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Computer simulations of liquid silica: Equation of state and liquid-liquid phase transition
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We conduct extensive molecular dynamics computer simulations of two models for liquid|#ikcenodel
of Woodcock, Angell and Cheeseman, J. Phys. CH&8n1565(1976; and that of van Beest, Kramer, and van
Santen, Phys. Rev. Let4, 1955(1990] to determine their thermodynamic properties at low temperakure
across a wide density range. We find for both models a wide range of states in which isochores of the potential
energyU are a linear function of®®, as recently proposed for simple liquifiRosenfeld and P. Tarazona,
Mol. Phys.95, 141(1998]. We exploit this behavior to fit an accurate equation of state to our thermodynamic
data. Extrapolation of this equation of state to [dypredicts the occurrence of a liquid—liquid phase transition
for both models. We conduct simulations in the region of the predicted phase transition, and confirm its
existence by direct observation of phase separating droplets of atoms with distinct local density and coordi-
nation environments.
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[. INTRODUCTION separation has been determirjd@], as well as a character-
istic pattern of thermodynamic “precursors” f@r>T. con-
First order liquid—-liquid phase separation, in which two sistent with the instability al =T, [32]. These precursors
liquids of distinct chemical composition coexist, are com-include the occurrence of a density maximum and a com-
mon in multicomponent systems. However, there has in repressibility maximum. Simulation studies of the thermody-
cent years been a growing interest in first order liquid—liquidnamic properties of two other waterlike models, TIH&B]
phase transitions that occur without a change of compositiorand SPC/E[34], find the same pattern of thermodynamic
but rather with a change in densipyas temperaturd or  precursors observed for ST2 for>T. [32,35, and also dis-
pressureP is varied. Experimental evidence for the occur- play polyamorphism in simulations of the amorphous solid.
rence of such transitions has been found for a wide range dfiowever, in these systems, simulations of the liquid at lower
systems, including SiL,2], I, Se, S[3,4], Al,O;—Y,0O; melts T, to test for the onset of a liquid—liquid phase transition,
[5], C [6], H,O [7,8], and P[9]. Liquid—liquid transitions have not yet been attempted due to prohibitively long equili-
have also been observed in molecular dynanid®) com-  bration times.
puter simulations of S[10,11], H,O [12,13, and C[14]. Substances that are structurally similar to water, such as
Theoretical studies have long predicted liquid—liquid transi-Si, Ge, GeQ, and SiQ (silica), have the potential to exhibit
tions for a variety of model fluids; for examples, see Refs.similar behavior{36]. Particular attention has been paid to
[15-24. silica because of its technological and geological importance.
In the case of water, the proposed liquid—liquid phasePolyamorphism is indeed observed in compression experi-
transition occurs in the supercooled liquid, i.e., fbdless  ments on amorphous sili¢87—-39, and is also qualitatively
than that of the melting lin€7]. Closely associated with the reproduced in computer simulatiop#0—-42. Though not as
possibility of a liquid—liquid transition in supercooled water dramatic as is found for amorphous solid water, the
is the phenomenon of polyamorphism in the amorphous soligpolyamorphism of silica may also be due to a trend toward
occurring below the glass transition temperaturg,. liquid—liquid phase separatiof#3,44]. Indeed, liquid state
Polyamorphism refers to the occurrence of distinct amorsimulations of the silica model of Woodcock, Angell, and
phous solid forms of a materig®5,26. In the most promi- Cheesemaitdenoted here “WAC silica) [45] have shown
nent cases of polyamorphism, such as wa&f—29, an that the same pattern of thermodynamic precursors of the
abrupt first-order-like transition occurs from a low-density liquid—liquid phase transition found in water simulations
form to a distinct high-density form as the amorphous matealso occurs in this systef@3]. However, as in TIP4P and
rial is compressed at low. For water it was proposed that SPC/E water, the low simulations required to test for an
the observed polyamorphism of the amorphous solid is &xplicit liquid—liquid phase transition in WAC silica have
subT4 manifestation of the thermodynamic instability asso-not been attempted to date.
ciated with the liquid—liquid phase transitipt2]. At the same time, recent advances concerning the proper-
Computer simulation studies of the ST2 water md®€l|  ties of liquids at and below the melting line are expanding
support this view of the relationship between liquid—liquid our ability to study the states where liquid—liquid phase tran-
phase transitions and polyamorphism. The qualitative feasitions may occur. Of particular importance is the recent pre-
tures of water polyamorphism are clearly displayed in simu-diction[46] that an isochore of the potential enefdyshould
lations of ST2 watef31]. Correspondingly, the critical tem- be a linear function ofr®® for a simple, cold, dense liquid.
perature T, marking the onset of liquid—liquid phase Since this relation is proposed to be valid in the limit of low
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T, it is a useful relation for studying the properties of a
deeply supercooled liquid. Notably, several recent works
showed that this prediction is obeyed at IGwfor binary
Lennard-Jones liquidgt7—49. This observation provided a
physical basis for extrapolatirg (and thermodynamic prop-
erties derived from jtto T nearT,, and so made possible
determination of the Kauzmann temperature for this system.

