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Computer simulations of liquid silica: Equation of state and liquid-liquid phase transition
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We conduct extensive molecular dynamics computer simulations of two models for liquid silica@the model
of Woodcock, Angell and Cheeseman, J. Phys. Chem.65, 1565~1976!; and that of van Beest, Kramer, and van
Santen, Phys. Rev. Lett.64, 1955~1990!# to determine their thermodynamic properties at low temperatureT
across a wide density range. We find for both models a wide range of states in which isochores of the potential
energyU are a linear function ofT3/5, as recently proposed for simple liquids@Rosenfeld and P. Tarazona,
Mol. Phys.95, 141~1998!#. We exploit this behavior to fit an accurate equation of state to our thermodynamic
data. Extrapolation of this equation of state to lowT predicts the occurrence of a liquid–liquid phase transition
for both models. We conduct simulations in the region of the predicted phase transition, and confirm its
existence by direct observation of phase separating droplets of atoms with distinct local density and coordi-
nation environments.

DOI: 10.1103/PhysRevE.63.011202 PACS number~s!: 65.20.1w, 64.70.Ja, 64.30.1t, 64.60.My
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I. INTRODUCTION

First order liquid–liquid phase separation, in which tw
liquids of distinct chemical composition coexist, are co
mon in multicomponent systems. However, there has in
cent years been a growing interest in first order liquid–liq
phase transitions that occur without a change of composit
but rather with a change in densityr as temperatureT or
pressureP is varied. Experimental evidence for the occu
rence of such transitions has been found for a wide rang
systems, including Si@1,2#, I, Se, S@3,4#, Al2O3–Y2O3 melts
@5#, C @6#, H2O @7,8#, and P@9#. Liquid–liquid transitions
have also been observed in molecular dynamics~MD! com-
puter simulations of Si@10,11#, H2O @12,13#, and C @14#.
Theoretical studies have long predicted liquid–liquid tran
tions for a variety of model fluids; for examples, see Re
@15–24#.

In the case of water, the proposed liquid–liquid pha
transition occurs in the supercooled liquid, i.e., forT less
than that of the melting line@7#. Closely associated with th
possibility of a liquid–liquid transition in supercooled wat
is the phenomenon of polyamorphism in the amorphous s
occurring below the glass transition temperature,Tg .
Polyamorphism refers to the occurrence of distinct am
phous solid forms of a material@25,26#. In the most promi-
nent cases of polyamorphism, such as water@27–29#, an
abrupt first-order-like transition occurs from a low-dens
form to a distinct high-density form as the amorphous ma
rial is compressed at lowT. For water it was proposed tha
the observed polyamorphism of the amorphous solid i
sub-Tg manifestation of the thermodynamic instability ass
ciated with the liquid–liquid phase transition@12#.

Computer simulation studies of the ST2 water model@30#
support this view of the relationship between liquid–liqu
phase transitions and polyamorphism. The qualitative f
tures of water polyamorphism are clearly displayed in sim
lations of ST2 water@31#. Correspondingly, the critical tem
perature Tc marking the onset of liquid–liquid phas
1063-651X/2000/63~1!/011202~9!/$15.00 63 0112
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separation has been determined@13#, as well as a character
istic pattern of thermodynamic ‘‘precursors’’ forT.Tc con-
sistent with the instability atT5Tc @32#. These precursors
include the occurrence of a density maximum and a co
pressibility maximum. Simulation studies of the thermod
namic properties of two other waterlike models, TIP4P@33#
and SPC/E@34#, find the same pattern of thermodynam
precursors observed for ST2 forT.Tc @32,35#, and also dis-
play polyamorphism in simulations of the amorphous so
However, in these systems, simulations of the liquid at low
T, to test for the onset of a liquid–liquid phase transitio
have not yet been attempted due to prohibitively long equ
bration times.

