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Abstract. In this article we review the thermodynamics of liquids in the framework of the
inherent-structure formalism. We then present calculations of the distribution of the basins in the
potential energy of a binary Lennard-Jones mixture as a function of temperature. The comparison
between the numerical data and the theoretical formalism allows us to evaluate the degeneracy of the
inherent structures in a bulk system and to estimate the energy of the lowest-energy disordered state
(which we define as the Kauzmann energy). We find that, around the mode-coupling temperature,
the partition function of the liquid is approximated well by the product of two loosely coupled
partition functions, one depending on the inherent-structure quantities (depths of the basins and
their degeneracy) and one describing the free energy of the liquid constrained in one typical basin.

1. Introduction

The potential energy of a system composed of N interacting atoms is a complicated surface
in a 3N -dimensional space. The motion of the system can be thought of as a trajectory over
such a potential energy surface (PES). At different temperatures, the system explores different
parts of the PES, according to the Boltzmann weight. The idea of focusing on the PES for
understanding the physics of glass-forming liquids can be traced back to the seminal (but
discursive) paper of Goldstein [1]. He suggested that the dynamics of deeply supercooled
liquids can be described in terms of a process of diffusion of the system between different PES
basins. At low temperatures the dynamics slows down since the liquid becomes trapped for a
long time in a basin.

The concept of a basin in configuration space was formalized by Stillinger and Weber [2],
who introduced a recipe, very well suited for numerical analysis, for partitioning the PES into
disjoint basins. The set of points in configuration space connected to the same local minimum
via a steepest-descent trajectory defines uniquely the basin associated with this local minimum.
Stillinger and Weber named the structure of the system in the minimum the inherent structure
(IS) and the value of the PES at the minimum the inherent-structure energy (eIS).

Enhanced computational facilities have led to significant improvements on the early
efforts at studying the PES. Nowadays, an exhaustive search for all IS has been performed
for clusters, and complete maps of the inherent-structure energies are available for several
potential models [3]. For clusters, as well as for small proteins [4], the connectivity between
all IS has also been evaluated, to provide a very informative map both of the thermodynamics [5]
and of the dynamics in these small systems [6]. Small-size systems, composed of 30 to 50
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atoms with periodic boundary conditions, have also been studied in detail recently, and almost
exhaustive enumerations of all IS energies are now available [7–9].

In this article we review a theoretical framework in which the IS results can be interpreted
in a convenient way (section 2) and discuss the approximations required for a factorization
of the partition function into two functions, one describing the thermodynamics of the IS
subsystem and one describing the thermodynamics of the exploration of one representative
basin (section 3). In the following two sections we present calculations of the temperature
(section 5) and IS energy (section 6) dependence of the configurational entropy for a bulk
system. Such calculations allow one to quantify the properties of the PES for model systems and
to probe the validity of the factorization approximation. New information on the equilibrium
and aging dynamics of supercooled simple liquids is provided by the results presented. An
account of the results has been reported in reference [10].

2. Theory

This section reviews the thermodynamic formulation proposed by Stillinger and Weber [2],
focusing on the concept of basins in configuration space.

The partition function of a system composed by N identical atoms of mass m, after the
integration over the momentum variables, is

ZN = λ−3N
∫

exp(−βV (rN)) drN (1)

where λ = h
√
β/2πm. The integral over the configuration space rN can be separated into a

sum over all distinct basins:

ZN = λ−3N
∑
α

exp(−β�α)

∫
Rα

exp(−β�α(r
N)) drN (2)

where Rα is the set of points composing the basin α, �α is the potential energy of the minimum
α and the non-negative quantity �α(r

N) measures the potential energy at a point rN belonging
to the basin α relative to the minimum. By classifying the minima according to their IS energy
eIS , the sum over the basins can be separated into a sum over all possible values of eIS and a
sum over all basins α′ with the same eIS-value:

ZN = λ−3N
∑
eIS

exp(−βeIS)
∑
α′

∫
Rα′

exp(−β�α′(rN)) drN. (3)

Following Stillinger and Weber, we introduce an IS density of states �(eIS), which counts the
number of distinct basins with IS energy between eIS and eIS + δeIS , and define a basin free
energy f (β, eIS) as the average basin free energy—where the averaging is performed over all
basins with IS energy eIS—according to

