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We present static and dynamic properties of molecular correlation funcSigm;,m,n,(ﬁ,t) in a simulated
supercooled liquid of water molecules, as a preliminary effort in the direction of solving the molecular
mode-coupling theoryMMCT) equations for supercooled molecular liquids. The temperature and time de-
pendence of various molecular correlation functions, calculated from 250 ns long molecular dynamics simu-
lations, show the characteristic patterns predicted by MMCT and shed light on the driving mechanism respon-
sible for the slowing down of the molecular dynamics. We also discuss the symmetry properties of the
molecular correlation functions that can be predicted on the basis o€jhesymmetry of the molecule.
Analysis of the molecular dynamics results for the static correlaﬁ;ﬁg,,m,n,(d) reveals that additional
relationships between correlators with different signe ahdn’ exist. We prove that for molecules wit,,
symmetry this unexpected result becomes exact at least for high temperatures.

PACS numbgs): 64.70.Pf, 61.25.Em, 61.20.Ja

[. INTRODUCTION between the translational degrees of freedom and orienta-
tional degrees of freedom. Such an extension has recently
In recent years, significant progress has been made in theeen performed for a single dumbbell molecule in an isotro-
understanding of the slow dynamics in supercooled liquidgpic liquid [22] and for a liquid of diatomic moleculd23—
[1]. Theoretical[2-5], experimentalsee, e.g.[6—10]), and  25]. Reference$24] and[25] even treat general molecules.
simulation efforts(see, e.g.[11-14]) have highlighted the MMCT is also conceptually based on the hypothesis that
role played by the ideal-glass transition temperafiyefirst  the liquid structure is controlling the long-time dynamical
predicted by mode-coupling theofWICT) for simpleliquids ~ evolution of the system. Structural information is used as
[15,16 and in a schematic mod¢L7], and identified the input in the theory via generalization of the density-density
different dynamical mechanisms above and below this temstructure factor including the angular degrees of freedom.
perature. This work has clarified the strong interplay betweeisuch quantities, although they are difficult to determine ex-
liguid structure and liquid dynamics aboifg as well as the perimentally, can be evaluated from molecular dynamics tra-
universal aspect of the decorrelation process—which close tigctories and used to test the quality of the recently proposed
T. is predicted to become independent of the correlatiodMMCT. For the case of a liquid of diatomic molecules, the
function as well as they vector that is probed18]. For  molecular structure factors have been evalug®g] and a
colloidal systems MCT has been tested both on a semiquaffirst quantitative test of MMCT has been presented in Refs.
titative level [6], i.e., the validity of the scaling laws was [27,28. Furthermore, the temperature dependence of the mo-
investigated, and also on a quantitative level where it hasecular correlation functions can give hints regarding the
been demonstrated that the time-dependent density correlat@ading mechanism for the slowing down of the dynamics.
for a liquid of hard sphere&vhich is a good model for neu- The asymptotic predictions of MCT continue to be valid
tral colloidg obtained from MCT describes the correspond-within the MMCT scheme. Also in MMCT22,23 (i) there
ing experimental result over three decades in time by usingxists ajB-relaxation regime where the factorization of the
only onefit parameter(for the time scalp[19,20. All the  time or frequency dependence of the correlators or suscepti-
other experimental tests were semiquantitative and were exilities from the space and angular dependence holds generi-
clusively restricted to molecular systems, like OTP, salolcally and the time dependence is given by theorrelator,
glycerol, etc.(for more details, see Reff2,3,7—10,2] and  which fulfills the first scaling law[18], and (ii) there exists
references therejn At a first glance the reasonably good an a-relaxation regime in which theecond scaling laf18]
agreement between the predictions of MCT for simple lig-holds, i.e., the time-temperature superposition principle is
uids and many of the experimental data for the moleculafulfilled [29]. These two results underline the universality of
glass forming liquids seems to be surprising, since the orienthe ideal structural glass transition based on a bifurcation
tational degrees of freedom do not appear in the originascenario described by a fold singularft§8]. However, cal-
version of MCT[18]. To do a quantitative comparison be- culation of the various exponenfsntering the scaling laws
tween theory and experiment or simulation and especially t@nd of the critical nonergodicity parameter, the critical am-
describe the molecular correlatiofiscluding orientational plitudes, the transition temperatuiig, and particularly of
degrees of freedorit is necessary to extend MCT to mo- the molecular correlation functions themselves, requires the
lecular liquids. In particular, a molecular mode-coupling solution of the MMCT equations.
theory (MMCT) allows one to study the role of the coupling In this article we present the temperature apdector
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dependence of the generalized structure factors required by R N o

the MMCT for the case of the single point charge extended p(X,Q,t)ZE S(x—x;(1))8(Q—Q;(1)), (1)
(SPC/B potential[30]. This potential, which describes the =1

molecule as a rigid planar body and models the pair interac-

tions as a sum of electrostatic and Lennard Jones terms, h§41€reé the sum runs over tiémolecules of the liquid, and
been studied in detail and has been shown to reproduog(t) and Q;(t)=(¢;(t),6;(t),x;(t)) are, respectively, the
qualitatively the characteristic properties of liquid water—aposition of the center of mass and the Euler angles oftihe
liquid where the slowing down of the dynamics on cooling is molecule at timet.

not related to packing constraints but to the formation of a Any function f(x )) can be expanded with respect to
tetrahedral network of highly directional hydrogen bondsplane waves and to generalized spherical harmonics
[31,32. Previous numerical studies on the SPC/E systemDmn(Q) e ”“‘"dI (#)e "X (see Ref[38]) as

focused on the center of mass gé8] and collective prop-

erties[34], have shown on a semiquantitative level that the R
center of mass dynamics is well described by MCT, with an f(X,Q)=
estimated critical temperature of abduyt=200*+3 K. It has

been shown that orientational degrees of freedom are crucial

in strongly enhancing the slowing down of the dynamical

processes on supercooling. This has led to the introduction of

a semischematic MCT modg35], where the coupling to the where the coeff|C|entS|mn(q) are given by
orientational degrees of freedom is accounted for phenom-

enologically by the introduction of a parametgg=1 by R -

which the coupling of the center of mass density modes is fimn(d)=i'(2l +1)1/2j dng dOQf(x,0)e D (Q).

