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Molecular correlations in a supercooled liquid
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We present static and dynamic properties of molecular correlation functionsSlmn,l 8m8n8(q
W ,t) in a simulated

supercooled liquid of water molecules, as a preliminary effort in the direction of solving the molecular
mode-coupling theory~MMCT! equations for supercooled molecular liquids. The temperature and time de-
pendence of various molecular correlation functions, calculated from 250 ns long molecular dynamics simu-
lations, show the characteristic patterns predicted by MMCT and shed light on the driving mechanism respon-
sible for the slowing down of the molecular dynamics. We also discuss the symmetry properties of the
molecular correlation functions that can be predicted on the basis of theC2v symmetry of the molecule.
Analysis of the molecular dynamics results for the static correlatorsSlmn,l 8m8n8(q

W ) reveals that additional
relationships between correlators with different signs ofn andn8 exist. We prove that for molecules withCrv
symmetry this unexpected result becomes exact at least for high temperatures.

PACS number~s!: 64.70.Pf, 61.25.Em, 61.20.Ja
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I. INTRODUCTION

In recent years, significant progress has been made in
understanding of the slow dynamics in supercooled liqu
@1#. Theoretical@2–5#, experimental~see, e.g.,@6–10#!, and
simulation efforts~see, e.g.,@11–14#! have highlighted the
role played by the ideal-glass transition temperatureTc , first
predicted by mode-coupling theory~MCT! for simpleliquids
@15,16# and in a schematic model@17#, and identified the
different dynamical mechanisms above and below this te
perature. This work has clarified the strong interplay betw
liquid structure and liquid dynamics aboveTc as well as the
universal aspect of the decorrelation process—which clos
Tc is predicted to become independent of the correlat
function as well as theq vector that is probed@18#. For
colloidal systems MCT has been tested both on a semiq
titative level @6#, i.e., the validity of the scaling laws wa
investigated, and also on a quantitative level where it
been demonstrated that the time-dependent density corre
for a liquid of hard spheres~which is a good model for neu
tral colloids! obtained from MCT describes the correspon
ing experimental result over three decades in time by us
only onefit parameter~for the time scale! @19,20#. All the
other experimental tests were semiquantitative and were
clusively restricted to molecular systems, like OTP, sa
glycerol, etc.~for more details, see Refs.@2,3,7–10,21# and
references therein!. At a first glance the reasonably goo
agreement between the predictions of MCT for simple l
uids and many of the experimental data for the molecu
glass forming liquids seems to be surprising, since the or
tational degrees of freedom do not appear in the orig
version of MCT @18#. To do a quantitative comparison be
tween theory and experiment or simulation and especiall
describe the molecular correlations~including orientational
degrees of freedom! it is necessary to extend MCT to mo
lecular liquids. In particular, a molecular mode-coupli
theory~MMCT! allows one to study the role of the couplin
PRE 621063-651X/2000/62~2!/2388~17!/$15.00
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between the translational degrees of freedom and orie
tional degrees of freedom. Such an extension has rece
been performed for a single dumbbell molecule in an isot
pic liquid @22# and for a liquid of diatomic molecules@23–
25#. References@24# and @25# even treat general molecules

MMCT is also conceptually based on the hypothesis t
the liquid structure is controlling the long-time dynamic
evolution of the system. Structural information is used
input in the theory via generalization of the density-dens
structure factor including the angular degrees of freedo
Such quantities, although they are difficult to determine
perimentally, can be evaluated from molecular dynamics
jectories and used to test the quality of the recently propo
MMCT. For the case of a liquid of diatomic molecules, th
molecular structure factors have been evaluated@26# and a
first quantitative test of MMCT has been presented in Re
@27,28#. Furthermore, the temperature dependence of the
lecular correlation functions can give hints regarding t
leading mechanism for the slowing down of the dynamic

The asymptotic predictions of MCT continue to be va
within the MMCT scheme. Also in MMCT@22,23# ~i! there
exists ab-relaxation regime where the factorization of th
time or frequency dependence of the correlators or susce
bilities from the space and angular dependence holds ge
cally and the time dependence is given by theb correlator,
which fulfills the first scaling law@18#, and ~ii ! there exists
ana-relaxation regime in which thesecond scaling law@18#
holds, i.e., the time-temperature superposition principle
fulfilled @29#. These two results underline the universality
the ideal structural glass transition based on a bifurca
scenario described by a fold singularity@18#. However, cal-
culation of the various exponents~entering the scaling laws!,
and of the critical nonergodicity parameter, the critical a
plitudes, the transition temperatureTc , and particularly of
the molecular correlation functions themselves, requires
solution of the MMCT equations.

In this article we present the temperature andq-vector
2388 ©2000 The American Physical Society
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PRE 62 2389MOLECULAR CORRELATIONS IN A SUPERCOOLED LIQUID
dependence of the generalized structure factors require
the MMCT for the case of the single point charge extend
~SPC/E! potential @30#. This potential, which describes th
molecule as a rigid planar body and models the pair inte
tions as a sum of electrostatic and Lennard Jones terms
been studied in detail and has been shown to reprod
qualitatively the characteristic properties of liquid water—
liquid where the slowing down of the dynamics on cooling
not related to packing constraints but to the formation o
tetrahedral network of highly directional hydrogen bon
@31,32#. Previous numerical studies on the SPC/E syst
focused on the center of mass self@33# and collective prop-
erties@34#, have shown on a semiquantitative level that t
center of mass dynamics is well described by MCT, with
estimated critical temperature of aboutTc520063 K. It has
been shown that orientational degrees of freedom are cru
in strongly enhancing the slowing down of the dynamic
processes on supercooling. This has led to the introductio
a semischematic MCT model@35#, where the coupling to the
orientational degrees of freedom is accounted for phen
enologically by the introduction of a parameterxR>1 by
which the coupling of the center of mass density mode
enhanced. This semischematic approach, recently tested
for the case of a supercooled liquid of diatomic molecu
@36#, focuses only on the center of mass translational deg
of freedom and is by construction unable to describe the t
evolution of the orientational degrees of freedom and to
dicate which orientational degrees of freedom are resp
sible for the slowing down of the center of mass and ori
tational dynamics. A MMCT description is required to ful
describe these important dynamical aspects.

The generalized structure factors presented in this ar
are a first step in the direction of solving the MMCT for
molecular system. In Sec. II we motivate the introduction
an infinite-dimensional correlation matrixSlmn,l 8m8n8(q

W ,t)
where l 50,1,2, . . . , 2 l<m< l , 2 l<n< l , and corre-
sponding relations for the primed quantities. As already m
tioned above, MMCT requires the static correlato
Slmn,l 8m8n8(q

W ) as an input. In Sec. III we discuss the relatio
between theSlmn,l 8m8n8(q

W ,t) correlation functions arising
from the symmetries characteristic of isotropic liquids a
the symmetries characteristic ofCrv molecules. These rela
tions reduce drastically the number of independ
Slmn,l 8m8n8(q

W ,t) correlation functions and support the fea
bility of a full MMCT calculation for this class of liquids.
Finally, in Sec. IV we present the time evolution of the ge
eralized angular correlation functions for the SPC/E case
interpret their behavior in the general MCT framework. T
qualitative and semiquantitative agreement between num
cal data and asymptotic MCT theoretical predictions stron
suggests performing a full MMCT comparison.