−βf (β, eIS) ≡ ln

([
λ−3N

∑
α′

∫
Rα′

exp(−β�α′(rN)) drN

]/
[δeIS �(eIS)]

)
. (4)

If all basins with the same eIS-energy have the same statistical properties, then f (β, eIS)

coincides with the free energy of a system constrained to sample only one basin and which is
unaffected by the existence of the other equivalent δeIS �(eIS) basins. ZN can be expressed
in terms of PES quantities, as

ZN =
∫

deIS �(eIS) exp(−βeIS − βf (β, eIS)). (5)
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Performing a maximum integral evaluation of the partition function, the free energy F of the
system can be expressed in the thermodynamic limit as

F = e∗
IS − T Sconf (e

∗
IS) + f (β, e∗

IS) (6)

where e∗(T ) is the eIS-value which maximizes the integrand and

Sconf (eIS) = kB ln(δeIS �(eIS)).

If we now separate f (β, e) into its energetic (ub) and entropic (sb) contributions, we
immediately notice that the entropy associated with the basin degeneracy, Sconf (T ), can be
calculated as the difference between the system entropy and sb, the entropy of the system
constrained to be in an IS with energy e∗. In the present formalism, if one excludes from the
sum in the partition function the crystalline IS, then one can identify F as the fluid free energy
for all T .

The choice of separating the liquid free energy into a sum of two interrelated contributions
(via the eIS-dependence of f ) has often been used in the past, for example in estimating the
configurational entropy from available experimental data [11]. In this case, the basin entropy
is identified with the entropy of the stable crystal at the same thermodynamic point. Such an
identification is based on the idea that the vibrational properties of a system constrained to be
in a deep basin are similar to the properties of the close crystalline structure. More recently, the
consequences of such a separation for several thermodynamic quantities have been explicitly
worked out [12]. For recent related work, see also [13, 14].

3. Low-T approximation

There are two interesting cases which may help in understanding the low-T dynamics of
liquids. These cases are connected to specific forms of f (β, eIS). The first describes the case
where f (β, eIS) ≈ f (β), i.e. there is no T -dependence through eIS . In this case basins are
characterized by approximately the same shape in configuration space, a hypothesis which
can be tested by studying the eIS-dependence of the density of states. In this approximation
equation (5) factories as

ZN ≈ ZISZb (7)

where

ZIS =
∫

�(eIS) exp(−βeIS) deIS (8)

and

Zb = exp(−βf (β)). (9)

In the range of T where this approximation holds, the system can be thought of as two weakly
coupled subsystems: the IS subsystem, which has now been transformed into a system with
levels labelled by the eIS-value with degeneracy �(eIS), and the basin subsystem which
describes the motion in the characteristic basin. The coupling between the two subsystems,
which of course allows for the process of equilibration between the two subsystems, is due to
the weak T -dependence of eIS , which is neglected in the present approximation.

The second case is that where βf (β, eIS) ≈ g(β) + h(eIS), i.e. where the T - and eIS-
dependences are not mixed. This case is realized for example in the case where at differentT the
system populates basins which are always harmonic, but differ in their densities of states [14].
In this second case, a factorization of ZN as in equation (7) is also possible by redefining the
density of states to include the basin volume in configuration space, as �(eIS)eh(eIS ) [14].
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Analysis of computer simulation data allows us to look for the existence of a T -range
where the factorization approximation holds. Indeed, the probability density for extracting
from a system in thermal equilibrium at temperature T a configuration belonging to a basin
with IS energy eIS is

P(eIS, T ) = �(eIS) exp(−βeIS − βf (β, eIS))

ZN(T )
. (10)

If the factorization approximation holds (i.e. for either case), then the only eIS-dependence in
the right-hand side of

ln[P(eIS, T ) δeIS] + βeIS = Sconf (eIS)/kB − ln[ZN(β)] − βf (β, eIS) (11)

is contained in Sconf . This implies that curves for different T can be superimposed after a
shift of a T -dependent quantity. The resulting master curve for eIS is, except for an unknown
constant, the eIS configurational entropy.