Substances that are structurally similar to water, such
Si, Ge, GeO2, and SiO2 ~silica!, have the potential to exhibi
similar behavior@36#. Particular attention has been paid
silica because of its technological and geological importan
Polyamorphism is indeed observed in compression exp
ments on amorphous silica@37–39#, and is also qualitatively
reproduced in computer simulations@40–42#. Though not as
dramatic as is found for amorphous solid water, t
polyamorphism of silica may also be due to a trend tow
liquid–liquid phase separation@43,44#. Indeed, liquid state
simulations of the silica model of Woodcock, Angell, an
Cheeseman~denoted here ‘‘WAC silica’’! @45# have shown
that the same pattern of thermodynamic precursors of
liquid–liquid phase transition found in water simulation
also occurs in this system@43#. However, as in TIP4P and
SPC/E water, the lowT simulations required to test for a
explicit liquid–liquid phase transition in WAC silica hav
not been attempted to date.

At the same time, recent advances concerning the pro
ties of liquids at and below the melting line are expandi
our ability to study the states where liquid–liquid phase tra
sitions may occur. Of particular importance is the recent p
diction @46# that an isochore of the potential energyU should
be a linear function ofT3/5 for a simple, cold, dense liquid
Since this relation is proposed to be valid in the limit of lo
©2000 The American Physical Society02-1
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SAIKA-VOIVOD, SCIORTINO, AND POOLE PHYSICAL REVIEW E63 011202
T, it is a useful relation for studying the properties of
deeply supercooled liquid. Notably, several recent wo
showed that this prediction is obeyed at lowT for binary
Lennard-Jones liquids@47–49#. This observation provided a
physical basis for extrapolatingU ~and thermodynamic prop
erties derived from it! to T nearTg , and so made possibl
determination of the Kauzmann temperature for this syst

In this paper, we examine in detail the behavior of tw
simulation models of silica;~i! WAC silica; and ~ii ! the
widely used potential of van Beest, Kramer, and van San
@50#, denoted here as ‘‘BKS silica.’’ Our goal is to determin
if either model displays a liquid–liquid phase transition. W
find that our computer simulation data for the thermod
namic properties of these silica models obey the predic
of Ref. @46# over a wide range ofT andV. We exploit this
result to construct equations of state for BKS and WA
silica, and find that liquid–liquid phase transitions are p
dicted for both models at lowT. We then conduct simula
tions near the predicted phase transition, and confirm
occurrence of liquid–liquid phase transitions for both BK
and WAC silica by direct observation.

II. MOLECULAR DYNAMICS SIMULATIONS

The calculations presented here for WAC silica are ba
on the data set generated for Ref.@43#. These simulations
consisted ofN5450 atoms~300 O, 150 Si atoms! and were
conducted in the constant (N,V,E) ensemble.~E is the total
internal energy,V is the volume.! The effects of electrostatic
interactions were incorporated using the Ewald summa
technique@51#.

For the BKS model, we conduct new simulations of
system ofN51332 atoms. As for WAC silica, Ewald sum
mations are used to include electrostatic interactions.
Ewald parameter~k in the notation of Ref.@51#! is fixed to
2.5 nm21 for all state points simulated. For each state po
the system is equilibrated to near the desiredT using periodic
velocity rescaling. All averages are reported for const
(N,V,E) simulations that follow the equilibration stage.
all cases, averages are evaluated over a time that is at
10 times longer than the average time required for an Si a
to diffuse 0.2 nm.

The BKS potential has the unphysical feature that the
teraction energy of a Si and O atom pair diverges to2` as
their separation goes to 0. Though not a problem at amb
T andP, this feature will occasionally manifest itself at hig
T and P. We have added a short range term to the B
potential that prevents this from occurring, but which do
not alter the form of the BKS potential at larger separatio
@52#.

The (V,T) coordinates of the state points simulated
this work are shown in Fig. 1. Table I givesV for each of the
isochores studied.