II. MOLECULAR CORRELATION FUNCTIONS

To describe a molecular liquid it is necessary to introdu
besides information on the position of the molecule’s cen
of mass, information on the orientation of the molecules. T
microscopic density, defined for simple~atomic! liquids @37#

asr(xW ,t)5( j 51
N d„xW2xW j (t)…, is generalized to
by
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r~xW ,V,t !5(
j 51

N

d„xW2xW j~ t !…d„V2V j~ t !…, ~1!

where the sum runs over theN molecules of the liquid, and
xW j (t) and V j (t)5„f j (t),u j (t),x j (t)… are, respectively, the
position of the center of mass and the Euler angles of thej th
molecule at timet.

Any function f (xW ,V) can be expanded with respect
plane waves and to generalized spherical harmon
Dmn

l (V)5e2 imfdmn
l (u)e2 inx ~see Ref.@38#! as

f ~xW ,V!5
1

8p2V
(

q
(
lmn

~2 i ! l

3~2l 11!1/2f lmn~qW !e2 iqW •xWDmn
l ~V!, ~2!

where the coefficientsf lmn(qW ) are given by

f lmn~qW !5 i l~2l 11!1/2E d3xE dV f ~xW ,V!eiqW •xWDmn
l* ~V!.

~3!

Herel>0, 2 l<m< l , 2 l<n< l . Application of Eq.~3!

to r(xW ,V,t) yields the tensorial one-particle density:

r lmn~qW ,t !5 i l~2l 11!1/2(
j 51

N

eiqW •xW j (t)Dmn
l* „V j~ t !…. ~4!

The prefactor in Eq.~4! is chosen for technical convenienc
e.g., the factori l makes the molecular correlators real forn
5n8. As will be shown below, this choice produces re
correlators also forn and n85” 0 at high temperature. Now
we can introduce the time-dependentmolecularcorrelation
functions

Slmn,l 8m8n8~qW ,t !5
1

N
^r lmn* ~qW ,t !r l 8m8n8~qW ,0!&, ~5!

where the angular brackets denote the canonical average
the initial point in phase space. Substitution of Eq.~4! into
Eq. ~5! yields

Slmn,l 8m8n8~qW ,t !5Slmn,l 8m8n8
(d)

~qW ,t !1Slmn,l 8m8n8
(s)

~qW ,t ! ~6!

with the distinct part

Slmn,l 8m8n8
(d)

~qW ,t !5 i l 82 l@~2l 11!~2l 811!#1/2
1

N

3 (
j 5” j 8

^e2 iqW •[xW j (t)2xW j 8]Dmn
l
„V j~ t !…

3Dm8n8
l 8* ~V j 8!& ~7!

and theself part
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2390 PRE 62L. FABBIAN et al.
Slmn,l 8m8n8
(s)

~qW ,t !5 i l 82 l@~2l 11!~2l 811!#1/2
1

N

3(
j

^e2 iqW •[xW j (t)2xW j ]Dmn
l
„V j~ t !…

3Dm8n8
l 8* ~V j !&. ~8!

The reader should note that these correlation functions
volve both translational degrees of freedom and orientatio
degrees of freedom. They form a complete set for any tw
point correlation function of an arbitrary molecular liqu
and they are also the main entities entering MMCT@24#.
Specialization ton5n850 yields the corresponding correla
tors used in Ref.@23# for linear molecules. Although thei
introduction is enforced by theoretical reasons since ho
geneity and isotropy of the liquid is accounted for directly
the Fourier transformation toqW space and their tensorial na
ture, only very few of them can be measured experimenta
For instance,S1mn,1mn(qW 50,t) andS2mn,2mn

(s) (qW 50,t) can be
obtained from dielectric measurement and NMR, resp
tively. Information on the center of mass correlat
S000,000(qW ,t) follows from light scattering, provided that th
contribution of the orientational correlators can be neglec
@39#. The neutron scattering cross section is a linear su
position of all of these correlators~see, e.g.,@40#!, from
which information on the individual correlators can be o
tained by choosing different scattering lengths of the ato
units. On the other hand, it is a great advantage of a mole
lar dynamics~MD! simulation, which really determines th
trajectories $xW j (t),V j (t)%, that these correlation function
can be calculated. This of course can only be done forl and
l 8 smaller than a cutoff valuel co , which will in the analysis
of the SPC/E data be chosen asl co52.

III. SYMMETRY PROPERTIES

In this section we will discuss the general properties
the correlators~6!, ~7!, and~8! which follow from symmetry.
Similar discussions have been given for an expansion
rotational invariants@38# and in real space@41#. The proper-
ties presented in the following will be of great importan
for discussion of the results of the simulation and especi
to reduce the effort needed for solution of the MMCT equ
tions, which we will present in a subsequent paper. Conc
ing symmetry, we have to distinguish between global a
local symmetries, where the latter are related to the geom
of a single~rigid! molecule.

A. Global symmetry

The global symmetries arise from the invariance of
molecular interactions under the simultaneous translatio
rotation of all molecules, provided that the external pote
tials are zero. Similarly, the absence of a time-depend
external force implies time translational and time rever
symmetry, which are the same as for simple liquids a
therefore will not be discussed here. The invariance un
translations in space has already been accounted for by
n-
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transformation intoqW space, i.e., what remains is the discu
sion of the transformation of the molecular correlators un
rotations and reflections@42#.

Let us start with the proper transformationsR(a,b,g)
P SO(3).From the transformation ofDmn

l (V) underR @38#,
the transformation law for the molecular correlators follo
immediately:

Slmn,l 8m8n8~qW 8,t !5 (
m9,m-

Dm9m
l* ~R!Dm-m8

l 8

3~R!Slm9n,l 8m-n8~qW ,t !, ~9!

whereqW 85RqW . The choice of theq frame, i.e., the laboratory
frame of reference oriented such thatqW lies along thez axis,
qW 5qW 0[(0,0,q), leads to a simplification of the molecula
correlators. For a rotationRz(a)5R(a,0,0) around thez
axis for whichqW 85RzqW 05qW 0, Eq. ~9! implies

Slmn,l 8m8n8~qW 0 ,t !5e2 i (m2m8)aSlmn,l 8m8n8~qW 0 ,t !, ~10!

whereDmm8
l

„Rz(a)…5e2 imadmm8 @38# has been used. Sinc
Eq. ~10! is valid for all a, the correlators in theq frame must
be diagonal inm andm8:

Slmn,l 8m8n8~qW 0 ,t !5Sln,l 8n8
m

~q,t !dmm8 , ~11!

whereq5uqW 0u. Since Eq.~9! is also true forSlmn,l 8m8n8
(d) (qW ,t)

and Slmn,l 8m8n8
(s) (qW ,t), the m diagonality also holds for thes

quantities. A further relationship follows from Eq.~9! by
choosing a rotationRy(p)5R(0,p,0) by p around they
axis:

Slmn,l 8m8n8~2qW 0 ,t !5~21! l 1m1 l 81m8Slmn,l 8m8n8~qW 0 ,t !.
~12!

Here we considered thatRy(p)qW 052qW 0 , Dmn
l
„Ry(p)…

5(21)l 1mdmn @38#, andm ~or n) denotes2m ~or 2n).
Next we investigate the inversionP for which

Dmn
l (PV)5(21)l 1nDmn

l (V) @38#. Then Eq.~9! yields

Slmn,l 8m8n8~2qW ,t !5~21! l 1n1 l 81n8Slmn,l 8m8n8~qW ,t !,
~13!

which is valid for arbitraryqW .
A further useful relation is obtained by taking the com

plex conjugate ofSlmn,l 8m8n8(q
W ,t) and applying the equality

Dmn
l* (V)5(21)m1nDmn

l (V) @38#:

@Slmn,l 8m8n8~qW ,t !#* 5~21! l 1 l 81m1m81n1n8

3Slmn,l 8m8n8~2qW ,t !. ~14!

