrated that the slowing-down of the dynamics in supercooled liquids is
accompanied by a progressive decrease of the number of so-called double-well modes, i.e. the
number of directions in configuration space where the potential energy surface has a saddle
leading to a new minimum, a condition which is stronger than the local concavity. It has been
found [17] that the number of double-well modes vanishes on approach to Tc. Thus for T > Tc

the system is always located on a potential energy landscape which, in at least one direction,
is concave (i.e. the system sits close to a saddle point), whereas for T < Tc the system is
located in the vicinity of the local minima, i.e. the landscape is convex. This result can be
rephrased by saying that Tc is the temperature at which the thermal energy kBTc becomes
comparable to the height of the lowest-lying saddle point above the nearest IS, i.e. above eIS.
Therefore the energy difference between the lowest-lying saddle point energy and kBT + eIS

can be chosen as an effective (T -dependent) barrier height. These observations, which hold
true also for the Lennard-Jones system studied here [18], and the results presented in the
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present paper thus lead us to the following view of the energy landscape. For high T , kBT
is significantly higher than the lowest-lying saddle energy and the effective barriers between
two adjacent minima are basically zero, i.e. the system can explore the whole configuration
space. At T ≈ 1.0 the system starts to populate that part of configuration space which has a
value of eIS which is less than the one at high T (fig. 1 and ref. [10]) and the properties of the
IS start to become relevant.

This point of view of the structure of phase space can now be used to understand the aging
dynamics. At the beginning of the quench the system is still in the large part of configuration
space which corresponds to (high) Ti. Although kBTf is now relatively small, the effective
barriers are still zero and the system can move around relatively unhindered and thus it
moves to minima which have a lower energy. The rate of this exploration is related to the
number of double-well directions accessible within kBTf , which explains why in fig. 1b the
curves with small Tf stay at the beginning longer on the plateau than the ones with larger Tf .
With increasing t the system starts to find IS which have a lower and lower energy and eIS(t)
starts to decrease. Note that, apart from the Tf dependence of the rate of exploration just
discussed, this search seems to be independent of Tf , since in fig. 1b the slope of the curves
at intermediate times does not depend on Tf , within the accuracy of the data.

With increasing t the system finds IS with lower and lower energies and decreases its Te.
From the above discussion on the INM we know that with decreasing T the height of the
effective barriers also increases and it can be expected that the search of the system becomes
inefficient once it has reached a Te at which the energy difference between the lowest-lying
saddle and eIS becomes of the order of kBTf . Therefore we expect that once this stage has been
reached the t-dependence of eIS will change and this is what we find, as shown in fig. 1b in the
curves for Tf = 0.2 and 0.1 at t ≈ 104. We also note that the Te at which this crossover occurs
will increase with decreasing Tf , in agreement with the result shown in fig. 1b. For times
larger than this crossover t the system no longer explores the configuration space by moving
along unstable modes but rather by means of a hopping mechanism in which barriers are
surmounted. This hopping mechanism, although not efficient for moving the system through
configuration space, still allows the system to decrease its configurational energy and its Te

further. Thus the crossover from the “self-similar” process to the activated dynamics, which
in equilibrium is located close to Tc, is in the non-equilibrium case Tf -dependent. We conclude
that in order to obtain configurations which are relaxed as much as possible (within a given
time span) one should quench the system to Tc in order to exploit as much as possible the
low-lying saddle points.

The presented picture implies that, if hopping processes were not present at all, Te would
always be above Tc, even after an infinite amount of time. Although in reality hopping
processes are always present, they might be so inefficient that even for long times the value of
Te is above Tc. From fig. 1 we recognize that this is the case for the present study. We note
that theoretical mean-field predictions derived for p-spin models [19] and recent extensions
of the ideal MCT equations to non-equilibrium processes [20] conclude that system quenched
below Tc always remain in that part of configuration space corresponding to T > Tc.

The summary of the present work is thus that by investigating the inherent structure of
the system in the equilibrium and out-of-equilibrium situation we have been able to show that
during the aging process the system visits configurations which can be characterized by an
effective temperature Te(t). This opens the way for detailed comparisons with recent out-
of-equilibrium thermodynamics approaches [21] and with the IS-thermodynamic approach,
discussed in refs. [22]. In particular, it will be important to find out how Te(t) compares with
the temperature TX , introduced in the recent work on the non-applicability of the fluctuation
dissipation theorem [3–5,23].
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