4. The system

We have studied the well-known 80–20 Lennard-Jones A–B binary mixture (BMLJ), composed
of 1000 atoms in a volume V0 = (9.4)3, corresponding to a reduced density of 1.2039. The
units of length and energy are defined to be σ and ε for the A–A Lennard-Jones interaction
potential, and the unit of mass is taken as the mass of atom A. The pair potential is defined
in reference [15]. The equilibrium and out-of-equilibrium slow dynamics have been studied
extensively. The critical temperature of mode-coupling theory for this system is 0.435 [15].

New simulations, covering the range 0.446 � T � 5.0, have been performed in the
canonical ensemble by coupling the system to a Nosé–Hoover thermostat [16]. From simul-
ations over more than 60 × 106 steps, we have extracted 1000 equally spaced configurations
and we have calculated for each of them the corresponding IS.

5. Temperature dependence of the configurational entropy

We have estimated the T -dependence of the configurational entropy for the BMLJ as the
difference of the liquid entropy and the basin entropy, as discussed in section 2. An independent
(and consistent) estimate of the same quantity in the same system has been previously obtained
by a similar procedure by Coluzzi et al [17, 18]. For related work see also references [19].

The entropy of the liquid has been calculated via thermodynamic integration starting from
the ideal-gas binary-mixture reference point (T = 5.0, ρ → 0) along the isotherm T = 5.0,
up to the density studied, ρ = 1.2. In the following we call (T = 5.0, ρ = 1.2) the state point
C. The entropy of the liquid at C can be written as

S(C) = Sideal gas(C) +
U(C)

T
+

∫ V0

∞

Pex dV

T
(12)

where

Sideal gas(T , ρ)

NkB
= −NA

N
ln

(
NA

N

)
− NB

N
ln

(
NB

N

)
+

3

2
ln

(
emV 2/3

βh̄22π

)
− ln

(
N

e

)
(13)

also takes into account the entropy of mixing. Pex is the excess pressure over the ideal-gas
value, U is the potential energy and e is the Neper number. Figure 1 shows the excess
pressure as a function of the volume calculated from twenty-six independent molecular
dynamics simulations. At large volumes, the calculated excess pressure coincides with the
first correction to the ideal-gas law, which can be analytically calculated from the first virial
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Figure 1. Excess pressure as a function of the volume atT = 5.0. The dashed line is the analytically
calculated first virial correction to the pressure.

coefficient of the binary mixture, B2(T ) [20], which in the case of our system is equal to
B2(T = 5.0) = 0.536 22. To decrease the numerical integration error, we analytically
calculate the contribution to the integral arising from the first virial corrections and integrate
over the volume only: Pex −B2(T )kBT (N/V )2. As a result, we obtain S(C)/kB = 8061.7†.

The entropy at any T along the isochoric path studied can then be calculated as

S(T , ρ = 1.2) = S(C) +
∫ T

T=5.0

CV (T
′)

T ′ dT ′ (14)

where CV (T ) = dU(T )/dT + 3/2NkB is calculated from the T -dependence of the system-
average potential energy U obtained from the simulations. We find that, in agreement with
recent theoretical predictions [21], the T -dependence of U along the isochore studied is very
well described by the law U(T ) ∼ T 3/5 (see figure 2), which produces a contribution to the
liquid entropy varying as T −2/5. The use of the T −2/5-law provides a reliable extrapolation of
Sliquid below the lowest T studied.

To estimate the basin entropy, we assume that at the lowest T studied, the unknown
f (β, e) can be approximated by the harmonic free energy of a disordered system characterized
by the eigenfrequencies spectrum calculated from the IS at the corresponding T . In this
approximation, the difference between the entropy of the liquid and the entropy of the harmonic
disordered solid coincides with the configurational entropy. We evaluate the entropy of the
disordered solid in the harmonic approximation as

Sdisordered solid(T , V ) =
3N−3∑
j=1

1 − ln(βh̄ωj ) (15)

† In equation (12) we have used h̄ = 0.063 507 kJ mol−1 ps−1. We have assumed the A–A LJ interaction potential
to be equal to 1 kJ mol−1, the unit of length to be equal to 1 nm, the unit of time to be 1 ps. With this choice, the three
terms in equation (12) contribute 10 734.1, 1678.5/5, 2336.7 respectively.
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Figure 2. Potential energy as a function of T 3/5 for the BMLJ system. The inset shows the same
data on a linear scale. The continuous line is a fit to U = a + bT 3/5.

where ωj is the frequency of the j th normal mode. For the binary-mixture Lennard-Jones
case under study, the vibrational energy (defined as the potential energy minus eIS) is equal to
3NkBT/2 over a large T -range, supporting the harmonic approximation employed. Further
work is required to assess the validity of the harmonic approximation, especially since it has
been suggested that even low-T basins may retain some ruggedness (see for example Sastry
et al in reference [22]).