Combining Eq.~14! with Eq. ~12!, and Eq.~13!, respectively
we have the final relations

@Slmn,l 8m8n8~qW ,t !#* 5~21!m1m8Slmn,l 8m8n8~qW ,t !, ~15!

@Slmn,l 8m8n8~qW ,t !#* 5~21!n1n8Slmn,l 8m8n8~qW ,t !, ~16!
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or in theq frame, due to the diagonality inm,

@Sln,l 8n8
m

~qW 0 ,t !#* 5S
ln,l 8n8

m
~qW 0 ,t !, ~17!

@Sln,l 8n8
m

~qW 0 ,t !#* 5~21!n1n8Sln,l 8n8
m

~qW 0 ,t !. ~18!

We will show in the following section that, in the case
molecules withC2v symmetry, like water,n1n8 must be
even and, thus, it holds the symmetry

@Sln,l 8n8
m

~qW 0 ,t !#* 5Sln,l 8n8
m

~qW 0 ,t !. ~19!

B. Local symmetry

In the case that a molecule has point symmetry we
derive additional identities forSlmn,l 8m8n8(q

W ,t). Since we
have water in mind, which has aC2v symmetry, we will
discuss molecules withCrv symmetry ~see, e.g.,@43#!. To
avoid confusion with then index of the rotation matrices
Dmn

l , we deviate from the conventional notationCnv . This
symmetry means that the molecule possesses anr-fold rota-
tional axis andr planes of reflection symmetry, which con
tain the rotational axis. It is obvious that application of t
local symmetry operations to any single molecule must le
the interaction invariant. Let us begin with ther-fold rota-
tional symmetry. Without restriction of generality we choo
the body-fixedz axes along ther-fold symmetry axis. In that
case ther-fold symmetry affects only the third Euler anglex.
The transformation

x j→x j1n
2p

r
~20!

for n an integer and fixedj implies that

x j~ t !→x j~ t !1n
2p

r
. ~21!

SinceDmn
l (V j (t))5e2 imf j (t)dmn

l
„u j (t)…e

2 inx j (t) @38#, it fol-
lows with the separate use of Eqs.~20! and ~21! in the dis-
tinct part Eq.~7! that

ein(2p/r )n51 and e2n(2p/r )n851 ~22!

for all integersn. This restrictsn andn8 to integer multiples
of r, i.e.,

Slmn,l 8m8n8
(d)

~qW ,t !5H 5” 0 for n,n8P$0,6r ,62r , . . . %

0 otherwise.
~23!

For the self part@Eq. ~8!#, we have to use Eqs.~20! and~21!
simultaneously, leading to

ein(2p/r )(n2n8)51 ~24!

for all integersn, which is fulfilled for n85n(modr ), i.e.,

Slmn,l 8m8n8
(s)

~qW ,t !5H 5” 0 for ~n2n8!P$0,6r ,62r , . . . %

0 otherwise.
~25!
n

e

According to these results the total correlat
Slmn,l 8m8n8(q

W ,t) @Eq. ~6!# reduces to its self part forn or n8
not equal to an integer multiple ofr. For the case of wate
(r 52), Eq. ~24! requiresn1n8 to be even, a condition tha
simplifies Eq.~18! further.

What remains to be discussed is the role of the reflec
symmetry. Here we restrict ourselves to the static correlat
It will be shown in the Appendix that for their distinct part
implies

Slmn,l 8m8n8
(d)

~qW !→Slmunu,l 8m8un8u
(d)

~qW !, T→`, ~26!

i.e., it does not depend on the sign ofn andn8.
We close this section with a discussion of the implicatio

following from the results in both subsections. It will b
crucial that we consider the correlators in theq frame. The
correlators in an arbitrary reference frame are easily obtai
from Eq. ~9!. Since the identities derived in Sec. III A als
hold for Slmn,l 8m8n8

(s) (qW ,t) and Slmn,l 8m8n8
(d) (qW ,t), we get from

Eqs.~11!–~14! with Eqs.~23! and ~26! for static correlators
in the case of high temperatures

„Sln,l 8n8
(d)m

~q!…* >Sln,l 8n8
(d)m

~q!>S
ln,l 8n8

(d)m
~q!, ~27!

i.e., the static distinct part is real and does not depend on
sign of m. Since the static self part fulfills

Sln,l 8n8
(s)m

~q!5d l l 8dnn8 , ~28!

it follows from Eqs.~6!, ~26!, and~28! for high temperatures
that

Sln,l 8n8
m

~q!>H Sl unu,l 8un8u
(d)m

~q!, n5” n8

11Sl unu,l 8un8u
(d)m

~q!, n5n8,
~29!

i.e., Sln,l 8n8
m (q) is approximately determined bySl unu,l 8un8u

(d)m (q)
and in addition it is real and does not depend on the sign
m, due to Eq.~27!.

IV. RESULTS

In this section we present a detailed analysis of the st
and dynamic rotational correlators as calculated from a m
lecular dynamics simulation of a molecular network-formi
liquid. The system is a liquid of 216 rigid molecules who
geometric parameters are chosen in such a way as to m
water molecules. The intermolecular interactions are
scribed by the SPC/E potential@30#, which has been shown
to be able to describe most of the thermodynamic proper
of supercooled liquid water. We will not report here the d
tails of the simulation, which can be found in Refs.@33,34#.

The low T simulations were run for more than 508 inte-
gration time steps, corresponding to 50 ns. Each of the si
lation runs requests several months of CPU time on one
MHz alpha-processor for equilibration and more than o
year of computer time to generate the configuration
semble studied. In this situation, equilibrium runs for mu
larger systems at low temperature are very time consum
Since periodic boundary conditions may introduce dist
tions in angular properties near the boundaries, since—
will be shown in the following—some of the molecular co
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relators present unexpected peaks at wave vectors sm
than the center of mass peak position, corresponding
distance of about three molecular diameters, and since
amplitude of these peaks grows at low temperature, we h
made the additional effort to equilibrate a system made
1728 molecules atT5207 K to make sure that no finite-siz
effects show up in the molecular correlators for the syst
size considered.

In order to calculate the Euler angles of each molecule
molecular reference frame has been chosen in such a
that thez axis of the body-fixed frame has the same direct
as the dipole of the molecule and they axis lies along the line
connecting the two hydrogen atoms. Thex axis is therefore
determined to be orthogonal to the molecular plane. W
this choice of the molecular axes the structure factors Eq.~5!

reduce, in the limituqW u→0 and forn5n850, to

Slm0,l 8m80~0,t !5Cl~ t !d l l 8dmm8 , ~30!

where

Cl~ t !5
1

N (
i , j

^Pl„eW i~ t !•eW j~0!…& ~31!

are the orientational correlation functions of the dipolar m
mentsmW i(t)5meW i(t). In Eq. ~31! Pl is the Legendre polyno
mial of order l and m is the dipole strength. Thes
q-independent rotational correlation functions can be exp
mentally measured for some values ofl ~see above!. A com-
plete analysis of the self part ofCl(t) for the system unde
investigation is treated in Ref.@44#. In what follows the dis-
cussion will be extended to the generalized correlat
Sln,l 8n8

m (q,t) in the q frame.
In the first subsection we will discuss the static correlat

and in the second subsection we will turn to the detai
analysis of the dynamic behavior of the correlation functio
defined in Eq.~5! as calculated from the MD data. We wi
discuss the numerical results by comparing them to the qu
tative and quantitative predictions of MCT or MMCT.