In this paper, we examine in detail the behavior of two
simulation models of silicafi) WAC silica; and (i) the
widely used potential of van Beest, Kramer, and van Santen
[50], denoted here as “BKS silica.” Our goal is to determine
if either model displays a liquid—liquid phase transition. We
find that our computer simulation data for the thermody-
namic properties of these silica models obey the prediction
of Ref.[46] over a wide range of andV. We exploit this
result to construct equations of state for BKS and WAC
silica, and find that liquid—liquid phase transitions are pre-
dicted for both models at loWw. We then conduct simula-
tions near the predicted phase transition, and confirm the
occurrence of liquid—liquid phase transitions for both BKS
and WAC silica by direct observation.

TK)

Il. MOLECULAR DYNAMICS SIMULATIONS

The calculations presented here for WAC silica are based<
on the data set generated for Rpf3]. These simulations
consisted oN=450 atomg300 O, 150 Si atomsand were
conducted in the constanN(V,E) ensemble(E is the total
internal energyV is the volume). The effects of electrostatic
interactions were incorporated using the Ewald summation
technique[51].

For the BKS model, we conduct new simulations of a
system ofN=1332 atoms. As for WAC silica, Ewald sum-
mations are used to include electrostatic interactions. The
Ewald paramete(x in the notation of Ref[51]) is fixed to
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55 nmiL for all stat ints simulated. E h stat int FIG. 1. Simulated state points and thermodynamic features of
- hm ~ior all stale points simulated. For each state poin ‘(@) BKS and(b) WAC silica. The model equations of state derived

the system is equilibrated to near the desifasbing periodic ;' sec. v are fit to MD simulation results obtained at theT)
velocity rescaling. All averages are reported for constanfins indicated by filled circles. Itb) open circles are WAC state
(N,V,E) simulations that follow the equilibration stage. In points at which substantial deviations from Ed) are observed,

all cases, averages are evaluated over a time that is at leggld so are excluded from the data set used to construct the equation
10 times longer than the average time required for an Si atorgf state. The BKS and WAC equations of state give estimates for
to diffuse 0.2 nm. the projection into the \(,T) plane of the spinodalssolid lines,

The BKS potential has the unphysical feature that the inTMD line (dotted—dashed and KT line (dashey, as defined in
teraction energy of a Si and O atom pair diverges-to as  Sec. V. The open squares locat, ) points at which we test for
their separation goes to 0. Though not a problem at ambieriguid—liquid phase separation, as described in Sec. VI.

T andP, this feature will occasionally manifest itself at high
T and P. We have added a short range term to the BKS
potential that prevents this from occurring, but which does

Fsozt]alter the form of the BKS potential at larger separatlons\Nhere6l andb are constants for a gived.

The (V,T) coordinates of the state points simulated for Here we test if Eq(1) is obeyed by WAC and BKS silica.

