
VOLUME 86, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 22 JANUARY 2001

648
Debye-Waller Factor of Liquid Silica: Theory and Simulation

Francesco Sciortino1 and Walter Kob2,*
1Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Universitá di Roma La Sapienza,

Piazzale Aldo Moro 2, I-00185 Roma, Italy
2Institute of Physics, Johannes Gutenberg-University, Staudinger Weg 7, D-55099 Mainz, Germany

(Received 28 July 2000)

We show that the prediction of mode-coupling theory for a model of a network-forming strong glass
former correctly describes the wave-vector dependence of the Debye-Waller factor. To obtain a good
description it is important to take into account the triplet correlation function c3, which we evaluate from
a computer simulation. Our results support the possibility that this theory is able to describe accurately
the nonergodicity parameters of simple as well as of network-forming liquids.
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The quantitative description of the glassy dynamics
in liquids is one important goal of modern research in
condensed matter. Work in the last decade has provided
evidence [1] that the so-called mode-coupling theory
(MCT) [2] is able to describe the slow dynamics of fragile
liquids [3] in the weakly supercooled state. Detailed
theoretical predictions for model systems —including
hard sphere systems, simple binary liquids, and molecular
liquids —have been found to be in remarkable agreement
with experimental measurements as well as with simula-
tion results [4–8]. For example, the full q dependence of
the Lamb-Mössbauer and of the Debye-Waller factors is
predicted well by the theory [2].

Recently, it has been shown that also intermediate and
strong glass formers [3], such as glycerol or silica (SiO2)
[9,10], show features that are in qualitative agreement with
the predictions of MCT. However, in the case of silica, a
detailed comparison between theory and numerical data
has questioned the ability of MCT to describe correctly
the Debye-Waller factors of this important network-
forming material [11,12]. In this Letter we show that the
disagreement between molecular dynamics (MD) results
and theoretical predictions — for the case of silica —was
not due to the failure of MCT to describe caging in this
network-forming liquid but to a further approximation
which is assumed for the sake of simplicity in the
commonly used MCT equations. We show that, once
this approximation is avoided, MCT is able to describe
accurately the cages in silica, opening the way for a full
description of dynamics in network-forming liquids above
the critical temperature of MCT.

To start we briefly review the MCT equations. The cen-
tral quantity is the coherent intermediate scattering func-
tion F�q, t�, which for the binary system composed by N
0031-9007�01�86(4)�648(4)$15.00
particles can be written as a 2 3 2 matrix with entries
Fij�q, t� � �dri�q, 0�dr

�
j �q, t���N . Here ri�q, t� is the

density fluctuation for wave vector q, and i is the label for
the species. Note that F�q, t � 0� is the static structure
factor matrix S.

The equation of motion for F�q, t� is given by

F̈�q, t� 1 V2�q�F�q, t� 1
Z t

0
dt M�q, t 2 t� �F�q, t� � 0 ,

(1)

where the frequency matrix is given by �V2�q��ij �
q2kBT �xi�mi� �S21�q��ij . Here q � jqj, xi is the con-
centration of species i, and mi is their mass. Within the
framework of MCT, the memory function M is given by
Mij � xikBTNij�mi , where the matrix Nij is a quadratic
form in Fij�q, t�:
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n
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Here n is the particle density, and the vertices Viab�q, k�
are given by
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The function c
ij
2 �q� � n21�dij�xi 2 �S21�q��ij� is the

direct correlation function, and c
iab
3 �q, k� is the triple

correlation function, which is related to the triple density
fluctuations via
�dra�q�drb�k�dr�
g �q 1 k�� � N

X
esh

Sae�q�Sbs�k�Sgh�jq 1 kj� �desdehdhs�x2
e 1 n2c

esh
3 �q, k�� . (4)

The only input required by MCT are the static quantities S, c3, and n. Temperature enters the equations only through
the explicit T dependence of V2�q� and the implicit T dependence of the static quantities. The solution of this type of
equation shows at low T a two-step relaxation dynamics, if T is above Tc, the so-called critical temperature of MCT [2].
© 2001 The American Physical Society
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Below Tc the time correlation functions do not decay to
zero anymore, thus signaling that the system is no longer
ergodic. Hence the height of the plateau in a time corre-
lation function is usually called the nonergodicity param-
eter (NEP) since it measures that fraction of the correla-
tion that does not decay to zero even at long times. The
Debye-Waller factor Fc�q�, the main quantity discussed in
this Letter, is defined as the NEP of F�q, t�. The physical
relevance of the NEP can be inferred from the fact that it
can be directly measured in light and neutron scattering
experiments.

In one of the first attempts to solve the MCT equations
for soft spheres, the possibility of setting in Eq. (3) c3 � 0
was considered [4]. This approximation corresponds to a
factorization of the triple density correlation in q space in
the products of the three pair density correlation. It was
found that for this simple liquid, this approximation does
not significantly affect the MCT predictions [4]. Therefore
all following MCT studies of simple liquids have assumed
c3 � 0. In this Letter we check the validity of this ap-
proximation for a network-forming liquid. We use MD
simulations to determine the triple correlation function for
silica [13] and use these functions to solve the full MCT
equations. This calculation allows us to determine for the
first time whether or not MCT is able to give a quantita-
tive description of the cages of strong glass formers. For
the sake of comparison, we perform the same study for
a well-studied binary mixture of Lennard-Jones particles
(BMLJ) [17].