A. Static properties

We have calculated all the static structure factors as
fined in Eq. ~5! up to l 52. The q-vector range has bee
chosen in such a way as to include all the meaningful str
ture of each correlation function, i.e., the value ofq ranges
from 3.3 nm21, which is the lower bound imposed by th
finite size, up to around 110 nm21, a value at which all the
structure factors have essentially reached their asymp
values. The grid spacing has been fixed toDq51.11 nm21

which allows all the peaks in the correlators to be well
solved.

In order to obtain more significant statistics, the sta
structure factors have been calculated, for each config
tion, for several directions of theq vectors with respect to the
fixed laboratory frame. The different results are averag
after performing a suitable rotation which brings theq vector
along thez axis of the laboratory frame@Eq. ~9!#. Further-
more, the resulting correlation functions have been avera
over several configurations extracted from a time evolut
that extends up to 250 ns. The global symmetries descr
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in Sec. III, which are all fulfilled within the numerical erro
by the numerical correlators, allow a further average of
static correlators. In this way the numerical noise is redu
to its lowest possible value. The resulting structure fact
are shown in Figs. 1 and 2 for the lowest simulated tempe
tureT5207 K. We found that within the numerical error a
correlators are real.

Some of the static correlators shown in Figs. 1 and 2
characterized by large amplitude peaks atq vectors corre-
sponding to distances of the order of three molecular dia
eters. This is exactly the distance where finite-size effe
could be expected for a system composed of 63 molecules.
To check if the results are real or simply artifacts of t
simulation conditions, we report in Fig. 3 the static structu
factors for the 63 and 123 molecule systems. We perform th
check at the lowest studied temperature, where the ang
correlations are enhanced. Although the statistic for the la
system is poorer, as expected from the shorter simula
time, both position and amplitude of the peaks are un
fected. Data in Fig. 3 confirm that the angular correlations
persist longer than the center of mass correlations and
the static molecular correlators, i.e., the quantities that
requested as input by the molecular mode-coupling the
are not affected by the size of the system studied.

The different figures list the static correlation functions
terms of progressive angular complexity. Figures 1~a! and
1~b! include all the diagonal correlators~i.e., l 5 l 8) with n
5n850. In Fig. 1~c! n andn8 are still fixed to zero but the

FIG. 1. Static structure factorsSln,l 8n8
m (q). Diagonal correlation

functions with n5n850 are shown in~a! and ~b!. Off-diagonal
correlation functions withn5n850 are shown in~c!.
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diagonality inl and l 8 is now relaxed. In Fig. 2 the correla
tors with n and/orn8 different from zero are reported. Fig
ures 1 and 2 show that several molecular correlators are c
parable in intensity to the center of mass correlat
function. Furthermore, some of them present completely n
features, i.e., theq dependence of the molecular correlatio
with l andl 8 different from zero is completely different from
the center of mass structure factor. Some of theSln,l 8n8

m (q)
display peaks and minima atq-vector values where the cen
ter of mass structure factor is rather structureless. The g
eralized spherical harmonicsDmn

l (V j ) in Eqs. ~7! and ~8!
can be viewed as weights that ‘‘single out’’ molecules w
certain orientationsV j . The differences in theq dependence
of the generalized orientational correlators show that look
at molecules with ‘‘selected’’ orientation reveals charact
istic length scales of the system that are different from
center of mass ones. This can result in the shift of a pea
in the case of the main peak ofS10,10

0 (q) compared to
S00,00

0 (q) @see Fig. 1~a!#. The ‘‘proper choice’’ of orienta-
tions can also reveal order on scales that are longer than
typical intermolecular distance and that is not visible in t
center of mass correlators. For example, the most signifi
peak in S10,20

1 (q) and S10,10
1 (q) is located aroundq

56.5 nm21, a q vector much smaller than the center
mass structure factor first peak. Theq56.5 nm21 peak,
which appears in correlators withl or l 8 equal to 1 andn
5n850, may reflect the strong dipolar interactions char

FIG. 2. Static structure factorsSln,l 8n8
m (q) with n and/orn8Þ0.

~a! demonstrates the validity of Eq.~29!. The three upper lines refe
to the casen5n8 while the lower ones representn52n8.
m-
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teristic of water. At distances of the order of 2p/6.5 nm,
about three molecular diameters, the SPC/E potentia
equivalent to the potential generated by an electrostatic
pole with the same dipole moment as in the SPC/E mo
Thus, the data in Figs. 1 and 2 suggest that in water ang
correlations persist over distances much longer than the
ter of mass correlations. We also point out that the corre
tors in Fig. 1~c! have an intensity more than three tim
smaller than the ones reported in Fig. 1~a! @for the latter one
has to use as intensitySl0,l0

m (q)21#. This suggests that the
diagonal static correlation function could provide a go
starting approximation for a MMCT description of the slow
ing down of dynamics in SPC/E water. We recall that this
at odds with the case of a liquid of Lennard-Jones dumbb
@26# where the off-diagonal terms have a large amplitude

Correlators withn different from zero~see Fig. 2! carry
information about the planar shape of the molecule (n5n8
50 is equivalent to assuming that the Euler anglex is al-
ways zero!, i.e., on the absence of cylindrical symmetry. Fi
ure 2~a! demonstrates the validity of the property~29!. Data
in Fig. 2 show that a few of these correlators describe
significant amount of angular correlation. Again, the larg
amplitude is observed for the case in whichl or l 8 is 1, i.e.,
for S10,22

1 (q).
Figure 2 also exhibits then→2n ~or n8→2n8) symme-

try as given by Eq.~29!. Although this symmetry become
exact at least at high temperatures~see the Appendix!, it

FIG. 3. Comparison of the static structure factorsSln,l 8n8
m (q) at

T5207 K between the 63 ~solid lines! and the 123 ~symbols! mol-
ecule systems. The comparison is presented for severalSln,l 8n8

m (q),
which have been arbitrarily shifted along they-axis to improve the
quality of the figure. From top to bottom
S10,10

1 ,S22,22
1 ,S00,22

0 ,S10,22
0 , S10,22

1 ,S22,22
0 ,S22,22

2 , S20,22
2 ,S20,22

1 , S20,22
0 .

The molecular correlators that have a peak at smallq vectors are
shown, to highlight the absence of finite-size effects even in
worst case where the molecular correlation extends over about t
molecular diameters.
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seems to be valid within the numerical error even atT
5207 K, which is not high anymore. Although in the Ap
pendix it is shown that forany temperature contributions t
the distinct part exist for which this symmetry is still exact,
is not obvious to us why their weight is so large.