. S . We plot isochores ob) againstT®® and fit a straight line to
fg‘gsc‘évgrg‘sasrteuz?;&"’” in Fig. 1. Table | givésfor each of the -y~ 4 Fig 2). At all V studied, we find that Eq1) fits the

data well. Consistent with the prediction of R¢#6], the
best fits occur for the smalle$t, and the quality of the fits
decreases somewhat ¥sncreases. For BKS silica, we find
that Eq.(1) fits to all isochores within numerical uncertainty.
Referenc¢46] predicts that the isochoriE dependence of For WAC silica, most of the data available to us fits ED.
the potential energy of a simple, dense, cold liquid is given Wwithin numerical uncertainty. However, for the largest
by systematic deviations from E¢l) occur if all WAC data up

U=a+bT®, D

IIl. TEMPERATURE DEPENDENCE OF POTENTIAL
ENERGY ISOCHORES
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TABLE I. Volume V and densityp of each isochore simulated -5.3
for BKS and WAC silica. The labels are used to identify isochores

shown in the figures. () BKS
54
BKS isochores WAC isochores

Label V (cm®g) p (glcn?) Label V (cm¥g) p (glenT) 55| ]
Bl 0.4334 2.3071 W1 0.5555 1.8 2

B2 0.4081 24501 W2 0.5263 1.9 56l o ]
B3 0.3828 2.6119 W3 0.5000 2.0

B4 0.3575 2.7966 W4 0.4761 2.1 /

B5 0.3322 3.0093 W5 0.4545 2.2 -5.7 // ]

UKV (MJ/mol)

B6 0.3070 3.2572 W6 0.4347 2.3
B7 0.2817 3.5495 W7 0.4166 2.4
BS 02564  3.8994 W8 0.4000 25 S8 ]
B9 0.2311 43260 W9 0.3846 2.6 x w . s s
BI0 02058 48572 W10  0.3571 2.8 oo e
W11 0.3333 3.0 . ‘ . ! .
W12 0.3125 3.2
W13 0.2941 34 (b) WAC
w14 0.2777 3.6 -123r
W15 0.2500 4.0 /
—12.4 |
to the highestT are included. Yet even for these larye 2 /
isochores, the WAC data are consistent with an approach t(2 125 |
the behavior of Eq(1) at low T. By excluding several of the g /;
highestT data points, shown as open circles in Fig. 1, we 3 -126 | /
recover a fit within numerical uncertainty even for the largest
V isochores for WAC silica. o7 L
The V dependence of the fit parametexrsand b so ob-
tained for both models is shown in Fig. 3. The success of the
fits to Eq.(1) over a wide range of andV, and the smooth 128 1
variation ofa andb with V show that the predictions of Ref. 140 160 180 200 220 240 260 280
[46] appear to be valid for silica, a “complex” liquid with T (K*)
anisotropic molecular interactions, at least in the limits of
low T and lowV. FIG. 2. Isochores of) versusT®® for (a) BKS and(b) WAC

In addition, it is important to note th¢ dependence . silica. Symbols ardéJ values obtained from MD simulation, while
a provides an estimate & in the limit T—0, which classi- ~ solid lines show linear fits to each isochore. To better view each
cally is coincident with the limit ag —0 of A, the Helm-  isochore and their fitted lines, we plot—kV, with k
holtz free energy. For both WAC and BKS silica we find a = 1(g MJ)/(cm’ mol) andV measured in crilg, so that each isoch-
range ofV in which the curvature of tha versusV curve is ore is subject to &-dependent shift to separate it from the others.
negative. In this range, the condition for thermodynamic staln (_a) isochores B1 through B10 are shown from bottom to top; in
bility for a single phase,d2A/32V)7>0, is not satisfied53] (b) isochores W1 through W15 are shown from bottom to top. Also
suggesting that both V\}AC and BKS ,Silica would under’go in (b) are shown highT points (open circles connected by dashed

liquid—liquid phase separation at I6% if not pre-empted b alines) on the largesY isochores which deviate from linear behavior
q quid p > separ P P Y and so are excluded from the fits. The statistical error forlhe
crystallization or vitrification.