_|)|

Imn

><<2|+1)1’2f.mn<a)e-“i'*DLnn<m. @)

enhanced. This semischematic approach, recently tested also (3)
for the case of a supercooled liquid of diatomic molecules
[36], focuses only on the center of mass translational degreq§ere| >0, —l=m=I, —l=<n=<I.Application of Eq.(3)

of freedom and is by construction unable to describe the tim
evolution of the orientational degrees of freedom and to in-
dicate which orientational degrees of freedom are respon-
sible for the slowing down of the center of mass and orien- > y 12 G5
. X S . = a-xOp'* (.
tational dynamics. A MMCT description is required to fully Pimn(Q, 1) =17(21+1) ]z::l e97 Dy (Q(1). (4)
describe these important dynamical aspects.
The generalized structure factors presented in this articl
are a first step in the direction of solving the MMCT for a
molecular system. In Sec. Il we motivate the introduction of . As will be shown below, this choice produces real

an infinite-dimensional correlation matriyq,imn (d.t) correlators also fon andn’#0 at high temperature. Now

where [=0,1,3 . —l=m=l, —l<n=<l, and corre- e can introduce the time-dependenolecular correlation
sponding relat|ons for the prlmed quantities. As already mensnctions

tioned above, MMCT requires the static correlators

S,mn’,,m,n,(ﬁ) as an input. In Sec. Il we discuss the relations R 1 R .

between theSyn 'mn(Q,t) correlation functions arising SImn,I’m’n’(Qrt):N<pl*mn(qvt)PI’m’n’(Q10)>v 5
from the symmetries characteristic of isotropic liquids and

the symmetries characteristic 6f, molecules. These rela- here th lar brackets denote th ical
tions reduce drastically the number of mdependenf"’ ere the angular brackets denote the canonical average over

h I h f
Simnl"m'n’ (q t) correlation functions and support the feasi- }qu Egl)“;e?dosmt In phase space. Substitution of &4. into

bility of a full MMCT calculation for this class of liquids.
Finally, in Sec. IV we present the time evolution of the gen- R
eralized angular correlation functions for the SPC/E case and  Simn,17mn(d,) S(mn p— t)+S|(mn|,m 2 (A1) (6)
interpret their behavior in the general MCT framework. The

qualitative and semiquantitative agreement between numenyith the distinct part

cal data and asymptotic MCT theoretical predictions strongly
suggests performing a full MMCT comparison.

?0 p(x Q,t) yields the tensorial one-particle density:

N

The prefactor in Eq(4) is chosen for technical convenience,
e. g the factoi' makes the molecular correlators real for

L , 1
$(mn|’m n’ q t)y=i'"""'[(21+1)(2l +1)]MN

Il. MOLECULAR CORRELATION FUNCTIONS PN
X >, (e7O=IDL () (t))

To describe a molecular liquid it is necessary to introduce, i’
besides information on the position of the molecule’s center y «
of mass, information on the orientation of the molecules. The XD (Q0)) )

microscopic density, defined for simplatomig liquids [37]
asp(x,t) ==L, 8(x—x;(1)), is generalized to and theself part
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transformation int(ﬁ space, i.e., what remains is the discus-
sion of the transformation of the molecular correlators under
rotations and reflectiong!2].

Let us start with the proper transformatioR«, 8, y)
e SO(3).From the transformation dd!, () underR[38],
the transformation law for the molecular correlators follow

SI(S) r(a,t)=i'/_'[(2l+1)(2|'+1)]1/2%

mn,l’m’n

x; (e 1 YO -XIDL () (1))

xD'* (Q))). @8  immediately:
| ions i S (@)= X Dy (RID}
The reader should note that these correlation functions in- mn,l’mn’ Q" &~ “mm m”m’
volve both translational degrees of freedom and orientational mm
degrees of freedom. They form a complete set for any two- X(R)Slm”n,l’m”’n’(dit)i 9

point correlation function of an arbitrary molecular liquid

and they are also the main entities entering MM{ZR].  whereq’ = Rq. The choice of the| frame, i.e., the laboratory
Specialization tom=n’=0 yields the corresponding correla- frame of reference oriented such thialies along thez axis
tors used in Ref[23] for linear molecules. Although their - - o '
introduction is enforced by theoretical reasons since homog=qo=(0,0q), leads o a simplification of the molecular
geneity and isotropy of the liquid is accounted for directly byco_rrelators._ Fclr, a rotatiolR,(a) = R(.a,O,.O) around thez
the Fourier transformation t6 space and their tensorial na- axis for whichq’ =R,go=do, Eq. (9) implies
ture, only very few of them can be measured experimentally. > mi(mem)a >
For instanceS;mnimn(4=01t) and S5 . (q=01) can be S (Go,t) =€ S (Go.t). (10
obtained from dielectric measurement and NMR, reSpethereD'mm,(Rz(a))ze*‘maﬁmm, [38] has been used. Since
tively. Information on the center of mass correlator gq (10) is valid for all @, the correlators in the frame must
So00,0040,:t) follows from light scattering, provided that the be diagonal irm andm’:

contribution of the orientational correlators can be neglected

[39]. The neutron scattering cross section is a linear super- Slmn,l’m’n’(&O!t):Sm 1 (4,0) Sy (11
position of all of these correlatorgsee, e.g.[40]), from ’
which information on the individual correlators can be ob-whereq=|q|. Since Eq/(9) is also true forsl(r?1)n l,m,n,(a,t)

tained by choosing different scattering lengths of the atomi (s) - . .
units. On the other hand, it is a great advantage of a molecu-zgri'i'){"ig's’ m;/ggr’ttr:(’a:hreelr; t%:gﬁna:cgo?,io f?SA?SEEg) tgese
lar dynamics(MD) simulation, which really determines the q ' P y

. o i i choosing a rotatiorR(7)=R(0,7,0) by 7 around they
trajectories{x;(t),€;(t)}, that these correlation functions

axis:
can be calculated. This of course can only be doné &ord
|” smaller than a cutoff valuk,,, which will in the analysis s (— Qo t) = (— 1)l FmHl s (Qost).
of the SPC/E data be chosenlas=2. S men (o SIT”" o (12)

Here we considered thaR(7)do=—0o, Dmn(Ry(7))
=(—1)""s,,, [38], andm (or n) denotes—m (or —n).

In this section we will discuss the general properties of Next we ~investigate the inversionP for which
the correlator$6), (7), and(8) which follow from symmetry. D'mn(PQ)=(—1)'+”D'mn(Q) [38]. Then Eq.(9) yields
Similar discussions have been given for an expansion into -
rotational invariant§38] and in real spacf41]. The proper- Slmn,l’m’n’(_avt):(_1)I+n+|’+n’SImn,I’m’n’(avt)v
ties presented in the following will be of great importance - - (13
for discussion of the results of the simulation and especially
to reduce the effort needed for solution of the MMCT equa-which is valid for arbitraryﬁ.
tions, which we will present in a subsequent paper. Concern- A further useful relation is obtained by taking the com-

ing symmetry, we have to distinguish between global an lex coniugate o . (a.1) and applving the equalit
local symmetries, where the latter are related to the geometry, i« (Q)i(g_l)mﬁ'lgr}" 21(;)([(1378%' PPYINg quatity
mn m "

of a single(rigid) molecule.