Figures 4–7 show the temperature dependence of
static structure factorsSln,l 8n8

m (q). In order to analyze the
relative variation of the correlators on varyingT we report
three different temperatures, i.e.,T5207 K, T5238 K, and
T5400 K. Figures 4 and 5 report the diagonalSl0,l0

m (q).
Figure 6 reports the off-diagonal terms withn5n850, while
Fig. 7 reports some correlation functions withnÞ0. From
these figures we see that the behavior ofSln,l 8n8

m (q) on
changingT is strongly correlator dependent. The static stru
ture factorS00,00

0 (q) ~center of mass! shows a significant in-
crease of the resolution of the peaks, which become sha
asT is lowered, especially at smallq vectors. The diagona
correlators withl 5 l 851 are less temperature, depende
They remain almost unchanged at low temperatures
changingT by 30 K, from T5238 K to T5207 K, i.e., in
the region where the molecular diffusivity decreases by m
than two orders of magnitude@33#. Thus, while these corr
elators have a large amplitude, which implies that they mi
contribute substantially to the MMCT vertices, the dynam
cal transition may not be controlled by them. The o
diagonal terms shown in Fig. 6 as well as the static corre
tion functions withn and/orn8Þ0 ~Fig. 7! also do not show
significant temperature variation at low temperatures. T
suggests that a small set of diagonal correlators may play
relevant role in the slowing down of the molecular dynam

FIG. 4. Temperature dependence of the diagonal static struc
factors withl 50,1 andn5n850.
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on supercooling. Of course, only a full MMCT calculatio
can confirm such a hypothesis and provide definitive answ
on which modifications of the angular correlations drive t
ideal-glass transition.

B. Dynamic properties

In this section we discuss the time evolution of the m
lecular structure factors withl ,l 8<2 at different q-vector
values. We present the results of the calculation in the p

re
FIG. 5. Temperature dependence of the diagonal static struc

factor with l 52 andn5n850.

FIG. 6. Temperature dependence of the off-diagonal static st
ture factor withn5n850.
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spective of testing how far the mode-coupling framewo
can describe the behavior ofSln,l 8n8

m (q,t). Since the complete
MMCT equations have not yet been solved for the comp
dynamic evolution of the correlators, we mostly keep o
discussion to a qualitative level. We show that most of
universal predictions~see the Introduction! for the slow re-
laxation in supercooled liquids are excellently satisfied
the numerical data.

One of the strongest predictions of MCT is the validity
the so-called time-temperature superposition principle in
a-relaxation region ~see the Introduction!. The time-
temperature superposition principle states that in a w
range of temperatures above the MCT critical point~which
will be defined in the following! it is possible to scale the
same correlator evaluated at differentT on a single maste
curve through a rescaling of the time, i.e.,

f~ t !5f̃„t/t~T!…. ~32!

In Eq. ~32! f(t) indicates any dynamic structure facto
f̃( t̃ ) is the master function, andt(T) is a temperature-
dependent time scale that is characteristic of the chosen
relator. The temperature dependence of the time scale is
predicted by MCT or MMCT. In leading ordert(T) is a
power law diverging at the critical transition temperature

t~T!;uT2Tcu2g. ~33!

Equation~33! is one of the possible operative definition
of the mode-coupling critical temperatureTc . Tc is the tem-
perature at which the characteristic time scales diverge,
the point at which the dynamic of the liquid is complete
frozen. ThusTc defines a kinetic transition from an ergod
to a nonergodic dynamic. This is a purely kinetic transiti
which does not have a thermodynamic counterpart. In
liquids no sharp transition is observed and close toTc the
system switches to a different dynamic where hopping p
nomena become dominant. ThusTc assumes the meaning o
a crossover temperature. The transition temperatureTc and

FIG. 7. Temperature dependence of some static structure fa
with n and/orn8Þ0.
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the scaling exponentg are not universal quantities since the
strongly depend on the physical system under investiga
and on the volume and pressure conditions, but they ha
sort of ‘‘universality’’ in the sense that they are predicted
be correlator independent. Indeed,Tc andg are predicted to
have the same value for all correlation functions that cou
to each other. In the case of molecular liquids, their valu
can be obtained from MMCT. In previous papers@33,34,44#
it has been shown that in the case of SPC/E, the tim
temperature superposition principle is satisfied by the
and collective center of mass correlators and also by
q-independent rotational correlation functions. It has a
been shown thatTc520063 and the critical exponentg
52.7 are the same for all examined correlators within
numerical error. Here we generalize this conclusion, show
that the time-temperature superposition principle also ho
for all the molecular collective correlators up tol 52. We
show here only two representative correlators. In Fig. 8
have reportedS10,10

0 (q,t) at the different temperatures no
malized to its static valueS10,10

0 (q). We have rescaled eac
curve choosing ast(T) the time at which the correlator ha
decayed to the value 1/e. The different curves overlap per
fectly in the a region, confirming the validity of the time
temperature superposition principle. The small graph sho
as a reference the static structure factor; an arrow is poin
to theq value for which the analysis is performed. In Fig.
we show the test of the time-temperature superposition p
ciple for the same correlator but for a different value ofq,
while Fig. 10 shows the same analysis for a different c
relator, S10,10

1 (q,t). These results, and similar analysis f
other correlators~not reported in this article!, lead to the
conclusion that the time-temperature superposition princ
is satisfied for all examinedSln,l 8n8

m (q).
In order to verify the validity of the scaling law for th

time scalet(T) and the ‘‘universality’’ of the exponentg,
we represent in Fig. 11t21/g, for g52.7, as a function ofT.
The two figures are at two different values of theq vector,

rs

FIG. 8. Time dependence ofSln,l 8n8
m (q,t)/Sln,l 8n8

m (q) for differ-
ent temperatures~top! and the corresponding time-temperature sc
ing representation~bottom!. The small inset shows the correspon
ing static structure factor with an indication of the chosenq vector
~see arrow!. This figure refers toS10,10

0 (q520 nm21,t).
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i.e., q518 nm21 and q528 nm21 and in each figure
t21/g(T) is shown for all examined correlation function
~i.e., l<2, 2 l<m< l , and2 l<n< l ). Data in Fig. 11 sug-
gest that, as previously observed for the center of mass
q-independent rotational correlators, the power law~33! is
well satisfied with the same ‘‘universal’’ values of the crit
cal exponentg52.7 and of the critical temperatureTc
520063. We also note that the time scales for fixedT vary
by about one decade as can be observed from the ra
different slopes. This analysis strongly confirms the MC
and MMCT prediction of the existence of a unique critic
temperatureTc at which both translational and rotational d
grees of freedom cross from an ergodic to a nonergodic
namics following a power law behavior ruled by an ‘‘unive
sal’’ exponent g. Thus, MMCT seems to be a goo
framework in order to describe qualitatively and semiqu
titatively the temperature dependence of the structural co
lations in a supercooled molecular liquid in a wide range
temperatures above a criticalTc , as defined by Eq.~33!.

Data in Figs. 8, 9, and 10 show oscillations at short tim
connected with the librational and vibrational dynamics

FIG. 9. Same as Fig. 8 forS10,10
0 (q528 nm21,t).

FIG. 10. Same as Fig. 8 forS10,10
1 (q58 nm21,t).
nd

er

l
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-
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the water molecules. These motions~with a characteristic
time scale of the order of 0.1 ps! modulate the approach t
the plateau and may interfere with the universal dynam
characteristic of theb region@45#. If the temperature is low-
ered very close toTc , MCT provides quantitative prediction
for the time evolution of the correlation function. We stre
again that these predictions are the same for MMCT.

In the region of the first scaling law MMCT predicts fo
Sln,l 8n8

m (q,t) the factorization of the time dependence fro
the dependence onq,l ,n,l 8,n8, and m, i.e., near toTc its
time dependence is given by the so-calledb correlatorG(t),
which describes the dynamics close to the plateau on a
scalets(T)(b regime!. The equation forG(t) does not de-
pend onq, l, n, l 8, n8, andm; it involves only the exponen
parameterl. This equation, which is the same for MCT an
MMCT, can be solved exactly in the asymptotic limitst
!ts and t@ts , yielding for both cases a power law depe
dence with exponenta ~critical law! and exponentb ~von
Schweidler law!, respectively. The first one describes the
laxation onto and the second one from the plateau.