III. TEMPERATURE DEPENDENCE OF POTENTIAL
ENERGY ISOCHORES

Reference@46# predicts that the isochoricT dependence o
the potential energyU of a simple, dense, cold liquid is give
by
01120
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U5a1bT3/5, ~1!

wherea andb are constants for a givenV.
Here we test if Eq.~1! is obeyed by WAC and BKS silica

We plot isochores ofU againstT3/5 and fit a straight line to
the data~Fig. 2!. At all V studied, we find that Eq.~1! fits the
data well. Consistent with the prediction of Ref.@46#, the
best fits occur for the smallestV, and the quality of the fits
decreases somewhat asV increases. For BKS silica, we fin
that Eq.~1! fits to all isochores within numerical uncertaint
For WAC silica, most of the data available to us fits Eq.~1!
within numerical uncertainty. However, for the largestV,
systematic deviations from Eq.~1! occur if all WAC data up

FIG. 1. Simulated state points and thermodynamic features
~a! BKS and~b! WAC silica. The model equations of state derive
in Sec. IV are fit to MD simulation results obtained at the~V,T!
points indicated by filled circles. In~b! open circles are WAC state
points at which substantial deviations from Eq.~1! are observed,
and so are excluded from the data set used to construct the equ
of state. The BKS and WAC equations of state give estimates
the projection into the (V,T) plane of the spinodals~solid lines!,
TMD line ~dotted–dashed!, and KT

max line ~dashed!, as defined in
Sec. V. The open squares locate (V,T) points at which we test for
liquid–liquid phase separation, as described in Sec. VI.
2-2
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COMPUTER SIMULATIONS OF LIQUID SILICA: . . . PHYSICAL REVIEW E63 011202
to the highestT are included. Yet even for these largeV
isochores, the WAC data are consistent with an approac
the behavior of Eq.~1! at low T. By excluding several of the
highestT data points, shown as open circles in Fig. 1,
recover a fit within numerical uncertainty even for the larg
V isochores for WAC silica.

The V dependence of the fit parametersa and b so ob-
tained for both models is shown in Fig. 3. The success of
fits to Eq.~1! over a wide range ofT andV, and the smooth
variation ofa andb with V show that the predictions of Re
@46# appear to be valid for silica, a ‘‘complex’’ liquid with
anisotropic molecular interactions, at least in the limits
low T and lowV.

In addition, it is important to note theV dependence ofa.
a provides an estimate ofU in the limit T→0, which classi-
cally is coincident with the limit asT→0 of A, the Helm-
holtz free energy. For both WAC and BKS silica we find
range ofV in which the curvature of thea versusV curve is
negative. In this range, the condition for thermodynamic s
bility for a single phase, (]2A/]2V)T.0, is not satisfied@53#,
suggesting that both WAC and BKS silica would undergo
liquid–liquid phase separation at lowT, if not pre-empted by
crystallization or vitrification.

IV. MODEL EQUATION OF STATE

Having identified a region of validity for Eq.~1!, we can
use this relation to construct a representation of the ther
dynamic properties of WAC and BKS silica in terms of
continuous function ofT and V. The model equations o
state so generated will allow us to clarify the liquid–liqu
phase separation suggested by theV dependence ofa in Fig.
3.

We first fit polynomials to theV dependence ofa(V)
.Sn50

4 anVn and b(V).Sn50
4 bnVn, to obtain a functional

representation ofU:

TABLE I. Volume V and densityr of each isochore simulate
for BKS and WAC silica. The labels are used to identify isocho
shown in the figures.

BKS isochores WAC isochores
Label V ~cm3/g! r ~g/cm3! Label V ~cm3/g! r ~g/cm3!

B1 0.4334 2.3071 W1 0.5555 1.8
B2 0.4081 2.4501 W2 0.5263 1.9
B3 0.3828 2.6119 W3 0.5000 2.0
B4 0.3575 2.7966 W4 0.4761 2.1
B5 0.3322 3.0093 W5 0.4545 2.2
B6 0.3070 3.2572 W6 0.4347 2.3
B7 0.2817 3.5495 W7 0.4166 2.4
B8 0.2564 3.8994 W8 0.4000 2.5
B9 0.2311 4.3260 W9 0.3846 2.6
B10 0.2058 4.8572 W10 0.3571 2.8

W11 0.3333 3.0
W12 0.3125 3.2
W13 0.2941 3.4
W14 0.2777 3.6
W15 0.2500 4.0
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U~V,T!5a~V!1b~V!T3/5. ~2!