The eIS-dependence in Sdisordered solid(T , V ) enters via the eIS-dependence of the density
of states. Consistently with the estimate of the eIS-dependence of f (eIS, T ) discussed below,
we find (see figure 3, left) that the T -dependence of the density of states accounts for only a
few per cent of the T -change in Sdisordered solid at low T .

The T -dependence of the liquid and disordered solid entropies evaluated is reported in
figure 3, left. The T -dependence of the configurational entropy (the difference between Sliquid

and Sdisordered solid) is reported in figure 3, middle. We note that, if the extrapolations are
reliable, the configurational entropy vanishes at T = 0.297 ± 0.01, which we define as TK
in analogy with the Kauzmann temperature [23], since at TK the liquid configuration entropy
becomes equal to the crystal configuration entropy. The calculated TK -value agrees with the
previous findings of Coluzzi et al [17,18]. Note that the Kauzmann temperature is defined by
Kauzmann as the temperature at which the liquid entropy becomes equal to the crystal entropy.
Kauzmann’s definition coincides with the definition used here only if the crystal vibrational
entropy is a good approximation to the basin vibrational entropy. The approximation of Svib via
the entropy of the crystalline form is not required in the IS formalism, where—in principle—
Svib is calculated from the shape of the very basin in which the system is trapped. Note also that
the configuration entropy around TMCT = 0.435 is halfway between TK and the high T -value,
suggesting that the ordering process in configuration space at the lowest temperature at which
we have been able to equilibrate is far from being complete. Of course, the present data do
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Figure 3. Left: liquid (circles) and disordered solid (squares) entropies as functions of T . The
diamonds show the T -dependence of the disordered solid entropy, once the explicit T -dependence
is subtracted, to highlight the weak residual T -dependence due to the T -dependence of the density
of states. Such weak residual T -dependence has been extrapolated to lower T via a quadratic fit
and used to provide an analytic expression for the T -dependence of the disordered solid entropy.
Middle: the T -dependence of the configurational entropy. Right: the T -dependence of the IS
energy for the BMLJ system as determined from the simulation (circles) and from equation (16)
(solid line).

not furnish a full proof of the existence of a finite T at which Sconf goes to zero, being based
on a large (but apparently reliable; see figure 2) extrapolation in T . The ratio between TK and
TMCT supports the view that the system studied has intermediate fragility character, as recently
predicted by Angell and co-workers on the basis of a comparison between experimental results
and numerical data for the same system [24].

6. IS energy dependence of the configurational entropy

In this section we show that in the BMLJ case, for T < 0.8, the factorization approximation
discussed in section 3 is indeed satisfied. The possibility of separating the IS subsystem
thermodynamics from the basin thermodynamics allows us to calculate the eIS-dependence of
the configurational entropy and thus to estimate the number of basins in configuration space
with the same eIS-energy.

To test the validity of the factorization approximation, we evaluate the left-hand side of
equation (11), i.e. we calculate the eIS-dependence of ln(P (eIS, T )) + eIS/T . As discussed
in section 3, if f (β, eIS) has only a weak dependence on eIS , then it must be possible to
superimpose curves at different temperatures which overlap in eIS . Then, the resulting eIS-
dependent curve is, except for an unknown constant, Sconf (eIS), in the eIS-range accessed at
the temperature studied.