The two exponents are both functions ofl according to
@46#

l5
G~12a!2

G~122a!
5

G~11b!2

G~112b!
, ~34!

where G is the Euler gamma function, and they are co
nected to the relaxation time exponentg by the relation

g5
1

2a
1

1

2b
. ~35!

MMCT provides an explicit expression forl which contains
the static molecular correlators atTc @28#.

The von Schweidler law, which also describes the ea
a-relaxation regime, is given by

FIG. 11. a-relaxation time to the power21/g for all correlation
functions with l<2, 2 l<m< l , and 2 l<n< l at two different
q-vector values. Lines are drawn to guide the eyes.
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Sln,l 8n8
m

~q,t !2Fln,l 8n8
m,c

~q!>2Hln,l 8n8
(1)m

~q! t̂ b1Hln,l 8n8
(2)m

~q! t̂2b

1O~ t̂3b!, ~36!

where Fln,l 8n8
m,c (q),Hln,l 8n8

(1)m (q), and Hln,l 8n8
(2)m (q) are, respec-

tively, the critical nonergodicity parameter, the critical am
plitude, and the amplitude of the next to leading order c
rection for the unnormalized correlators. An explic
expression forh(2)(q)5H (2)(q)/S(q) for simple liquids has
recently been derived@47#. The time window in which the
asymptotic power lawt̂ b holds is strongly correlator andq
dependent. Hence, to perform a careful MCT analysis i
always necessary to take into account the second order

FIG. 12. Fit to Eq. ~36! of the time dependence o
Sln,l 8n8

m (q,t)/Sln,l 8n8
m (q) for differentq-vector values. The solid line

represents the MD data whereas the dashed line and the dotte
are fits to the von Schweidler law with and without second or
correction, respectively. The inset shows the corresponding s
structure factor with an indication of the chosenq vectors ~see
arrows!. This figure refers toS10,10

1 (q,t).

FIG. 13. Same as Fig. 12 forS10,10
0 (q,t).
-

s
or-

rections also. This has previously been found for the cen
of mass correlator for water@34# and for the molecular cor-
relators for diatomic molecules@26#. In order to test the va-
lidity of the von Schweidler law and the relevance of t
second order corrections, we have fitted the time evolution
our correlators according to Eq.~36! for the lowest simulated
temperatureT5207 K, which is a few degrees above th
critical temperature. In Figs. 12–15 we show the fits with E
~36! performed for some representative normalized diago
correlators. The vertical lines indicate the time window s
lected for the fit, which has been chosen consistently with
previous fits for translational andq-independent correlators
i.e., t covers a range of two orders of magnitude, from 7
up to 800 ps. Figure 12 represents the fit with Eq.~36! using
the valueb50.5 as previously found in the MCT study o
the time dependence of self and collective center of m
correlators. We show the correlatorS10,10

1 (q,t) for three dif-
ferent values of theq vector, marked by arrows in the sma
graph representing the staticS10,10

1 (q). The solid line is the
numerical curve, while the dashed line is the result of the

line
r
tic

FIG. 14. Same as Fig. 12 forS20,20
0 (q,t).

FIG. 15. Same as Fig. 12 forS20,00
0 (q,t).
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FIG. 16. Parameters of the fits shown in Figs. 12–15. The parameters refer to a fit of the unnormalizedSln,l 8n8
m (q,t). Note that the

statistical noise is large when the amplitude of thea relaxation is rather small.
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The quality of the fit is remarkably good. Theq dependence
of the validity of the fit is evident, noting that forq
58 nm21 andq515.5 nm21 the fitted von Schweidler law
holds far above the fitting range, while forq536.5 nm21

the two curves separate out of the fit window. To clarify t
importance of the second order corrections we have also
ported in the figure the curve obtained keeping only the te

t̂ b ~dotted line!. We see that while in the caseq
515.5 nm21 the first power law fit alone extends to almo
three orders of magnitude, for the other values ofq the sec-
ond order corrections are necessary. The fitting parame
obtained,F, H (1), andH (2), are shown in Fig. 16 as function
of q together with the static structure factors. Analytic e
pressions for the calculation of these quantities are provi
by MMCT ~for the amplitudeH (2) no explicit expression for
the molecular system has been derived yet!, so that they can
e-

rs

-
d

be, in principle, calculated using the molecular static str
ture factors. For diatomic molecules this has been done foF
andH (1) @28#.

The fits to other correlators show similar behaviors. W
want to stress that, according to MCT and MMCT pred
tions, in all the fits to Eq.~36! the same exponentb has
turned out to be satisfactory. The independence of the po
law exponentb of the chosen correlator and of theq value is
a strong argument in favor of MMCT as a framework
describe the slow relaxation in supercooled molecular
uids. We also stress that the two independently calcula
exponentsb and g satisfy the theoretical prediction of Eq
~35!.

In view of a future comparison with the full time depen
dence of the MMCT correlations, we report in Fig. 17 t
parameters of the fit to the numerical correlation functi
according to a stretched exponential form,
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FIG. 17. Parameters of the fits to a stretched exponential function of the same correlators shown in Figs. 12–15. The paramete
a fit of the unnormalizedSln,l 8n8

m (q,t). Note that the statistical noise is large when the amplitude of thea relaxation is rather small.
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Sln,l 8n8
m

~q,t !5Aln,l 8n8
m

~q!expF2S t

t ln,l 8n8
m

~q,T!
D b

ln,l 8n8
m

(q)G .

~37!

We note that in all cases examined the large-q-vector limit of
the stretching parameterb is about 0.5, i.e., equal to th
value ofb. Such equivalence is predicted by MCT@48#.

V. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the slow relaxation pr
erties of a supercooled liquid of planar rigid molecules d
scribed by means of a MD simulation. The parameters of
simulation have been chosen in such a way as to mimic
thermodynamic and dynamic properties of liquid water
molecular liquid characterized by a network structure at l
temperatures. Starting from the set of MD data we have
-
-
e
e

a

l-

culated all the static and dynamic molecular structure fac
Sln,l 8n8

m (q,t) up to l 52 in the q frame. These correlator
present a variety of features which open a deeper insight
the structural properties of the liquid. For example, the sy
metries of the rotational correlators reflect the geometr
properties of the water molecules, while the peak distribut
describes the intermolecular interactions. It becomes c
from an overview of the complete set of correlators tha
theory able to describe the relaxational properties of a su
cooled molecular liquid cannot neglect the molecular co
elators withl ,l 85” 0 and their coupling to the center of ma
correlator. For the static distinct part, at least at high te
peratures, we have proved that it is independent of the s
of n and n8 for molecules withCrv symmetry. The MD
results indicate that the independence even holds at lo
temperatures~down to 207 K! within the numerical error.

In this article we argue that MCT in its molecular formu
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lation is a good candidate to be the correct framework for
description of the slow dynamics in supercooled molecu
liquids. In order to support this view we have compared
properties of our MD liquid to the universal predictions
MCT ~or MMCT!, which are independent of the molecul
nature of the liquid. Even if the complete set of MMC
equations has not yet been solved, thus preventing a rigo
comparison between theory and simulation, we have te
several asymptotic MCT predictions. We have shown t
the temperature and time dependence of our MD correla
perfectly obeys the time-temperature superposition princ
predicted by MCT and MMCT, and we have found th
MMCT ‘‘universality,’’ i.e., the critical temperatureTc and
the exponentsb andg ~and therefore alsoa) do not depend
on q, l, n, l 8, n8, andm.