values shown ina) and(b) does not exceed-0.004 MJ/mol. Note

that the units olJ are MJ per mole of molecules.
IV. MODEL EQUATION OF STATE

Having identified a region of validity for Eq1), we can UV, T)=a(V)+b(V)T%. )

use this relation to construct a representation of the thermo]-_he coefficientsy. and 8. are given in Table II. The internal
dynamic properties of WAC and BKS silica in terms of a . ne= Bn given in fabie 1l. e
energy isE=U+U,; for the classical ionic models of silica

continuous function off and V. The model equations of - S g .
state so generated will allow us to clarify the liquid—liquid considered here, the kinetic energwg—. 2RT, whereR is
the gas constant. Hence, our model fois,

phase separation suggested byVhdependence ad in Fig.

3. o _ E(V,T)=a(V)+b(V) T3+ RT. ®3)

We first fit polynomials to theV dependence o&(V)
=32 oa,V" andb(V)=3%_,8,V", to obtain a functional Next, we seek a functional representation of the entropy
representation of: S(V,T), so that a model foA(V,T) can be obtained from
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FIG. 3. V dependence ofa) a and (b) b for BKS and WAC
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TABLE II. Coefficients of polynomial fits folV dependence of
a andb; and thep dependence d? for T=T,. The units for each
coefficient are appropriate to giwein MJ/mol, b in MJ/(mol T¢/9),
andP in GPa, wherV is given in cn¥/g andp is measured in g/cfn

Model n an Bn Y
WAC 0 —9.13919 -0.00627597 122.772
To,=7000K 1 —38.8581 0.108913 —328.537
2 163.650 —0.494 217 311.922
3 —306.599 0.983621 —328.537
4 205.422 —0.683 688 29.1778
5 2.31542
BKS 0 -—-1.01756 0.001 44202 479.401
To=5000K 1 —61.1632 0.0488104  —708.648
2 293.988 —0.381123 409.488
3  —621.091 1.069 764 —117.045
4 478.866 —0.969 089 16.6264
5 —0.904 994

cientsy, are given in Table Il, along with the choices Bf

for WAC and BKS silica. Using this polynomial model for
P(V,Ty), the integration in Eq(4) yields an expression for
AA which combined with that foAE, gives a model func-
tion for AS; [54]. In terms ofE and P, the expression for

AStis

E(V,To)—E(Vy,To)+ fvv P(V', To)dV’ }
®)

1
AST:T—O

The changeAS,=S(V,T)—S(V,Ty) is the entropy dif-
ference at fixed/ due to a temperature change framto T.

silica, found from the linear fits to the isochores shown in Fig. 2'This we find from an isochoric integration of

Solid curves are fits to the data of a fourth order polynomiaVin

In (a) D is a scale factor to permit both curves to be compared in a

single plot; for BKS,D=1 and for WAC,D =0.45.

A=E-TS. Sat arbitraryV and T, relative to the entropy

S(Vy,Tg) of a reference state, can be evaluated by thermo-

dynamic integratiof53]. We carry this out in two steps, first
along an isotherm, and then along an isochore.

We compute the changeS;=S(V,Ty) — S(Vq,T,) along
an isothermT=T, using AA=AE—TyAS;, where AA
= A(V,To) - A(VO ,To) andA E: E(V,To) - E(VO ,To) . AE
is evaluated from E(3). AA is a difference due to a volume
change fromV, to V at T=T,, and is found from an iso-
thermal integration olA=—PdV, that is,

AA=

—fv P(V',To)dV'. (4
0

V

To obtain a functional representation farA therefore re-
quires one forP(V) at T=T,. We obtain the required data
from our MD simulations and fit to them a polynomiBl
=35_,ynp", where the densitp=1/N (Fig. 4). The coeffi-

60 T

OWAC 1
OBKS

P (GPa)

-10 L— :

0.2 0.3 0.4
\" (cm3/g)