. SYMMETRY PROPERTIES

[Slmn,l’m’n'(a:t)]* :(_1)I+I’+m+m’+n+n’

X rm'n'\ — -),t . 14
The global symmetries arise from the invariance of the St (=) 19

molecular interactions under the simultaneous translation ofombining Eq.(14) with Eq. (12), and Eq(13), respectively
rotation of all molecules, provided that the external potenye have the final relations

tials are zero. Similarly, the absence of a time-dependent

external force implies time translational and time reversal [Smntmn (@D =(=1)™ ™S (A1), (15)
symmetry, which are the same as for simple liquids and ' - =

therefore will not be discussed here. The invariance under Sk ntn >
translations in space has already been accounted for by the [Simnirmn (@O = (=D Smn (A, (16)

A. Global symmetry
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or in theq frame, due to the diagonality im,

(S (G0, DT* =S5 |, (dost), 17

[Sln I'n’ qO t)]*_( 1)n+n S|n|r qO t). (18)
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According to these results the total correlator

S|mn,|/m,n/(ci,t) [Eq. (6)] reduces to its self part far or n’
not equal to an integer multiple af For the case of water
(r=2), Eq.(24) requiresn+n’ to be even, a condition that
simplifies Eq.(18) further.

What remains to be discussed is the role of the reflection

We will show in the following section that, in the case of Symmetry. Here we restrict ourselves to the static correlators.

molecules withC,, symmetry, like watern+n’ must be
even and, thus, it holds the symmetry

[Srﬁynf(ﬁo,t)]*=5{E,|fgf(ﬁo,t)- (19

B. Local symmetry

It will be shown in the Appendix that for their distinct part it
implies
S(mnl’m n’ Q)Hamm\ I'm’|n’ |(q) To, (26)

e., it does not depend on the signroandn’.
We close this section with a discussion of the implications

derive additional identities foS,n | m/n: .(g,t). Since we
have water in mind, which has @,, symmetry, we will
discuss molecules witlC,, symmetry(see, e.g.[43]). To
avoid confusion with then index of the rotation matrices
D! ., we deviate from the conventional notati@h, . This
symmetry means that the molecule possessesfald rota-

tional axis andr planes of reflection symmetry, which con-
tain the rotational axis. It is obvious that application of the
local symmetry operations to any single molecule must Ieave

the interaction invariant. Let us begin with thefold rota-

tional symmetry. Without restriction of generality we choose

the body-fixedz axes along the-fold symmetry axis. In that
case the-fold symmetry affects only the third Euler angfe
The transformation

2
Xi—Xxitve— (20
for v an integer and fixeglimplies that
2
Xj()—x;(t)+ Lt (21

SinceDy,(Q;(t))=e~™40d| (6;(t))e ™ [38], it fol-
lows with the separate use of Eq20) and(21) in the dis-
tinct part Eq.(7) that

ei v(2m/r)n_ 1

and e "@7Nn'=1 (22)

for all integersy. This restrictsn andn’ to integer multiples
of r, i.e.,

- +0
q,t)=

for n,n’e{0,xr,*2r,...}

S|
mn,I'm'n 0 otherwise.

(23

For the self parfEq. (8)], we have to use Eq$20) and(21)
simultaneously, leading to

eiV(Z#/r)(n*n’):l (24)

for all integersv, which is fulfilled forn’=n(modr), i.e.,

#0

© for
SImnI’m 'n’ (q’t): 0

(n—n")e{0,xr,*2r, ...}

otherwise.
(25

crucial that we consider the correlators in Id]lérame The
correlators in an arbitrary reference frame are easily obtained
from Eq. (9). Since the identities derived in Sec. Il A also

hold for S(mnl,m 0t (q t) and S(mnl,m 0t ((i,t), we get from
Egs.(11)—(14) with Egs.(23) and(26) for static correlators
in the case of high temperatures
SO (@) =S (@)= (27)
I.e., the static distinct part is real and does not depend on the
sign of m. Since the static self part fulfills
SREMCIET T

it follows from Egs.(6), (26), and(28) for high temperatures
that

d)m
SO (@),

(28)

(d)ym
Sinli7jnr (@), n#EN’

m (29
1+3(\dn)|,|'\nr|(Q)’

Sr::,l’n’(q)g

n=n’,

i.e., S /n/(0) is approximately determined lﬁffn)lw,ln,‘(q)
and in addition it is real and does not depend on the sign of
m, due to Eq.(27).

IV. RESULTS

In this section we present a detailed analysis of the static
and dynamic rotational correlators as calculated from a mo-
lecular dynamics simulation of a molecular network-forming
liquid. The system is a liquid of 216 rigid molecules whose
geometric parameters are chosen in such a way as to mimic
water molecules. The intermolecular interactions are de-
scribed by the SPC/E potentig0], which has been shown
to be able to describe most of the thermodynamic properties
of supercooled liquid water. We will not report here the de-
tails of the simulation, which can be found in Reff33,34.

The low T simulations were run for more than Shte-
gration time steps, corresponding to 50 ns. Each of the simu-
lation runs requests several months of CPU time on one 400
MHz alpha-processor for equilibration and more than one
year of computer time to generate the configuration en-
semble studied. In this situation, equilibrium runs for much
larger systems at low temperature are very time consuming.
Since periodic boundary conditions may introduce distor-
tions in angular properties near the boundaries, since—as
will be shown in the following—some of the molecular cor-
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relators present unexpected peaks at wave vectors smaller 25 ‘ . : .
than the center of mass peak position, corresponding to a I 8@

. . . 2 - 4 0 -
distance of about three molecular diameters, and since the I S 0@
amplitude of these peaks grows at low temperature, we have 15 - f\ —— Spn@ ]

made the additional effort to equilibrate a system made of
1728 molecules af=207 K to make sure that no finite-size
effects show up in the molecular correlators for the system
size considered.

In order to calculate the Euler angles of each molecule the ot 4 ! . (E.l)
molecular reference frame has been chosen in such a way Ly ‘ ' ' T
that thez axis of the body-fixed frame has the same direction 25 ) e S:m,zo(q) 7
as the dipole of the molecule and thexis lies along the line o L1t S 2020(@ ]
connecting the two hydrogen atoms. Thexis is therefore I = Su@
determined to be orthogonal to the molecular plane. With 2ol \\

this choice of the molecular axes the structure factors('5q.
reduce, in the limi{g|—0 and forn=n’=0, to

SImO,I’m’O(Oat)zcl(t)é)‘ll"Smm’ ) (30)

where

1 N >
CiH=1 2 (Pi&)-&(0)) (31)

are the orientational correlation functions of the dipolar mo-
mentsg; (t) = wei(t). In Eq.(31) P, is the Legendre polyno-

mial of order | and x is the dipole strength. These 0 50 » 100
g-independent rotational correlation functions can be experi- q (nm )

mentally measured for some valuesl ¢éee above A com-

plete analysis of the self part @ (t) for the system under FIG. 1. Static structure factos"r‘”,n,(q). Diagonal correlation

investigation is treated in Ref44]. In what follows the dis- ~ functions withn=n"=0 are shown in(@ and (b). Off-diagonal
cussion will be extended to the generalized correlatorgorrelation functions witm=n’=0 are shown inc).
§T1’|,n,(q,t) in the q frame. _ . . o ,

In the first subsection we will discuss the static correlatordn Sec. Ill, which are all fulfilled within the numerical error
and in the second subsection we will turn to the detailed?y the numerical correlators, allow a further average of the
analysis of the dynamic behavior of the correlation functionsStatic correlators. In this way the numerical noise is reduced
defined in Eq.(5) as calculated from the MD data. We will to its lowest possible value. The resulting structure factors

discuss the numerical results by comparing them to the qualr® Shown in Figs. 1 and 2 for the lowest simulated tempera-
tative and quantitative predictions of MCT or MMCT. tureT=207 K. We found that within the numerical error all

correlators are real.