The coefficientsan andbn are given in Table II. The interna
energy isE5U1Uk ; for the classical ionic models of silica
considered here, the kinetic energy isUk5 9

2 RT, whereR is
the gas constant. Hence, our model forE is,

E~V,T!5a~V!1b~V!T3/51 9
2 RT. ~3!

Next, we seek a functional representation of the entro
S(V,T), so that a model forA(V,T) can be obtained from

s

FIG. 2. Isochores ofU versusT3/5 for ~a! BKS and ~b! WAC
silica. Symbols areU values obtained from MD simulation, while
solid lines show linear fits to each isochore. To better view e
isochore and their fitted lines, we plotU2kV, with k
51~g MJ!/~cm3 mol) andV measured in cm3/g, so that each isoch
ore is subject to aV-dependent shift to separate it from the othe
In ~a! isochores B1 through B10 are shown from bottom to top;
~b! isochores W1 through W15 are shown from bottom to top. A
in ~b! are shown highT points ~open circles connected by dashe
lines! on the largestV isochores which deviate from linear behavi
and so are excluded from the fits. The statistical error for theU
values shown in~a! and~b! does not exceed60.004 MJ/mol. Note
that the units ofU are MJ per mole of molecules.
2-3



t

e

a

r
r

2

in

th
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A5E2TS. S at arbitraryV and T, relative to the entropy
S(V0 ,T0) of a reference state, can be evaluated by therm
dynamic integration@53#. We carry this out in two steps, firs
along an isotherm, and then along an isochore.

We compute the changeDST5S(V,T0)2S(V0 ,T0) along
an isothermT5T0 using DA5DE2T0DST , where DA
5A(V,T0)2A(V0 ,T0) andDE5E(V,T0)2E(V0 ,T0). DE
is evaluated from Eq.~3!. DA is a difference due to a volum
change fromV0 to V at T5T0 , and is found from an iso-
thermal integration ofdA52PdV; that is,

DA52E
V0

V

P~V8,T0!dV8. ~4!

To obtain a functional representation forDA therefore re-
quires one forP(V) at T5T0 . We obtain the required dat
from our MD simulations and fit to them a polynomialP
.Sn50

5 gnrn, where the densityr51/V ~Fig. 4!. The coeffi-

FIG. 3. V dependence of~a! a and ~b! b for BKS and WAC
silica, found from the linear fits to the isochores shown in Fig.
Solid curves are fits to the data of a fourth order polynomial inV.
In ~a! D is a scale factor to permit both curves to be compared
single plot; for BKS,D51 and for WAC,D50.45.
01120
o-

cientsgn are given in Table II, along with the choices ofT0
for WAC and BKS silica. Using this polynomial model fo
P(V,T0), the integration in Eq.~4! yields an expression fo
DA which combined with that forDE, gives a model func-
tion for DST @54#. In terms ofE and P, the expression for
DST is

DST5
1

T0
FE~V,T0!2E~V0 ,T0!1E

V0

V

P~V8,T0!dV8G .
~5!

The changeDSV5S(V,T)2S(V,T0) is the entropy dif-
ference at fixedV due to a temperature change fromT0 to T.
This we find from an isochoric integration of.

a

TABLE II. Coefficients of polynomial fits forV dependence of
a andb; and ther dependence ofP for T5T0 . The units for each
coefficient are appropriate to givea in MJ/mol, b in MJ/~mol T3/5!,
andP in GPa, whenV is given in cm3/g andr is measured in g/cm3.