0.5 0.6

FIG. 4. Isotherms of versusV for BKS (T,=5000K) and
WAC (T,= 7000 K) silica. Solid curves are fits to the data of a fifth
order polynomial inp.
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ds—dE—l(&E) dT ®) |
T TlaT), OF  aBks 1

50 - g

T1/(0E or /
As,:f (—) dT. 7)
\%

Tl & {Kﬁ/ﬂ/ ]
/

This evaluation is carried out using our representation of * 20

E(V,T) in Eq. (3). M/ v

Combining the contributions of both isothermal and iso- 10 =

choric changesS at an arbitrary state point is given by ;
0 F ~

S(V,T)=S(Vy,To) +AS;+AS, . (8)

That is,

(GPa)

Using the model functions foE and S, we thus obtain a 3000 4000 5000 6000 7000 8000
function modelingA(V,T). The equation of statB(V,T) is T
found from ‘

P(V,T)= —(‘?A ©

.

Note that the resulting expression B(V,T) does not con-
tain the unknown reference entrof{V,,T,) since this con-
stant disappears after the differentiation in E®).

To summarize, we construct a mod®({V,T) equation of
state using as input, polynomial fits 6§ the V dependence
of a andb, and(ii) one reference isotherm & As a check
of this equation of state, we compare in Fig. 5 isochoreB of
versusT, evaluated directly from simulation, and as calcu-
lated from the above modeling procedure.

P (GPa)

4000 6000 8000 10000 12000
V. THERMODYNAMIC BEHAVIOR OF WAC AND BKS T(K)

SILICA

_— . . FIG. 5. Isochores oP versusT for (a) BKS and(b) WAC silica.
For the description of the thermodynamic properties OfSymboIs are values obtained from MD simulation, while lines are

tetrahedrally Coo.rdinated quuids such as silica or Water.’ it iSdetermined from the model equations of state developed in Sec. IV.
useful to determine the location and shape of curves in thEor BKS, isochores B1 through B8 are shown from bottom to top;

space of?, V, andT at which specific thermodynamic con- for WAC, W4 through W15 are shown, from bottom to top.
ditions are met. In the present context, three such curves are

important:
(i) Along the “temperature of maximum density(TMD)
line the condition,

(iii) Along the “KT*line,” the isothermal compressibil-
ity K¢ is a maximum with respect t¥' at constantT. It is
found by locating points satisfying,

aP
—| =o, 10 Kr) _
((?T)V (10 (a—v) =0, (12
T
is satisfied 36]. At such a point, an isobar gfas a function  \yhere
of T is a maximum, and at loweF, p decreases a$ de-
creases. The presence of a TMD line is a hallmark of liquids 1/0V
in which local tetrahedral order is prominent, and is observed Ky=— V(ﬁ) ; (13
experimentally in silica, as well as in water. T
is élé)ﬁ:(?g kr)r;{e;g]stablllty limit of the liquid, or spinodal fine, and then checking to confirm that the extremum so identified
is a maximum[36,55.
IP Spinodal lines are necessarily associated with a second
(—) =0. (11)  order critical point that terminates a line of first order phase
N/ ¢ transitions[36]. When a such a critical point occurs at
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FIG. 6. Estimates for the projection into th&,P) plane of the FIG. 7. gs(r) for (a) BKS and(b) WAC silica evaluated at the

spinodals(solid lines, TMD line (dotted—dashed andK7* line  state points indicated by open squares in Fig. 1. The system size
(dashed evaluated from our model equations of state@rBKS  used isN=750 atoms. The arrows indicate the valuesoiised to
and (b) WAC silica. identify silicon atoms having high-density coordination or low-
density coordination. For BKS silica,* =0.355 nm; for WAC

=T, aKT®™line will emanate from the critical point fof ~ silica, r*=0.360 nm.
>T.. However, the occurrence ofd"® line does not imply . . .
the occurrence of a critical point at lowd i.e., the occur- comparison of BKS and WAC silica, we simulate a system
rence of aK™ line is a necessary, but not a sufficient con-©f N=750 atoms for both. The loweStstate simulated for
dition, for the occurrence of a critical poifs5]. eacht?ode(;fiZgOQtl_( f(l)r BKtS’BT:4000 '?t];?r T\éVAC) IS