Some of the static correlators shown in Figs. 1 and 2 are
characterized by large amplitude peaksgatectors corre-

We have calculated all the static structure factors as desponding to distances of the order of three molecular diam-
fined in Eq.(5) up tol=2. The g-vector range has been eters. This is exactly the distance where finite-size effects
chosen in such a way as to include all the meaningful struceould be expected for a system composed dhlecules.
ture of each correlation function, i.e., the valuecpfanges To check if the results are real or simply artifacts of the
from 3.3 nm !, which is the lower bound imposed by the simulation conditions, we report in Fig. 3 the static structure
finite size, up to around 110 nm, a value at which all the factors for the  and 12 molecule systems. We perform the
structure factors have essentially reached their asymptoticheck at the lowest studied temperature, where the angular
values. The grid spacing has been fixed\Mp=1.11 nm? correlations are enhanced. Although the statistic for the large
which allows all the peaks in the correlators to be well re-system is poorer, as expected from the shorter simulation
solved. time, both position and amplitude of the peaks are unaf-

In order to obtain more significant statistics, the staticfected. Data in Fig. 3 confirm that the angular correlations do
structure factors have been calculated, for each configurgersist longer than the center of mass correlations and that
tion, for several directions of thgvectors with respect to the the static molecular correlators, i.e., the quantities that are
fixed laboratory frame. The different results are averagedequested as input by the molecular mode-coupling theory,
after performing a suitable rotation which brings theector  are not affected by the size of the system studied.
along thez axis of the laboratory framgEq. (9)]. Further- The different figures list the static correlation functions in
more, the resulting correlation functions have been average@rms of progressive angular complexity. Figurés) land
over several configurations extracted from a time evolutioril(b) include all the diagonal correlatofge., |=1") with n
that extends up to 250 ns. The global symmetries describegn’=0. In Fig. 1c) n andn’ are still fixed to zero but the

A. Static properties
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2 ' '
e
: ;i szzyn(Q), szz,z—z(q) ]
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- S?zo,zz(Q)

--------- SZZO,ZZ(q) —
——Ss 2o,zz(Q)

e

Y

s
T

Static structure factors

(b)

-3

0 | _516
q(nm )

FIG. 3. Comparison of the static structure factS[’,%,,n,(q) at
© | T=207 K between the B(solid lineg and the 13 (symbol$ mol-
-1.5 : . ; ' ecule systems. The comparison is presented for seﬁﬁrgh,(q),
0 50 » 100 which have been arbitrarily shifted along tpexis to improve the
q (nm ) quality of the figure. From top to bottom:
810,1013%2,221880,2218?.0,221 SiO,ZZISgZZZ’SgZ,ZZ' 850,2218%0,22' QO,ZZ'
FIG. 2. Static structure factonSmn',,n,(q) with nand/orn’#0.  The molecular correlators that have a peak at smaléctors are
(a) demonstrates the validity of E(R9). The three upper lines refer shown, to highlight the absence of finite-size effects even in the
to the casen=n’ while the lower ones represent=—n’. worst case where the molecular correlation extends over about three
molecular diameters.

. o , . i
diagonality inl andl’ is now relaxed. In Fig. 2 the correla teristic of water. At distances of the order ofr.5 nm.

. . L

arable in intensity to the center of mass correlation quivalent to the potential generated by an electrostatic di-
parat ty ole with the same dipole moment as in the SPC/E model.
function. Furthermore, some of them present completely ne

features, i.e., thg dependence of the molecular correlations hus, the data in Figs. 1 and 2 suggest that in water angular
: T € dep ) . correlations persist over distances much longer than the cen-
with | andl’ different from zero is completely different from

ter of mass correlations. We also point out that the correla-
the center of mass structure factor. Some of#fg,,/(4)  tors in Fig. 1) have an intensity more than three times
display peaks and minima gtvector values where the cen- smajler than the ones reported in Figa)l[for the latter one

ter c_)f mass structure facto_r |s|, rather _structureless. The geas to use as intensit§o(q) — 1]. This suggests that the
eralized spherical harmonid3;,(€2;) in Egs.(7) and (8  gjagonal static correlation function could provide a good
can be viewed as weights that “single out” molecules with starting approximation for a MMCT description of the slow-
certain orientation$); . The differences in thg dependence  jng down of dynamics in SPC/E water. We recall that this is
of the generalized orientational correlators show that lookingyt odds with the case of a liquid of Lennard-Jones dumbbells
at molecules with “selected” orientation reveals character—[gg] where the off-diagonal terms have a large amplitude.
istic length scales of the system that are different from the Correlators withn different from zero(see Fig. 2 carry
center of mass ones. This can result in the shift of a peak g&formation about the planar shape of the molecule: '

in the case of the main peak ),,4q) compared to =0 is equivalent to assuming that the Euler anglés al-
Sto.0dd) [see Fig. 1a)]. The “proper choice” of orienta- ways zerg, i.e., on the absence of cylindrical symmetry. Fig-
tions can also reveal order on scales that are longer than thge 2a) demonstrates the validity of the propef8g). Data
typical intermolecular distance and that is not visible in thein Fig. 2 show that a few of these correlators describe a
center of mass correlators. For example, the most significasignificant amount of angular correlation. Again, the largest
peak in Sio,zo(ﬂ) and Sio,lc(Q) is located aroundq  amplitude is observed for the case in whicbr I’ is 1, i.e.,
=6.5 nm %, a g vector much smaller than the center of for Sio,zz(CI)-

mass structure factor first peak. Tle=6.5 nm ! peak, Figure 2 also exhibits the— —n (orn’— —n’) symme-
which appears in correlators withor |" equal to 1 anch  try as given by Eq(29). Although this symmetry becomes
=n'=0, may reflect the strong dipolar interactions charac-exact at least at high temperatureze the Appendjx it
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FIG. 5. Temperature dependence of the diagonal static structure
FIG. 4. Temperature dependence of the diagonal static structuactor withl =2 andn=n’=0.
factors with|=0,1 andn=n'=0.

on supercooling. Of course, only a full MMCT calculation
seems to be valid within the numerical error evenTat can confirm such a hypothesis and provide definitive answers
=207 K, which is not high anymore. Although in the Ap- on which modifications of the angular correlations drive the
pendix it is shown that fomny temperature contributions to ideal-glass transition.
the distinct part exist for which this symmetry is still exact, it
is not obvious to us why their weight is so large. B. Dynamic properties