Model n an bn gn

WAC 0 29.139 19 20.006 275 97 122.772
T057000 K 1 238.8581 0.108 913 2328.537

2 163.650 20.494 217 311.922
3 2306.599 0.983 621 2328.537
4 205.422 20.683 688 29.1778
5 2.31542

BKS 0 21.017 56 0.001 442 02 479.401
T055000 K 1 261.1632 0.048 8104 2708.648

2 293.988 20.381 123 409.488
3 2621.091 1.069 764 2117.045
4 478.866 20.969 089 16.6264
5 20.904 994

FIG. 4. Isotherms ofP versusV for BKS (T055000 K) and
WAC (T057000 K) silica. Solid curves are fits to the data of a fif
order polynomial inr.
2-4
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dS5
dE

T
5

1

T S ]E

]TD
V

dT. ~6!

That is,

DSV5E
T0

T 1

T8 S ]E

]T8D
V

dT8. ~7!

This evaluation is carried out using our representation
E(V,T) in Eq. ~3!.

Combining the contributions of both isothermal and is
choric changes,S at an arbitrary state point is given by

S~V,T!5S~V0 ,T0!1DST1DSV . ~8!

Using the model functions forE andS, we thus obtain a
function modelingA(V,T). The equation of stateP(V,T) is
found from

P~V,T!52S ]A

]VD
T

. ~9!

Note that the resulting expression forP(V,T) does not con-
tain the unknown reference entropyS(V0 ,T0) since this con-
stant disappears after the differentiation in Eq.~9!.

To summarize, we construct a modelP(V,T) equation of
state using as input, polynomial fits of~i! the V dependence
of a andb, and~ii ! one reference isotherm ofP. As a check
of this equation of state, we compare in Fig. 5 isochores oP
versusT, evaluated directly from simulation, and as calc
lated from the above modeling procedure.

V. THERMODYNAMIC BEHAVIOR OF WAC AND BKS
SILICA

For the description of the thermodynamic properties
tetrahedrally coordinated liquids such as silica or water, i
useful to determine the location and shape of curves in
space ofP, V, andT at which specific thermodynamic con
ditions are met. In the present context, three such curves
important:

~i! Along the ‘‘temperature of maximum density’’~TMD!
line the condition,

S ]P

]T D
V

50, ~10!

is satisfied@36#. At such a point, an isobar ofr as a function
of T is a maximum, and at lowerT, r decreases asT de-
creases. The presence of a TMD line is a hallmark of liqu
in which local tetrahedral order is prominent, and is obser
experimentally in silica, as well as in water.

~ii ! The metastability limit of the liquid, or spinodal line
is defined by@36#

S ]P

]VD
T

50. ~11!
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~iii ! Along the ‘‘KT
max line,’’ the isothermal compressibil-

ity KT is a maximum with respect toV at constantT. It is
found by locating points satisfying,

S ]KT

]V D
T

50, ~12!

where

KT52
1

V S ]V

]PD
T

, ~13!

and then checking to confirm that the extremum so identifi
is a maximum@36,55#.

Spinodal lines are necessarily associated with a sec
order critical point that terminates a line of first order pha
transitions@36#. When a such a critical point occurs atT

FIG. 5. Isochores ofP versusT for ~a! BKS and~b! WAC silica.
Symbols are values obtained from MD simulation, while lines a
determined from the model equations of state developed in Sec
For BKS, isochores B1 through B8 are shown from bottom to t
for WAC, W4 through W15 are shown, from bottom to top.
2-5
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5Tc , a KT
max line will emanate from the critical point forT

.Tc . However, the occurrence of aKT
max line does not imply

the occurrence of a critical point at lowerT; i.e., the occur-
rence of aKT

max line is a necessary, but not a sufficient con
dition, for the occurrence of a critical point@55#.

The locations of these lines are shown in Fig. 1 projecte
onto theV–T plane; and in Fig. 6, projected onto theT–P
plane. We find that the pattern of behavior revealed is qua
tatively the same both for WAC and BKS silica, and that thi
is the same pattern found also from water simulations em
ploying the ST2, TIP4P@32#, and SPC/E models@35#.