This procedure is displayed in figure 4. We note that while, below T = 0.8, curves for
different T lie on the same master curve, above T = 0.8, curves for different T have different
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Figure 4. Top: distributions P(eIS, T ) of the IS energy (per atom) for different equilibrium
temperatures T . From left to right: T = 0.446, 0.466, 0.5, 0.55, 0.6, 0.8, 1.0, 2.0, 4.0. Middle:
ln[P(eIS, T )] + βeIS , for six different equilibrium temperatures T (same symbols as in the top
panel). Bottom: data in the middle panel (plus data corresponding to other values of T ) are
displayed shifted to maximize the overlap between curves with different T and the overlap with
Sconf (eIS) (in absolute units), calculated as discussed in the text and shown here as a full line. The
curves which do not lie on the continuous line correspond to T = 5.0, 4.0, 2.0, 1.5, 1.0, 0.8, from
bottom to top.

eIS-dependences, indicating the progressive eIS-dependence of f (β, eIS).
The data presented in figure 4 are particularly relevant. They show that, below T = 0.8,

the IS can be treated as a system of levels characterized by an energy value eIS and an
associated degeneracy �(eIS). Thus, for the eIS-subsystem it is possible to use the standard
thermodynamic relations to evaluate the T -dependence of the average energy and entropy.
In this respect, the T -dependent configurational entropy (but only below T = 0.8) can be
evaluated as

dSconf (T )

deIS(T )
= 1

T
eIS(T ) = eIS(TK) +

∫ T

Tk

T dSconf (T ) (16)

where eIS(TK), which we define as the Kauzmann energy, is the IS energy of the lowest
disordered configuration. Of course, the number of basins of energy eIS(TK) is non-extensive,
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since the corresponding configurational entropy is zero. By integrating the configurational
entropy from TK upward, it is possible to calculate the T -dependence of eIS . The unknown
integration constant eIS(TK) can be calculated by comparing the expression obtained with the
eIS(T ) dependence calculated directly from the simulation in the region T � 0.8 (see also
reference [22]). The present analysis (see figure 3, right) predicts eIS(TK) = −7.82 ± 0.01.

From S(T ), evaluated in the previous section, and from eIS(T ), evaluated according
to equation (16), it is possible to eliminate the T -dependence and to calculate the eIS-
dependence of the configurational entropy on an absolute scale, which can be compared with
the one calculated independently—but with an unknown constant—via the superposition of the
different ln(P (eIS, T )) + eIS/T curves. Such a comparison is shown in figure 4. The agree-
ment between the two sets of measurements confirms the validity of the analysis presented in
this article and the quality of the factorization approximation.

Before concluding this section, we note that an estimate of the eIS-dependence of the
configurational entropy, based on the analysis of experimental data, has been presented in
reference [25]. Analyses of the configurational entropy as a function of internal system
parameters (which conceptually are equivalent to the choice of eIS adopted in the present
work) have been reported in references [26, 27].

7. Conclusions

The data and the analysis reported in this article offer a detailed thermodynamic description of
the supercooling state, based on the formalism proposed by Stillinger and Weber. In particular
we have presented a quantitative evaluation of the degeneracy of the inherent structures (which
had previously only been calculated for systems composed of less than 50 atoms [7, 8]) for
a bulk system. We consider particularly relevant the evidence presented that in supercooled
states (below T = 0.8 for the system studied) the thermodynamics of the inherent structures
almost completely decouples from the ‘vibrational’ thermodynamics (i.e. from the process
of exploration of the IS basin). It is particularly important to notice that a thermodynamics
approach to the inherent-structure subsystem becomes possible for supercooled states. The
description of supercooled liquids as composed of two weakly coupled subsystems—the IS
subsystem and the ‘vibrational’ basin subsystem—generates stimulating ideas both as regards
a microscopic understanding of the out-of-equilibrium thermodynamics proposed recently [28]
(since if the factorization were exact, one could think of keeping the two subsystems coupled to
two different temperatures) and as regards the aging processes [29], as well as the still lacking
theoretical quantitative description of the slow dynamics below the MCT temperature. A first
step in the direction of estimating the temperature at which the configurational subsystem is
in quasi-equilibrium during an aging process has been reported recently [30, 31].

Finally, we stress that the description that we have presented refers to a constant-volume
system. In this respect, it is based on one internal parameter only (in the language of Davies
and Jones [32]), which we have identified with eIS . In a full treatment, at least one other
internal parameter would be necessary, to discriminate between basins with the same value of
eIS but different volumes. We plan to further test the validity of such one-internal-parameter
description for isochoric cooling.
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