The locations of these lines are shown in Fig. 1 projected1ear € predicted critical point. Because ot the fawe are

onto theV—T plane; and in Fig. 6, projected onto the-P are unable to bring these lowebtstates fully into equilib-

plane. We find that the pattern of behavior revealed is quali_rium; however, the results obtained do serve to establish the

tatively the same both for WAC and BKS silica, and that thistrenOI in the behavior at the lowest . .
is the same pattern found also from water simulations em- To test for the occurrence of two phasc_es W'th dlsjunct
ploying the ST2, TIP4R32], and SPC/E modekss). local structurg,. we examine the Iocgl coordmauqn environ-
Most significant is the occurrence both for WAC and ment .Of ?he _S|I|con atoms. We F:onsgd@tr), the SI-Si ra-
BKS silica, of a spinodal line in the low liquid regime that d""?'.d'Stf'b“t'or? f“”C“O'? (RDF); 4 g(r)gr is the prob-
is distinct from the liquid—gas spinodal boundary. This spi-ablllty that a Si atom will b? found at a distance between
nodal is the metastability boundary associated with a quuid—andr_ﬂJlr of a reference_Sl atom. We decompcga(e) ac-
liquid phase transition. A$—0 it coincides with the points co_rdlng to the contr|but|9ns made by successive nearest
of inflection in thea versusV curves of Fig. 3. The critical ne|g_hbors(nn) ofa given Si atom, Iabgled n asqendmg order
point of this liquid—liquid phase transition occurs at the pointOf distance f_rom an Si atom. That is, we define sub-RDFs
of maximumT on the spinodal line. gi(r) according to

VI. LIQUID —LIQUID PHASE SEPARATION g(r)=§1 gi(r), (14)

If the spinodal curves predicted by the equations of state
developed in Sec. IV are correct, and if we can conducwhere 4rr2g;(r)dr is the probability that théth nearest
equilibrium simulations in the unstable regions so identified neighbor of a randomly selected Si atom will be found at a
we should observe characteristic signs of phase separatiodistance betweenandr +dr.
When a liquid—liquid phase separation occurs in a constant- Figure 7 showgg(r) for BKS and WAC silica for several
V simulation such as employed here, both phases coexislifferent T along the isochores indicated by open squares in
within the simulation box, each in its own distinct region, Fig. 1. ForT aboveT,., gs(r) is a unimodal function of.
separated by an interface. Each phase will have a distindis T decreases, the width of tlig(r) distribution increases.
bulk density as well as a distinct local structure. That is, rather than finding a more sharply defined 5th nn
We therefore carry out new MD runs for both WAC and coordination environment &k decreases, the distribution of
BKS silica at state points that approach the spinodal curvéocations of 5th nn’s becomes broader. FarearT., gs(r)
associated with the liquid-liquid phase transition. Thesébecomes bimodal. This behavior shows that two distinct
state points are identified as squares in Fig. 1. To facilitatgpopulations of 5th nn coordination environments are emerg-
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TABLE IIl. Comparison of characteristic temperatures of simu-
lated and real tetrahedral liquid$* for real SiQ and HO are
estimated as the ambieRtvalues of the TMD; the actual value of
T* for these systems is likely to be slightly higher. Upper bounds
on T, for WAC silica and ST2 water are taken simply as the lowest
T at which equilibrium simulations of the liquid have been con-
ducted. Values preceded by~" are found by assuming that the
values of T./T* found from simulations apply to the real sub-
stances. References are provided in brackets for those values not
determined here.