Figures 4-7 show the temperature dependence of the In this section we discuss the time evolution of the mo-

static structure factor§yy .,(q). In order to analyze the |ecyjar structure factors with,|’<2 at different g-vector

relative variation of the correlators on varyifgwe report  yajues. We present the results of the calculation in the per-
three different temperatures, i.€5+ 207 K, T=238 K, and

T=400 K. Figures 4 and 5 report the diagorﬁgylo(q). 03
Figure 6 reports the off-diagonal terms witk=n’ =0, while

Fig. 7 reports some correlation functions witl#0. From 02
these figures we see that the behaviorsﬁﬁ’,,n,(q) on 0.1
changingT is strongly correlator dependent. The static struc-
ture factorsgovoc{q) (center of massshows a significant in-
crease of the resolution of the peaks, which become sharpe_g
asT is lowered, especially at smail vectors. The diagonal
correlators withl=1"'=1 are less temperature, dependent. —0.2
They remain almost unchanged at low temperatures or
changingT by 30 K, fromT=238 K toT=207 K, i.e., in 02
the region where the molecular diffusivity decreases by more g1
than two orders of magnitud&3]. Thus, while these corr-
elators have a large amplitude, which implies that they might ©
contribute substantially to the MMCT vertices, the dynami- _,
cal transition may not be controlled by them. The off-
diagonal terms shown in Fig. 6 as well as the static correla—0.2 5
tion functions withn and/orn’ #0 (Fig. 7) also do not show
significant temperature variation at low temperatures. This
suggests that a small set of diagonal correlators may play the FIG. 6. Temperature dependence of the off-diagonal static struc-
relevant role in the slowing down of the molecular dynamicsture factor withn=n’=0.

0

50 100 0 50 100
q(om ) q(om )



PRE 62 MOLECULAR CORRELATIONS IN A SUPERCOOLED LIQUID 2395

0 -1
5° 010(20 nm™t)

] Sozz,lo(q) 1fe
-1t ——- T=400K & 1 \
) L . L L . i

L L L ‘ % 10° 10 100 100 T
0 50 100 0 50 100

q(om”) q(@m’) FIG. 8. Time dependence &, ,,,.(q,t)/S]; .,(q) for differ-

. ent temperature@op) and the corresponding time-temperature scal-
FIG. 7. Temperature dependence of some static structure facto[ﬁg representatiotbottom). The small inset shows the correspond-

with n and/orn’#0. ing static structure factor with an indication of the chosevrector
(see arrow. This figure refers t&®), ;dq=20 nm 1t).

spective of testing how far the mode-coupling framework

can describe the behavior §f, |,,,(q,t). Since the complete h i , | L h
MMCT equations have not yet been solved for the completé e scaling exponent are not universal quantities since they
strongly depend on the physical system under investigation

dynamic evolution of the correlators, we mostly keep our d on th | q diti but they h
discussion to a qualitative level. We show that most of the?NC ON the volume and pressure conditions, but théy have a

universal predictiongsee the Introductionfor the slow re- sort of “universality” in the sense that they are predicted to

laxation in supercooled liquids are excellently satisfied b)})e correlator independent. Indedd, ?”dy are predicted to
the numerical data. have the same value for all correlation functions that couple

‘g ; -~ to each other. In the case of molecular liquids, their values
One of the strongest predictions of MCT is the validity of : . !
the so-called time-temperature superposition principle in thgtaﬂ be k())btamer(]j fromtrl]\AI:ACT.trI]n prewousf psaé’g?g':gfﬁd'z}t.
a-relaxation region (see the Introduction The time- It has been shown that in the case o . the time-

temperature superposition principle states that in a wigdemperature superposition principle is satisfied by the self

range of temperatures above the MCT critical pdimhich a’?d collective center of mass cqrrelators_ and also by the
will be defined in the following it is possible to scale the g-independent rotational correlation functions. It has also

same correlator evaluated at differéhion a single master tie2er71 Shov;’r? thaﬂ'CZfZOOJ_f”C% and_th((aj crmca}l texpon_(:r?jz h
curve through a rescaling of the time, i.e., =2.7 are the same for all examined correlators within the

numerical error. Here we generalize this conclusion, showing
B(t)= B/ r(T)). (32) that the time-temperature sgperposmon principle also holds
for all the molecular collective correlators up te2. We

In Eq. (32) ¢(t) indicates any dynamic structure factor, show here onl)g two representati_ve correlators. In Fig. 8 we
%(T) is the master function, and(T) is a temperature- have reporteds;; ;{q,t) at the different temperatures nor-

. . . O
dependent time scale that is characteristic of the chosen coff@lized 1o its static valu&,, ,{q). We have rescaled each

relator. The temperature dependence of the time scale is al§yTVe choosing as(T) the time at which the correlator has
predicted by MCT or MMCT. In leading order(T) is a decayed to the value &/ The different curves overlap per-

power law diverging at the critical transition temperature: €Cctly in the « region, confirming the validity of the time-
temperature superposition principle. The small graph shows

(T)~|T—T 7. (33)  as areference the static structure factor; an arrow is pointing
to theq value for which the analysis is performed. In Fig. 9
Equation(33) is one of the possible operative definitions We show the test of the time-temperature superposition prin-
of the mode-coupling critical temperatufe. T, is the tem- ~ Ciple for the same correlator but for a different valuegof
perature at which the characteristic time scales diverge, i.eWhile Fig. 10 shows the same analysis for a different cor-
the point at which the dynamic of the liquid is completely relator, Si; ,4a.t). These results, and similar analysis for
frozen. ThusT, defines a kinetic transition from an ergodic other correlatorsnot reported in this article lead to the
to a nonergodic dynamic. This is a purely kinetic transitionconclusion that the time-temperature superposition principle
which does not have a thermodynamic counterpart. In reds satisfied for all examineeﬂl,n,(q).
liquids no sharp transition is observed and closeT {othe In order to verify the validity of the scaling law for the
system switches to a different dynamic where hopping phetime scaler(T) and the “universality” of the exponeny,
nomena become dominant. Thiis assumes the meaning of we represent in Fig. 1t~ ', for y=2.7, as a function of.
a crossover temperature. The transition temperaiyrand  The two figures are at two different values of thevector,
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i.e., =18 nm! and q=28 nm! and in each figure
7 (T) is shown for all examined correlation functions  FiG. 11. a-relaxation time to the power 1/y for all correlation
(e, 1=2, —I=m=l, and—I<n=l). Data in Fig. 11 sug- functions with|<2, —l<ms=I, and —I<n=<I at two different
gest that, as previously observed for the center of mass anglvector values. Lines are drawn to guide the eyes.
g-independent rotational correlators, the power I88) is
well satisfied with the same “universal” values of the criti- the water molecules. These motiofwith a characteristic
cal exponenty=2.7 and of the critical temperatur€. time scale of the order of 0.1 psiodulate the approach to
=200=3. We also note that the time scales for fixedary  the plateau and may interfere with the universal dynamics
by about one decade as can be observed from the ratheharacteristic of thgs region[45]. If the temperature is low-
different slopes. This analysis strongly confirms the MCTered very close td., MCT provides quantitative predictions
and MMCT prediction of the existence of a unique critical for the time evolution of the correlation function. We stress
temperaturdl; at which both translational and rotational de- again that these predictions are the same for MMCT.
grees of freedom cross from an ergodic to a nonergodic dy- In the region of the first scaling law MMCT predicts for
namics following a power law behavior ruled by an “univer- S{‘; 1n(a,t) the factorization of the time dependence from
sal” exponent y. Thus, MMCT seems to be a good the dependence og,!,n,I’,n’, and m, i.e., near toT, its
framework in order to describe qualitatively and semiquan+jme dependence is given by the so-cal@dorrelatorG(t),
titatively the temperature dependence of the structural correyhich describes the dynamics close to the plateau on a time
lations in a supercooled molecular liquid in a wide range OfscaletU(T)(B regime. The equation foiG(t) does not de-
temperatures above a criticél, as defined by Eq33). pend ong, I, n, I, n’, andm; it involves only the exponent
Data in Figs. 8, 9, and 10 show oscillations at short timesparametem. This equation, which is the same for MCT and
connected with the librational and vibrational dynamics OfMMCT, can be solved exactly in the asymptotic limits
<t, andt>t,, yielding for both cases a power law depen-
S 010 @ dence with exponena (critical law) and exponenb (von
T Schweidler lavy, respectively. The first one describes the re-
laxation onto and the second one from the plateau.
The two exponents are both functionsofaccording to
i [46]