Close toTc , where the asymptoticb-correlator behavior
is reinforced, we have compared the numerical correla
with the predicted von Schweidler law plus second or
corrections in the earlya region. We have shown good qua
ity fits consistent with what was previously found for the s
and collective dynamics of the center of mass alone and
the q-independent angular correlators. Again, the predic
relation ~35! between the von Schweidler exponent and
relaxation time exponent is fulfilled, as well as the larg
q-vector limit of the stretching exponentb ln,l 8n8

m (q).
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APPENDIX MOLECULES WITH Crv –SYMMETRY

In this appendix we will investigate the validity of then
→2n symmetry for thestaticdistinct part of the correlators
@cf. Eq. ~26!# for molecules withCrv symmetry.

We consider a liquid ofN identical, rigid molecules. Each
molecule is made up ofNa atoms of typea, a51,2, . . . .
The position of atomna of type a in the j th molecule is
denoted by xW j ,na

(a) , j 51,2, . . . ,N, na51,2, . . . ,Na .

Then, in a site-site representation the total potential energV
is given by

V~$xW j ,na

(a) %!5
1

2 (
j 5” j 8

(
a,a8

(
na ,n

a8
8

vaa8~ uxW j ,na

(a) 2xW
j 8,n

a8
8

(a8) u!,

~A1!

where we restrict ourselves to two-body interactions w
pair potentialvaa8(x

W ) between atoms of typea anda8. In-
troducing the microscopic molecular density for atoms
type a in moleculej,

r j
(a)~xW !5 (

na51

Na

d~xW2xW j ,na

(a) !, ~A2!

and its Fourier transform,

r j
(a)~qW !5 (

na51

Na

eiqW •xW j ,na

(a)
, ~A3!
e
r
e

us
ed
t
rs
le

r
r

f
of
d
e
-

-

f

we can rewrite Eq.~A1! as follows:

V~$xW j ,na

(a) %!5
1

2 (
j 5” j 8

(
a,a8

E
V
d3xE

V
d3x8r j

(a)~xW !vaa8

3~xW2xW8!r j 8
(a8)

~xW8!, ~A4!

or by use of Eq.~A3!

V~$xW j ,na

(a) %!5
1

2 (
j 5” j 8

(
a,a8

1

V (
qW

r j
(a)* ~qW !ṽaa8~qW !r j 8

(a8)
~qW !,

~A5!

with ṽaa8(q
W )5*d3xvaa8(x

W )eiqW •xW, the Fourier transform of
the pair potential which depends onq5uqW u and the volumeV
of the system only.

Instead of the site-site coordinates we introduce cente
mass and relative coordinates:

xW j5S (
a

ma (
na51

Na

xW j ,na

(a) D Y (
a

Nama ~A6!

and

rW j ,na

(a) 5xW j ,na

(a) 2xW j , ~A7!

respectively.ma is the mass of atoms of typea. Next we
substitute Eqs.~A6! and ~A7! into Eq. ~A3!, which leads to

r j
(a)~qW !5eiqW •xW j r̃ j

(a)~qW ! ~A8!

where

r̃ j
(a)~qW !5 (

na51

Na

eiqW •rW j ,na

(a)
. ~A9!

Now, let $RW na

(a)% be the relative vectors in the body-fixe

frame andV j5(f j ,u j ,x j ) the Euler angles between th
laboratory and the body-fixed frame. Then

rW j ,na

(a) 5R21~V j !RW na

(a) ~A10!

with R(V)PSO(3).Substitution of Eq.~A10! into Eq. ~A9!
and making use of the Rayleigh expansion@38#, we arrive at

r̃ j
(a)~qW ,V j !54p(

lm
i l j l~qRa!Ylm* ~R~V j !eWq! (

na51

Na

Ylm~eW na

(a)!,

~A11!

and with the transformation of the spherical harmonics un
RPSO(3) @38#

r̃ j
(a)~qW ,V j !54p(

lm
i l j l~qRa!Dm8m

l* ~V j !Ylm* ~eWq!

3 (
na51

Na

Ylm~eW na

(a)!. ~A12!

j l(r ) are the spherical Bessel functions,Dm8m
l (V) are Wign-

er’s rotation matrices, Ra5uRW na

(a)u for all na , eW na

(a)
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5RW na

(a)/Ra , and eWq5qW /q. The substitution ofr j
(a)(qW ) @Eq.

~A8!# with r̃ j
(a)(qW ,V j ) from Eq. ~A12! into Eq. ~A5! yields

the center of mass angular representation ofV:

V~$xW j ,na

(a) %![V~xW1 , . . . ,xWN ;V1 , . . . ,VN!

5
1

2 (
j 5” j 8

1

V (
qW

(
lmn

l 8m8n8

ṽ lmn,l 8m8n8~qW !

3e2 iqW •(xW j 2xW j 8)Dmn
l ~V j !Dm8n8

l 8* ~V j 8!,

~A13!

with the transformed pair potential

ṽ lmn,l 8m8n8~qW !5~4p!2i l 82 lYlm~eWq!Yl 8m8
* ~eWq!

3(
aa8

ṽaa8~q! j l~qRa! j l 8~qRa8!

3S (
na51

Na

Yln~eW na

(a)!D S (
n

a8
8 51

Na

Yl 8n8~eW
n

a8
8

(a8)
!D .

~A14!

The representation ofV by Eq. ~A13! is quite obvious, since
the interaction potentialV0(xW ,V,V8) between two mol-
ecules with center of mass separationxW and orientationV
andV8 can be expanded with respect to the complete se

functionseiqW •xWDmn
l (V)Dm8n8

l 8* (V8).
All the local molecular symmetry is contained in the c

efficientsṽ lmn,l 8m8n8(q
W ) through the entity

yln
(a)5 (

na51

Na

Yln~eW na

(a)!, ~A15!

which will be discussed forCrv symmetry. In the following
we choose the body-fixedz axis along the molecularr-fold
symmetry axes. First of all we note that ther-fold rotational
symmetryimplies

yln
(a)5H 5” 0, nP$0,6r ,62r , . . . %

50 otherwise.
~A16!

Here we have assumed that all types of atomsa51,2, . . .
have exactly anr-fold rotational symmetry. This is not nec
essary for a molecule withr-fold axes. There may be som
types of atoms that have a 2r -, 3r -, fold, etc., symmetry.
For sucha, yln

(a)5” 0 for n5m (a)r wherem (a)52,3, . . . .
Nevertheless, Eq.~A16! remains true sincem5minam(a)51,
by assumption.

Now let us turn to the reflection symmetry. With
(fna

(a) ,u (a)) ~whereu (a) does not depend onna , due to the

Crv symmetry and the appropriate choice of the body-fixez

axis!, we denote the azimuthal and polar angles ofeW na

(a) . For

r even and fixeda the anglesfna

(a) can be chosen such tha

the reflection symmetry with respect to the (x-z) plane im-
plies
of

fNa2na11
(a) 5p2fna

(a)1lna
2p ~A17!

for na51,2, . . . ,Na . The integerlna
may depend onna .

Using the explicit (f,u) dependence ofYln(eW )[Yln(u,f)
5clnPln(u)einf @38#, we get from Eq.~A15! with Eq. ~A17!

yln
(a)5clnPln~u (a)! (

na51

Na

einfna

(a)

5clnPln~u (a)!~21!n (
na51

Na

e2 infNa2na11
(a)

5~21!nclnPln~u (a)! (
na51

Na

e2 infna

(a)

5 (
na51

Na

Yln~fna

(a) ,u (a)!5yln
(a) , ~A18!

wheren52n. In the case thatr is odd a similar choice of
fna

(a) can be made, such that Eq.~A18! holds. Due to Eq.