(b) WAC T Te Ty Tg/T* T IT* T ITy

WAC 9000 4000 <4000 <044 044 >1

=2000Kp=0.34g/cn)) and WAC silica (T=4000K, BKS 5000 2000 138058] 0.28 040 145
=0.41 g/cm). The configurations are viewed face-on to one side ofST2 330[12] 235[13] <235 071 >1

the simulation cell. There atd=6000 atoms in each system, but Sj0, 1823[59] ~730 1450[60] 0.80 ~0.40 0.50
only silicon atoms are shown. Dark spheres are silicon atoms hayy,0  277[61] ~194 136[62] 0.49 ~0.70 1.4

ing high-density coordination: i.e., a 5th nn silicon within a distance
r<r*. Light spheres are silicon atoms having low-density coordi-

nation: i.e., a 5th nn silicon at a distance r*. The clustering of  sjstent with the occurrence of liquid—liquid phase separation
atoms with similar coordination into droplets is consistent with thefor hoth of these silica models.

onset of liquid—liquid phase separation.

FIG. 8. Snapshots of MD configurations of BKS sili¢a

VII. DISCUSSION
ing in the liquid asT decreases. Similar behavior is observed
for gg(r), and more weakly irg,(r) andgg(r). This is in
contrast to the behavior @f; () throughg,(r) which simply

become sharper and narrower distributions with decreaking wide range ofT andV within which isochores otJ for the

(not shown. o o _liquid phase conform to Eq(1). This occurs in spite of the

If the emergence of these distinct coordination environget that the prediction of Ref46] was made for simple
ments corresponds to the onset of liquid—liquid phase sepgguids, and not for liquids with nontrivial local structure
ration, we should find that Si atoms with similar coordinationgych as occurs in silica. This result suggests that the physical
environments are spatially correlated. That is, there shoul@gsis for Eq(1) is quite robust and provides a valuable tool
be relatively compact droplets of the two distinct phases. for probing the lowT properties of a wide range of liquid

To test for this, we require systems of larger spatial extengystems.
than theN=750 atom simulations used to calculagg(r). (ii) The model equation of state constructed by exploiting
We therefore initiate simulations of a system Wt=6000 Eq. (1) predicts the occurrence of a liquid—liquid phase tran-
atoms for the lowesT states where phase separation shouldsition in BKS and WAC silica. We confirm the presence of
be most prominen{T=2000K for BKS, T=4000K for this transition by direct simulations near the predicted critical
WAC). As above, excessive equilibration times prevent ugoint. Thus BKS and WAC silica join the rank of simulation
from bringing these states fully into equilibrium, and so wemodels for tetrahedrally coordinated liquids in which a
only use these simulations to establish the trend in behavioliquid—liquid phase transition has been directly observed.
We note that an incompletely equilibrated system should unwhether or not such a phase transition occurs in real liquid
derestimate the amount of phase separation, since dralets silica (see below, it's presence in the behavior of BKS silica
present will have had less time to form and grow. is important to note, since this model is currently in wide use

We examine snapshots of thelde=-6000 atom BKS and for simulation studies of silica under a variety of conditions.
WAC configurations. The minimum occurring between the  Given the common behavior found for BKS and WAC
two peaks ofgg(r) for the lowestT in Fig. 7 provides a silica, it is appropriate to inquire whether we should there-
convenient threshold* for partitioning the Si atoms into fore expect to find the same pattern of thermodynamic be-
two populations according to their 5th nn coordination. Wehavior, including a liquid—liquid phase transition, in real
show in Fig. 8 snapshots of the positions of all the Si atomsilica; or whether these two models share a common flaw
in the BKS and WAC systems. Light spheres are Si atomshat makes them unrealistic in this respect. To attempt to
having their 5th nn at a distance greater thanthese atoms address this, we seek a basis for comparing the behavior of
have a low-density coordination environment, compared tadhe BKS and WAC models with each other and with other
the average. Dark spheres are Si atoms having their 5th nn #gtrahedral liquids, both simulated and real. To proceed we
a distance less than*; these atoms have a high-density choose as a scaling temperatdre the highest value o
coordination environment. Spatially correlated droplets of atreached along the TMD line.
oms with the same type of coordination environment are As shown in Table I, the ratid@’./T* is approximately
readily visible, for both WAC and BKS silica. This is con- 0.4 for both WAC and BKS silica. Assuming that this ratio is