15 -

S 10 @ nm ™1

3.5

2.5 -

~I(1-a)? T(1+b)?
- I'(1-2a) I'(1+2b)’

o5 L (34
0 20 40 60 80 100
q@m™)

0 t(ps)

whereI" is the Euler gamma function, and they are con-
nected to the relaxation time exponenby the relation

1 1

MMCT provides an explicit expression far which contains
the static molecular correlators &g [28].

The von Schweidler law, which also describes the early
FIG. 10. Same as Fig. 8 f@}, ,{q=8 nm 1,t). a-relaxation regime, is given by

0 I ) I I . L 2 vuat
—6 =3 4 -3 = ~1 1 00 1 01 1 02 t
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FIG. 12. Fit to Eq. (36) of the time dependence of FIG. 14. Same as Fig. 12 f@; ,{q.t).

S (4.)/S] 1,/ (q) for differentg-vector values. The solid line
represents the MD data whereas the dashed line and the dotted linections also. This has previously been found for the center
are fits to the von Schweidler law with and without second orderof mass correlator for wat¢B4] and for the molecular cor-
correction, respectively. The inset shows the corresponding statigelators for diatomic moleculd6]. In order to test the va-
structure factor with an indication of the chosgnvectors(see lidity of the von Schweidler law and the relevance of the
arrows. This figure refers t&y,,4q,t). second order corrections, we have fitted the time evolution of
our correlators according to E(B6) for the lowest simulated
m _Emc¢ =_pH@®m b H@m 12b temperatureT=207 K, which is a few degrees above the
Sin o (4= Fin (@)= = Hip oo (T Hin fr (@)1 criti(F:)aI temperature. In Figs. 12—15 we sho%v the fits with Eq.
+0(t3), (36)  (36) performed for some representative normalized diagonal
correlators. The vertical lines indicate the time window se-
lected for the fit, which has been chosen consistently with the

, . (q), and H 7, are, respec- . , ) ,
tively tr:ch?itical nlgi%;régc)jicity parlgyrlnrét(eqr) the criticgl am-Previous fits for translational am;Hndependept correlators,
' ' i.e.,t covers a range of two orders of magnitude, from 7 ps

plitude, and the amplitude of the next to leading order cor- : 2 .
rection for the unnormalized correlators. An explicit Up to 800 ps. Figure 12 represents the fit with &) using

expression foh®(q) = H®)(q)/S(q) for simple liquids has the valueb=0.5 as previously found in the MCT study of

. ) . ; ) the time dependence of self and collective center of mass
recently been derivef#7]. The time window in which the correlators. We show the correlatﬁfoyl({q,t) for three dif-

. "b .
asymptotic power law® holds is strongly correlator andl  tarent values of they vector, marked by arrows in the small
dependent. Hence, to perform a careful MCT analysis it 'Sgraph representing the sta8, ;{q). The solid line is the
0 :

where F™, (q),H®M (2)m

always necessary to take into account the second order ¢ umerical curve, while the dashed line is the result of the fit.
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FIG. 16. Parameters of the fits shown in Figs. 12—15. The parameters refer to a fit of the unnonﬁ'ﬁ],iz,gdq,t). Note that the
statistical noise is large when the amplitude of theelaxation is rather small.

The quality of the fit is remarkably good. Tlyedependence be, in principle, calculated using the molecular static struc-
of the validity of the fit is evident, noting that foq  ture factors. For diatomic molecules this has been dong for

—8 nm *andg=15.5 nn the fitted von Schweidler law andH® [28]. o _

holds far above the fitting range, while for=36.5 nm* The fits to other correlators show similar behaviors. We
the two curves separate out of the fit window. To clarify theWant to stress that, according to MCT and MMCT predic-

importance of the second order corrections we have also r%l_ons, in all the fits to Eq(36) the same exponerti has

ted in the fi th btained keepi v the t urned out to be satisfactory. The independence of the power
ported in the figure the curve obtaned keeping only the term,,, exponenb of the chosen correlator and of thevalue is

t’ (dotted ling. We see that while in the case a strong argument in favor of MMCT as a framework to
=15.5 nn1? the first power law fit alone extends to almost describe the slow relaxation in supercooled molecular lig-
three orders of magnitude, for the other valuegjdlie sec- uids. We also stress that the two independently calculated
ond order corrections are necessary. The fitting parameteexponentsb and y satisfy the theoretical prediction of Eq.
obtainedF, H®), andH(®), are shown in Fig. 16 as functions (35).

of g together with the static structure factors. Analytic ex- In view of a future comparison with the full time depen-
pressions for the calculation of these quantities are providedence of the MMCT correlations, we report in Fig. 17 the
by MMCT (for the amplitudeH(® no explicit expression for parameters of the fit to the numerical correlation function
the molecular system has been derived,y& that they can according to a stretched exponential form,
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FIG. 17. Parameters of the fits to a stretched exponential function of the same correlators shown in Figs. 12—15. The parameters refer to
a fit of the unnormalizetﬁrgyl,n,(q,t). Note that the statistical noise is large when the amplitude ofxtihelaxation is rather small.