Most significant is the occurrence both for WAC and
BKS silica, of a spinodal line in the lowT liquid regime that
is distinct from the liquid–gas spinodal boundary. This sp
nodal is the metastability boundary associated with a liquid
liquid phase transition. AsT→0 it coincides with the points
of inflection in thea versusV curves of Fig. 3. The critical
point of this liquid–liquid phase transition occurs at the poin
of maximumT on the spinodal line.

VI. LIQUID –LIQUID PHASE SEPARATION

If the spinodal curves predicted by the equations of sta
developed in Sec. IV are correct, and if we can condu
equilibrium simulations in the unstable regions so identified
we should observe characteristic signs of phase separati
When a liquid–liquid phase separation occurs in a constan
V simulation such as employed here, both phases coex
within the simulation box, each in its own distinct region
separated by an interface. Each phase will have a distin
bulk density as well as a distinct local structure.

We therefore carry out new MD runs for both WAC and
BKS silica at state points that approach the spinodal curv
associated with the liquid–liquid phase transition. Thes
state points are identified as squares in Fig. 1. To facilita

FIG. 6. Estimates for the projection into the (T,P) plane of the
spinodals~solid lines!, TMD line ~dotted–dashed!, and KT

max line
~dashed!, evaluated from our model equations of state for~a! BKS
and ~b! WAC silica.
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comparison of BKS and WAC silica, we simulate a system
of N5750 atoms for both. The lowestT state simulated for
each model~T52000 K for BKS, T54000 K for WAC! is
near the predicted critical point. Because of the lowT, we are
are unable to bring these lowestT states fully into equilib-
rium; however, the results obtained do serve to establish t
trend in the behavior at the lowestT.

To test for the occurrence of two phases with distinc
local structure, we examine the local coordination environ
ment of the silicon atoms. We considerg(r ), the Si–Si ra-
dial distribution function (RDF); 4pr 2g(r )dr is the prob-
ability that a Si atom will be found at a distance betweenr
and r 1dr of a reference Si atom. We decomposeg(r ) ac-
cording to the contributions made by successive neare
neighbors~nn! of a given Si atom, labeled in ascending orde
of distance from an Si atom. That is, we define sub-RDF
gi(r ) according to

g~r !5(
i 51

`

gi~r !, ~14!

where 4pr 2gi(r )dr is the probability that thei th nearest
neighbor of a randomly selected Si atom will be found at
distance betweenr and r 1dr.

Figure 7 showsg5(r ) for BKS and WAC silica for several
different T along the isochores indicated by open squares
Fig. 1. ForT aboveTc , g5(r ) is a unimodal function ofr.
As T decreases, the width of theg5(r ) distribution increases.
That is, rather than finding a more sharply defined 5th n
coordination environment asT decreases, the distribution of
locations of 5th nn’s becomes broader. ForT nearTc , g5(r )
becomes bimodal. This behavior shows that two distinc
populations of 5th nn coordination environments are emer

FIG. 7. g5(r ) for ~a! BKS and~b! WAC silica evaluated at the
state points indicated by open squares in Fig. 1. The system s
used isN5750 atoms. The arrows indicate the values ofr * used to
identify silicon atoms having high-density coordination or low-
density coordination. For BKS silica,r * 50.355 nm; for WAC
silica, r * 50.360 nm.
2-6
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COMPUTER SIMULATIONS OF LIQUID SILICA: . . . PHYSICAL REVIEW E63 011202
ing in the liquid asT decreases. Similar behavior is observ
for g6(r ), and more weakly ing7(r ) and g8(r ). This is in
contrast to the behavior ofg1(r ) throughg4(r ) which simply
become sharper and narrower distributions with decreasinT
~not shown!.