The two principal conclusions of the present work are as
follows.
(i) For two silica models, BKS and WAC, there exists a
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also valid for real silica give¥.=730K, a temperature well Silica (see Fig. 6. Applying this ratio to real silica suggests
mmwTfmaMamL%OKkmmeﬁﬂwMMCmmaﬁsmmanmmmmoKTwrwwwmmwammmwndme
models are representative of the thermodynamic propertidgulk modulug could occur when liquid silica is compressed
of silica, then we should not expect to directly observe arisothermally atT just above, but neafy. This raises the
equilibrium liquid—liquid phase transition in supercooled lig- possibility to directly observe &7 Iine in experiments of
uid silica. supercooled liquid silica under pressure. Confirming or refut-
This is in contrast to the case of water. The ST2 modeing this prediction would be an important step in establishing
givesT./T* =0.80, implying thafT .= 194 K for real water. the applicability of the pattern of thermodynamic behavior
This is well aboveT,=136 K for water, though as yet still presented here, to real silica and other tetrahedral liquids.
outside the easily accessible experimental rafi§ee how- Notes Added in Proofi) An analysis of simulation data
ever, Ref[7].) for water has recently been published employing the same
The present analysis is consistent with recent interpretastrategy for modeling the thermodynamic properties as used
tions[32,43,44 of the phenomenology of polyamorphism as here[63]. The results are qualitatively similar to ours, and
observed in amorphous solid silica and water. In this interhighlight the correspondence between the properties of liquid
pretation, the manifestation of polyamorphism for a systenwater and silica(ii) The locations we estimate for liquid-
where the liquid phase exhibits the tendency toward diquid critical points for WAC and BKS silica depend on the
liquid—liquid phase transition at loW will depend on the validity of Eq. (1) as a model of th& dependence dfl. Our
relationship ofT, to T.. WhenT.>Tg, as may be the case most recent simulation resultst T lower than those pre-
for water, polyamorphlc behavior |n the amorphous solidsented henesuggest that for BKS silica, thEdependence of
will be prominent, with a large and sharp density increasdJ deviates from the form of Eq.l), adopting an approxi-
observed when the glass in compressed. WhenT,, be-  mately linear dependence dn Further study of this is re-
havior characteristic of polyamorphism will be weaker quired. If confirmed, the estimate given here for the location
though not necessarily absent, as is the case for silica. of the liquid-liquid critical point will change. However, since
However, the precise nature of the behavior to be exFigs. 7 and 8 provide direct evidence of a liquid-liquid phase
pected wherT < T, remains an open area of research. Fortransition, we do not expect deviations of our data from Eq.
T<T,, a standard application of equilibrium thermodynam-(1) to change the qualitative phase behavior of WAC and
ics is not appropriate and so predictions based on the mod8KS silica presented here.
equations of state presented here do not apply. Nonetheless,
new thermodynamic approaches, based on a separation of the
configurational degrees of freedaffirozen in atT,) and vi-
brational degrees of freedofwhich are always in thermal We are grateful to G. Parisi for useful discussions. 1.S-V.
equilibrium) may be employed to derive a free energy ex-and P.H.P. wish to thank NSERCanadafor financial sup-
pression that can be used to locate tbeoling-rate depen- port, and the Dipartimento di Fisica and Istituto Nazionale
den) location of the critical poinf56,57. In this approach, a per la Fisica della Materia, Universita’ di Roma La Sapienza,
negative curvature of thé dependence dl along the Kauz-  for their financial support and hospitality during visits when
mann line would be sufficient to guarantee the presence of aportions of this work were carried out. F.S. acknowledges
instability in the glassy phase. financial support from INFM-PRA-HOP and PRIN98. Sub-
We also note that the value &f for the KT line at  stantial computing resources were provided by the Compag-
atmospherid® is about 80% off* for both WAC and BKS  Western Center for Computational Research.
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