S,”;J,n,(q,t) up to =2 in the q frame. These correlators

present a variety of features which open a deeper insight into
(37 the structural properties of the liquid. For example, the sym-
metries of the rotational correlators reflect the geometrical
properties of the water molecules, while the peak distribution
describes the intermolecular interactions. It becomes clear
from an overview of the complete set of correlators that a
theory able to describe the relaxational properties of a super-
cooled molecular liquid cannot neglect the molecular corr-

In this paper we have analyzed the slow relaxation prop€lators withl,1’+0 and their coupling to the center of mass

erties of a supercooled liquid of planar rigid molecules de-correlator. For the static distinct part, at least at high tem-
scribed by means of a MD simulation. The parameters of th@eratures, we have proved that it is independent of the sign
simulation have been chosen in such a way as to mimic thef n and n’ for molecules withC,, symmetry. The MD
thermodynamic and dynamic properties of liquid water, aresults indicate that the independence even holds at lower
molecular liquid characterized by a network structure at lowtemperaturesdown to 207 K within the numerical error.
temperatures. Starting from the set of MD data we have cal- In this article we argue that MCT in its molecular formu-

¢ )ﬁm (@) culated all the static and dynamic molecular structure factors

m m
' /(q,t):A ' ;(q)eX —(
Sn,l n In,I"n TmJ,n,(q,T)

We note that in all cases examined the laggeector limit of
the stretching paramete® is about 0.5, i.e., equal to the
value ofb. Such equivalence is predicted by M(C48].

V. SUMMARY AND CONCLUSIONS
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lation is a good candidate to be the correct framework for thaeve can rewrite Eq(Al) as follows:

description of the slow dynamics in supercooled molecular

liquids. In order to support this view we have compared the »(a) })_ 2 2 J d3x J' A3’ (“)(i)v

properties of our MD liquid to the universal predictions of Pi aa

MCT (or MMCT), which are independent of the molecular

nature of the liquid. Even if the complete set of MMCT X(X=X')p (“ (X", (A4)

equations has not yet been solved, thus preventing a rigorous

comparison between theory and simulation, we have testear by use of Eq(A3)

several asymptotic MCT predictions. We have shown that

the temperature and time dependence of our MD correlators (@) (@* (4)7 N P

perfectly obeys the time-temperature superposition principle Vi, })_ PéE] 2 z Pi q)v"“ (q)pj @,

predicted by MCT and MMCT, and we have found the (A5)

MMCT “universality,” i.e., the critical temperaturd . and

the exponentt) andy (and therefore alsa) do not depend  With v ./ ()= d3Xv 40! (x)e'q X the Fourier transform of

ong, I, n 1", n', andm. the pair potential which depends gr- |q| and the volume/
Close toTC, where the asymptotig-correlator behavior  of the system only.

is reinforced, we have compared the numerical correlator |nstead of the site-site coordinates we introduce center of

with the predicted von Schweidler law plus second ordeimass and relative coordinates:

corrections in the early region. We have shown good qual-

ity fits consistent with what was previously found for the self - ()

and collective dynamics of the center of mass alone and of Xj= ; Mg, 2:1 Xjv, ; NoM, (A6)

the g-independent angular correlators. Again, the predicted T

relation (35) between the von Schweidler exponent and thegnd

relaxation time exponent is fulfilled, as well as the large-

g-vector limit of the stretching exponeg, |,.(q). ré V) X ,,) —Xj, (A7)

ACKNOWLEDGMENTS respectively.m, is the mass of atoms of type. Next we

substitute Eqs(A6) and (A7) into Eq. (A3), which leads to
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ported by MURSTPRIN 97. A.L., R.S., and C.T. are grate- p(D(g)=€laxp(®)(q) (A8)
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where
APPENDIX MOLECULES WITH C,,-SYMMETRY N
In this appendix we will investigate the validity of tie pa)= X el (A9)
— —n symmetry for thestatic distinct part of the correlators Va=1

[cf. Eq. (26)] for molecules withC,, symmetry. = (a) . . .

We consider a liquid oN identical, rigid molecules. Each Now, let {R;"} be the relative vectors in the body-fixed
molecule is made up dfl,, atoms of typew, «=1,2,.... frame andQ =(¢;.0;,x;) the Euler angles between the
The position of atomv,, of type « in the jth moIecuIe is laboratory and the body-fixed frame. Then

denoted by x{% , j=12,...N, »,=12,...N,.

Then, in a site-site representation the total potential enérgy
is given by

V({x(“’})— Z 2 2 vellX( - (“’I)

aa,,,,,

rie) =R71(Q)R (A10)
with R(Q) € SO(3).Substitution of Eq(A10) into Eq.(A9)
and making use of the Rayleigh expansj88], we arrive at
Na
(A1) P7(60) =472 iI(aR)Yi(R(Q)E) X Vim(el?),

where we restrict ourselves to two-body interactions with (A11)

pair potentialv ./ (x) between atoms of type anda’. In-  and with the transformation of the spherical harmonics under
troducing the microscopic molecular density for atoms ofRe SO(3)[38]
type « in moleculej,

;J(M(a,nj):w% i'11(ARL)D () Yiin(€q)

p{D(X) = 2:1 5(;—;573), (A2)
o (a)
and its Fourier transform, szl Yim(€,)- (A12)
(a j\(r) are the spherical Bessel functiom., () are Wign-
p! ) q)_ 2 elq x (A3) JI( ) . p ‘ o m-h m( ) }(:])
ve=1 ers rotation matrices, R,=|R,”| for all v,, €
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=RYIR,, and e;=q/q. The substitution ofp{*)(q) [Eq. ¢§f;)_ b1 = T ¢$f;)+)\va277 (A17)

(A8)] with p{*)(q, ;) from Eg.(A12) into Eq. (A5) yields

the center of mass angular representatioiv:of for v,=1.2,...N,. The integer\, may depend onv,,.

Using the explicit ¢,6) dependence o¥,,(€)=Y,,(6,d)

VXD D=V(xg, X Qq, QN =c;,Pin(6)e"? [38], we get from Eq(A15) with Eq. (A17)
& (@)
:_ E Z Z UImn,I’m'n’(q) yl(r?):CInPIn(e(a))E e,
J*J’ qg 'mn V=1
1"'m'n
NLY
xe 109D (Q)DLE (), =CnP(0)(—1)" 3 e M
v,=1
(A13)
N —ingl@
with the transformed pair potential =(=1)"cipPq (6 ));;,1 e ",
;Imn,l’m’n’(a):(477)2iII?IYIm(éq)YI*’m'(é)q) < (a) (@)
E a8, 6N =y, (A18)

X Ve (DJHARY 1/ (AR,
aa’ wheren= —n. In the case that is odd a similar choice of
Nq ) #'® can be made, such that EA18) holds. Due to Eq.
x| 2 Ym(eijh)( > Vi G )

(A18) we find that the coefficientsy, m'n'(q) do not de-
ver=1 pend on the sign of andn’. Therefore Eq(A13) can also
(A14) be rewritten as follows:

The representation of by Eq. (A13) is quite obvious, since V()Zl, ce ,)2,\, Qg Q)

the interaction potentiaNo(i,Q,Q’) between two mol- 1

ecules with center of mass separatiorand orientation() =3 > = E E V(e ia- (- ’)[DK(QJ)
and()’ can be expanded with respect to the complete set of i#i’

functionse'd’ XD'mn(Q)D (7). +DK(QJ)][D (Q; )+D Q) T*, (A19)

All the local molecular symmetry is contained in the co-

~ - _ _ _n!
effiCIeNtSD 1 men (G) through the entity wherex=(I,m,n),x=(I,m,n), andD ,=D,,, has been used

as a shorthand notation. Equatioh19) is the basic result

Ny that allows us to study the— —n symmetry for the static
2 (el )) (A15)  distinct part of the correlators. From E(G\6) we get fort
a” =0

which will be discussed fo€,, symmetry. In the following 1
we choose the body-fixer axis along the molecular-fold SO (q)=i"""[(21+1) (21" + 1)
symmetry axes. First of all we note that théold rotational ' N
symmetryimplies

f H (d3x;dQ;)

#0, ne{0*r,*x2r,...} k;ék/z
(a) = (A16)
Y=l =0 otherwi i
~0  otherwise. Xe ™4 HHID (0D} ()
Here we have assumed that all types of atamsl,2, . .. e BVOXL, XN o), (A20)

have exactly am-fold rotational symmetry. This is not nec-
essary for a molecule with-fold axes. There may be some \yhere 7. is the configurational partition function. Now we
types of atoms that have a2 3r-, fold, etc., symmetry. gypand expggV) into a power series. The zeroth order term

For sucha, y{®+0 for n=ur where u(®=273, .. .. PPN : o )

Nevertheless yE”é{A16) remairfg true sinCﬁimin =1 of Sf{,fd(q) IS proportional t0dn05yro, Which in a trivial

by assumptio,n @ ’ sense is invariant underor n’ into —n or —n’, for arbi-
Now let ué turn to thereflection symmetry With traryq, I, m,1’, andm’. For the first order term we find with

(¢ 9() (where #(®) does not depend on,, due to the Ed- (A19)

Cr_v symmetry and the a_lpproprlate choice of theabody—flxed (Sf(dz( ( _)))l.ordeloc’l;:( K/(a) (A21)
axis), we denote the azimuthal and polar angleaegdf For

r even and fixedv the angIeSgb(“) can be chosen such that Where the factor of proportionality is independentafm’,

the reflection symmetry with respect to the-®) plane im- N andn’. S'nCEUK « does not depend on the sg;n oand
plies n' forall g, I, m 1’, andm’, the same is true foSBf(Y)K,(q) in
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first order. In second and higher order, products of the rotagshere «=(I,m,n). The (g;m;,q.m,) dependence of
tion matrices occur. In thgth order contributions of type ~_ -\~ —= . .
s P G (@)7,(@2) is given by[cf. Eq. (A14)]

W qle. qy K1,2. Ky ;Kl"‘i(al)'”;"v*’%(a”) Y'lTl(éql)Y'sz(éqz)xe_i(ml¢l+m2¢2):eim1(¢2_¢1) (A27)
K < where 0=m=m;+m, has been used. The azimuthal angles
Xe—i(cil+~~»+iy)(x’j—§jr)DK1(Qj)...DKV(QJ_) ¢>1Qaend ¢, of e andey, fulfill ¢,—py=m due toqeey,
. . +00€q,=0, i.e., the right-hand side of EqA27) equals
X DKi(Qj') B, DKL(QJ") (A22)  (—1)™, which does not depend on the sigmof. Therefore

we find that Yllml(éql)vlzmz(éqz):Y.lml(éql)v,zmz(éqz)

occur withv= . Forv=1 this coincides with the first order and accordingly that

contribution. Using the product rule for thg's, we get for

v=2 a contribution toSffL,(ﬁ) that is proportional to Zzlki(ﬁlﬁzzxé(&z)=5K1K1(51>EK2K5(62)- (A28)
- 1 G .
Af(zk)r((ll)E v DD Clrikok)Ckirhr") Making use of Eq(A28), we get from Eq(A26) that
0192 KlK/ N -
A®,(G9)=A%),(q0) (A29)
~ S~ - for all k' and k with m=0. We see that th@— —n (or
X0, (A ey (A2). (A23) n’——n’) symmetry of all the second order contributions

holds only in theq frame and fom=m’=0.

where 3/ . denotes summation ovep; and g, such that Yy e . .
BesidesA,”’,(q), in third order there also exist contribu-

d19,
d:+d.=q, and

tions of type
Clrarak)=C(I4lol;mymm)C(l41 o0 non)  (A24) A®, () 1 S S (9T (G
. . . KK/q:— ) Uk k(G
is a product of Clebsch-Gordan coefficients. Then it follows V2 a0503  xirpra e
from Eqg. (A23) with the properties ofc(l41,l;n.n,n) [38] Ky ichich
that ~ -~ -
XszKé(qZ)UKsKé(q:‘;)Y (A30)
2) 7 :i E 72 (_1)|1+|2+|C( )C( o /)
Ace(A)=y &, “ Kikol)LL K Kok where (---) contains products of’s, and the sum over
e 01.0,, andgs is restricted tay; + g, +q3=g. Forq=gqo and
2n2 m=_0 the same procedure as fo2 can be used in order to
X o (01)0 e (G), (A25)  prove that then— —n symmetry will be true if the threefold
m =2 5 B product of thev’s in Eq. (A29) is invariant underm,—
where we have used the independencekcpii andezKé of —m;, i=1,2,3. This requires thatin analogy to thev
the sign ofn, andn,. First of all, we observe that all terms =2 Cas¢ _
in the sum of Eq(A25) with |;+1,+| even coincide with e |(Md1FMado+Mads) — gl(Mbr+madatMads) - (A3])

the corresponding terms in EGA23), independent o, m;,  Although O=m=m,;+m,+m,, the azimuthal angles
andm;. Hence for those terms tfre——n symmetry holds e, (in contrast tor=2) are not restricted because
for arbitrary q, 11, mq, |,, andm,, providedl,+1,+1 is '
even. On the other hand, choosing=0 and q=q
=(0,09)(g frame and changingn,;——my;, my,——m,,

>3 .0o-q;=0 does not fix¢gg if ¢; and ¢, are given.
Therefore the generic case frobeying=>_,qo- ;=0 will
not satisfy Eq.(A30). But, similar to thev=2 case, there is

we find
1 a subset of terms in the sum of E&29) that will be invari-
AP (q)== D 1D Clryror)Cliyichi’) ant undem— —n (orn’——n’) forall g, I, m 1’, andm’.
- 992 ki) The results show that the invariance&gfq)nll,m,n,(q) for
K2K2 arbitrary (@,I,m,I’,m’) and for @=gqg.l.I’,m=m’'=0)
~ -~ - only holds up to, respectively, the first and second orders in
Xv;lki(%)vfzxé(cb)a (AZG) 1/kyT p p y
B .
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