If the emergence of these distinct coordination enviro
ments corresponds to the onset of liquid–liquid phase se
ration, we should find that Si atoms with similar coordinati
environments are spatially correlated. That is, there sho
be relatively compact droplets of the two distinct phases

To test for this, we require systems of larger spatial ext
than theN5750 atom simulations used to calculateg5(r ).
We therefore initiate simulations of a system ofN56000
atoms for the lowestT states where phase separation sho
be most prominent~T52000 K for BKS, T54000 K for
WAC!. As above, excessive equilibration times prevent
from bringing these states fully into equilibrium, and so w
only use these simulations to establish the trend in behav
We note that an incompletely equilibrated system should
derestimate the amount of phase separation, since drople~if
present! will have had less time to form and grow.

We examine snapshots of theseN56000 atom BKS and
WAC configurations. The minimum occurring between t
two peaks ofg5(r ) for the lowestT in Fig. 7 provides a
convenient thresholdr * for partitioning the Si atoms into
two populations according to their 5th nn coordination. W
show in Fig. 8 snapshots of the positions of all the Si ato
in the BKS and WAC systems. Light spheres are Si ato
having their 5th nn at a distance greater thanr * ; these atoms
have a low-density coordination environment, compared
the average. Dark spheres are Si atoms having their 5th n
a distance less thanr * ; these atoms have a high-dens
coordination environment. Spatially correlated droplets of
oms with the same type of coordination environment
readily visible, for both WAC and BKS silica. This is con

FIG. 8. Snapshots of MD configurations of BKS silica~T
52000 K,r50.34 g/cm3! and WAC silica ~T54000 K,r
50.41 g/cm3!. The configurations are viewed face-on to one side
the simulation cell. There areN56000 atoms in each system, b
only silicon atoms are shown. Dark spheres are silicon atoms
ing high-density coordination: i.e., a 5th nn silicon within a distan
r ,r * . Light spheres are silicon atoms having low-density coor
nation: i.e., a 5th nn silicon at a distancer .r * . The clustering of
atoms with similar coordination into droplets is consistent with
onset of liquid–liquid phase separation.
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sistent with the occurrence of liquid–liquid phase separat
for both of these silica models.

VII. DISCUSSION

The two principal conclusions of the present work are
follows.

~i! For two silica models, BKS and WAC, there exists
wide range ofT andV within which isochores ofU for the
liquid phase conform to Eq.~1!. This occurs in spite of the
fact that the prediction of Ref.@46# was made for simple
liquids, and not for liquids with nontrivial local structur
such as occurs in silica. This result suggests that the phys
basis for Eq.~1! is quite robust and provides a valuable to
for probing the lowT properties of a wide range of liquid
systems.

~ii ! The model equation of state constructed by exploit
Eq. ~1! predicts the occurrence of a liquid–liquid phase tra
sition in BKS and WAC silica. We confirm the presence
this transition by direct simulations near the predicted criti
point. Thus BKS and WAC silica join the rank of simulatio
models for tetrahedrally coordinated liquids in which
liquid–liquid phase transition has been directly observ
Whether or not such a phase transition occurs in real liq
silica ~see below!, it’s presence in the behavior of BKS silic
is important to note, since this model is currently in wide u
for simulation studies of silica under a variety of condition

Given the common behavior found for BKS and WA
silica, it is appropriate to inquire whether we should the
fore expect to find the same pattern of thermodynamic
havior, including a liquid–liquid phase transition, in re
silica; or whether these two models share a common fl
that makes them unrealistic in this respect. To attemp
address this, we seek a basis for comparing the behavio
the BKS and WAC models with each other and with oth
tetrahedral liquids, both simulated and real. To proceed
choose as a scaling temperatureT* the highest value ofT
reached along the TMD line.

As shown in Table III, the ratioTc /T* is approximately
0.4 for both WAC and BKS silica. Assuming that this ratio

f

v-

-

TABLE III. Comparison of characteristic temperatures of sim
lated and real tetrahedral liquids.T* for real SiO2 and H2O are
estimated as the ambientP values of the TMD; the actual value o
T* for these systems is likely to be slightly higher. Upper boun
on Tg for WAC silica and ST2 water are taken simply as the low
T at which equilibrium simulations of the liquid have been co
ducted. Values preceded by ‘‘;’’ are found by assuming that the
values of Tc /T* found from simulations apply to the real sub
stances. References are provided in brackets for those value
determined here.