~A18! we find that the coefficientsṽ lmn,l 8m8n8(q
W ) do not de-

pend on the sign ofn andn8. Therefore Eq.~A13! can also
be rewritten as follows:

V~xW1 , . . . ,xWN ;V1 , . . . ,VN!

5
1

8 (
j 5” j 8

1

V (
q

(
kk8

vkk8~qW !e2 iqW •(xW j 2xW j 8)@Dk~V j !

1Dk~V j !#@Dk8~V j 8!1Dk8~V j 8!#* , ~A19!

wherek5( l ,m,n),k5( l ,m,n), andDk5Dmn
l has been used

as a shorthand notation. Equation~A19! is the basic result
that allows us to study then→2n symmetry for the static
distinct part of the correlators. From Eq.~A6! we get for t
50

Sk,k8
(d)

~qW !5 i l 82 l@~2l 11!~2l 811!#1/2
1

N

3 (
k5” k8

1

Zc
E )

j 51

N

~d3xjdV j !

3e2 iqW •(xWk2xWk8)Dk~Vk!Dk8
* ~Vk8!

3e2bV(xW1 , . . . ,xWN ;V1 , . . . ,VN), ~A20!

whereZc is the configurational partition function. Now w
expand exp(2bV) into a power series. The zeroth order ter
of Sk,k8

(d) (qW ) is proportional todn0dn80, which in a trivial
sense is invariant undern or n8 into 2n or 2n8, for arbi-
trary qW , l, m, l 8, andm8. For the first order term we find with
Eq. ~A19!

„Sk,k8
(d)

~qW !…1.order} ṽk,k8~qW !, ~A21!

where the factor of proportionality is independent ofm, m8,
n, andn8. Sinceṽk,k8 does not depend on the sign ofn and
n8 for all qW , l, m, l 8, andm8, the same is true forSk,k8

(d) (qW ) in
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first order. In second and higher order, products of the ro
tion matrices occur. In themth order contributions of type

1

Vn (
q1 , . . . ,qn

(
k1 , . . . ,kn

k18 , . . . ,kn8

ṽk1 ,k
18
~qW 1!••• ṽkn ,k

n8
~qW n!

3e2 i (qW 11•••1qW n)(xW j 2xW j 8)Dk1
~V j !•••Dkn

~V j !

3Dk
18

* ~V j 8! . . . Dk
n8

* ~V j 8! ~A22!

occur withn<m. Forn51 this coincides with the first orde
contribution. Using the product rule for theD ’s, we get for
n52 a contribution toSk,k8

(d) (qW ) that is proportional to

Akk8
(2)

~qW ![
1

V (
q1q2

8 (
k1k18

k2k28

C~k1k2k!C~k18k28k8!

3 ṽk1k
18
~qW 1!ṽk2k

28
~qW 2!, ~A23!

where (q1q2
8 denotes summation overqW 1 and qW 2 such that

qW 11qW 25qW , and

C~k1k2k!5C~ l 1l 2l ;m1m2m!C~ l 1l 2l ;n1n2n! ~A24!

is a product of Clebsch-Gordan coefficients. Then it follo
from Eq. ~A23! with the properties ofC( l 1l 2l ;n1n2n) @38#
that

Akk8
(2)

~qW ![
1

V (
q1q2

8 (
k1k18

k2k28

~21! l 11 l 21 lC~k1k2k!C~k18k28k8!

3 ṽk1k
18
~qW 1!ṽk2k

28
~qW 2!, ~A25!

where we have used the independence ofṽk1k
18

and ṽk2k
28

of

the sign ofn1 andn2. First of all, we observe that all term
in the sum of Eq.~A25! with l 11 l 21 l even coincide with
the corresponding terms in Eq.~A23!, independent ofqW , m1,
andm2. Hence for those terms then→2n symmetry holds
for arbitrary qW , l 1 , m1 , l 2, and m2, provided l 11 l 21 l is
even. On the other hand, choosingm50 and qW 5qW 0
5(0,0,q)(q frame! and changingm1→2m1 , m2→2m2,
we find

Akk8
(2)

~qW !5
1

V (
q1q2

8 (
k1k18

k2k28

C~k1k2k!C~k18k28k8!

3 ṽ k̄1k
18
~qW 1!ṽ k̄2k

28
~qW 2!, ~A26!
rk

et
-

s

where k̄5( l ,m,n). The (qW 1m1 ,qW 2m2) dependence of

ṽ k̄1k
18
(qW 1) ṽ k̄2k

28
(qW 2) is given by@cf. Eq. ~A14!#,

Yl 1m1
~eWq1

!Yl 2m2
~eWq2

!}e2 i (m1f11m2f2)5eim1(f22f1) ~A27!

where 05m5m11m2 has been used. The azimuthal ang
f1 and f2 of eWq1

and eWq2
fulfill f22f15p due toqW 0eWq1

1qW 0eWq2
50, i.e., the right-hand side of Eq.~A27! equals

(21)m1, which does not depend on the sign ofm1. Therefore
we find that Yl 1m1

(eWq1
)Yl 2m2

(eWq2
)5Yl 1m1

(eWq1
)Yl 2m2

(eWq2
)

and accordingly that

ṽ k̄1k
18
~qW 1!ṽ k̄2k

28
~qW 2!5 ṽk1k

18
~qW 1!ṽk2k

28
~qW 2!. ~A28!

Making use of Eq.~A28!, we get from Eq.~A26! that

Akk8
(2)

~qW 0!5Akk8
(2)

~qW 0! ~A29!

for all k8 and k with m50. We see that then→2n ~or
n8→2n8) symmetry of all the second order contribution
holds only in theq frame and form5m850.

BesidesAkk8
(2) (qW ), in third order there also exist contribu

tions of type

Akk8
(3)

~qW !5
1

V2 (
q1q2q3

9 (
k1k2k3

k18k28k38

~••• !ṽk1k
18
~qW 1!

3 ṽk2k
28
~qW 2!ṽk3k

38
~qW 3!, ~A30!

where (•••) contains products ofC’s, and the sum over
qW 1 ,qW 2, andqW 3 is restricted toqW 11qW 21qW 35qW . For qW 5qW 0 and
m50 the same procedure as forn52 can be used in order to
prove that then→2n symmetry will be true if the threefold
product of theṽ ’s in Eq. ~A29! is invariant undermi→
2mi , i 51,2,3. This requires that~in analogy to then
52 case!

e2 i (m1f11m2f21m3f3)5ei (m1f11m2f21m3f3). ~A31!

Although 05m5m11m21m3, the azimuthal angles
f i of eWqi

~in contrast ton52) are not restricted becaus

( i 51
3 qW 0•qW i50 does not fixf3 if f1 and f2 are given.

Therefore the generic case forqW i obeying( i 51
3 qW 0•qW i50 will

not satisfy Eq.~A30!. But, similar to then52 case, there is
a subset of terms in the sum of Eq.~A29! that will be invari-
ant undern→2n ~or n8→2n8) for all qW , l, m, l 8, andm8.

The results show that the invariance ofSlmn,l 8m8n8
(d) (qW ) for

arbitrary (qW ,l ,m,l 8,m8) and for (qW 5qW 0 ,l ,l 8,m5m850)
only holds up to, respectively, the first and second order
1/kBT.
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