T* Tc Tg Tg /T* Tc /T* Tc /Tg

WAC 9000 4000 ,4000 ,0.44 0.44 .1
BKS 5000 2000 1380@58# 0.28 0.40 1.45
ST2 330@12# 235 @13# ,235 0.71 .1

SiO2 1823 @59# ;730 1450@60# 0.80 ;0.40 0.50
H2O 277 @61# ;194 136@62# 0.49 ;0.70 1.4
2-7
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also valid for real silica givesTc5730 K, a temperature wel
below Tg for silica at 1450 K. Hence, if the WAC and BKS
models are representative of the thermodynamic prope
of silica, then we should not expect to directly observe
equilibrium liquid–liquid phase transition in supercooled li
uid silica.

This is in contrast to the case of water. The ST2 mo
givesTc /T* 50.80, implying thatTc5194 K for real water.
This is well aboveTg5136 K for water, though as yet stil
outside the easily accessible experimental range.~See how-
ever, Ref.@7#.!

The present analysis is consistent with recent interpr
tions @32,43,44# of the phenomenology of polyamorphism
observed in amorphous solid silica and water. In this int
pretation, the manifestation of polyamorphism for a syst
where the liquid phase exhibits the tendency toward
liquid–liquid phase transition at lowT will depend on the
relationship ofTg to Tc . WhenTc.Tg , as may be the cas
for water, polyamorphic behavior in the amorphous so
will be prominent, with a large and sharp density increa
observed when the glass in compressed. WhenTc,Tg , be-
havior characteristic of polyamorphism will be weake
though not necessarily absent, as is the case for silica.

However, the precise nature of the behavior to be
pected whenTc,Tg remains an open area of research. F
T,Tg , a standard application of equilibrium thermodyna
ics is not appropriate and so predictions based on the m
equations of state presented here do not apply. Nonethe
new thermodynamic approaches, based on a separation o
configurational degrees of freedom~frozen in atTg! and vi-
brational degrees of freedom~which are always in therma
equilibrium! may be employed to derive a free energy e
pression that can be used to locate the~cooling-rate depen-
dent! location of the critical point@56,57#. In this approach, a
negative curvature of theV dependence ofU along the Kauz-
mann line would be sufficient to guarantee the presence o
instability in the glassy phase.

We also note that the value ofT for the KT
max line at

atmosphericP is about 80% ofT* for both WAC and BKS
, J
ys

. C

.

.

.
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silica ~see Fig. 6!. Applying this ratio to real silica suggest
that a maximum ofKT ~or, equivalently, a minimum of the
bulk modulus! could occur when liquid silica is compresse
isothermally atT just above, but nearTg . This raises the
possibility to directly observe aKT

max line in experiments of
supercooled liquid silica under pressure. Confirming or ref
ing this prediction would be an important step in establish
the applicability of the pattern of thermodynamic behav
presented here, to real silica and other tetrahedral liquid

Notes Added in Proof.~i! An analysis of simulation data
for water has recently been published employing the sa
strategy for modeling the thermodynamic properties as u
here @63#. The results are qualitatively similar to ours, an
highlight the correspondence between the properties of liq
water and silica.~ii ! The locations we estimate for liquid
liquid critical points for WAC and BKS silica depend on th
validity of Eq. ~1! as a model of theT dependence ofU. Our
most recent simulation results~at T lower than those pre-
sented here! suggest that for BKS silica, theT dependence of
U deviates from the form of Eq.~1!, adopting an approxi-
mately linear dependence onT. Further study of this is re-
quired. If confirmed, the estimate given here for the locat
of the liquid-liquid critical point will change. However, sinc
Figs. 7 and 8 provide direct evidence of a liquid-liquid pha
transition, we do not expect deviations of our data from E
~1! to change the qualitative phase behavior of WAC a
BKS silica presented here.
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