In the past, the dynamics of both systems has been care-
fully analyzed and it has been shown that the relaxation
dynamics shows the qualitative features predicted by the
MCT [10–12,18,19]. For the case of the BMLJ also a
quantitative comparison has been made in that Fc�q� has
been calculated theoretically (assuming c3 � 0) and com-
pared with simulation data [6]. This comparison showed
that very good agreement between theory and simulation
is obtained, even if c3 � 0 is assumed, in agreement with
the conclusions of Ref. [4]. But for the case of SiO2 a
similar comparison showed that the MCT prediction for
Fc�q� does not describe properly the confining cage if
c3 � 0 [11,12].

To determine Tc and Fc�q� we have solved the MCT
equations [Eqs. (1)–(3)] on a grid of 100 wave vectors
with spacing D using the iteration procedure from Ref. [4].
For the case of SiO2 and BMLJ, D is 0.154 Å21 and
0.334s

21
AA , respectively. In order to investigate the in-

fluence of c3 it was necessary to determine c
esh
3 �q, k�

with high precision. Thus we determined all possible
triplets of moduli jkj, jpj, jqj, all smaller than 100 D,
such that q � k 1 p. For each of these triplets of mod-
uli we then picked randomly up to 100 vectors k, p,
q, and calculated for them the triple density fluctuations
�dra�k�drb�p�dr�

g�q��. Then we used Eq. (4) to de-
termine c3. For BMLJ we averaged the triple density
fluctuations over 12 000 independent configurations (i.e.,
they were separated by more than the typical a-relaxation
time), corresponding to a total of 108 time steps in the
simulation. For SiO2 we averaged over 2000 independent
configurations (2 3 107 time steps).

Note that this very large number of independent configu-
rations was needed in order to determine c3 with suffi-
ciently high accuracy to make sure that the final results for
the NEP do not depend anymore on the noise in c3. We
mention that using only 200 independent configurations
was, e.g., not sufficient to guarantee this. Because of the
large effort needed to generate the configurations and to
analyze them, we determined c3 only for one temperature,
namely, T � 1.0 (BMLJ) and T � 4000 K (SiO2). Thus
in the calculation of the MCT vertices in Eq. (3) we as-
sumed that the direct correlation functions depend on tem-
perature but that the T dependence of c3 can be neglected.

The resulting theoretical predictions for the three
components of the Debye-Waller factor are shown in
Figs. 1 (BMLJ) and 2 (SiO2). In each panel three curves
are shown: the data from the simulations (filled circles)
[11,19], the theoretical prediction if c3 � 0 (curves
labeled with “c2”), and the theoretical prediction if c3
is taken into account (curves labeled with “c3”) [20].
From Fig. 1 we see that the curves for c2 and c3 are very
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FIG. 1. Wave-vector dependence for the nonergodicity
parameters for the BMLJ system. The solid and dashed curves
are the theoretical predictions with and without the inclusion
of the c3 terms in Eq. (2). The circles are the MD results
from [19].
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FIG. 2. The same quantities as in Fig. 1, but for silica. The
MD data are from Ref. [11].

close together, from which we conclude that in the case
of the BMLJ the inclusion of c3 changes the prediction
of the theory only weakly. The main difference between
the two curves is in the BB correlation, where the c3
curve describes the simulation data better than the c2
curve. Also the theoretical prediction for Tc is essentially
independent of whether or not c3 is neglected, in that Tc

decreases from Tc � 0.922 to Tc � 0.910 if c3 is taken
into account. These results are in agreement with the
findings of Ref. [4].

From Fig. 2 we recognize that for the case of SiO2
the influence of c3 on the NEP is much stronger than for
the BMLJ system. For this network-forming liquid the in-
clusion of c3 into the vertices leads to predicted curves
Fc�q� which are in substantially better agreement with the
ones from the simulation than the ones from the c2 theory.
The improvement is particularly noticeable for q above the
location of the first peak, a length scale that corresponds
to the distance between two neighboring tetrahedra. For
example, in the case of the Si-Si correlation the relative
difference between the theoretical curve and the MD data
is decreased by a factor around 5. The remaining differ-
ence is now only on the order of the error of the MD data.

Note that Fc�q� provides partial information on the cage
in which a particle is confined and which is formed by its
neighboring particles [21]. The fact that in the vicinity of
the first maximum the two theoretical curves as well as the
650
MD data are very close together shows that already the c2
theory is able to capture the structure of the cage on this
length scale. For larger wave vectors the c2 curve is too
high, which means that the size of the cage is underesti-
mated. Only if the terms due to c3 are taken into account,
can a reliable description for the cage be obtained.

For the Si-Si correlation the mentioned decrease of the
NEP is more pronounced than for the two other correlation
functions, which is reasonable since it is the Si atoms that
sit in the center of the tetrahedra, i.e., that make up the
network structure, and hence it can be expected that the
inclusion of the c3 terms is important. Nevertheless, from
the figure we see that the inclusion of these terms leads also
to a significant improvement of the theoretical prediction
for the NEPs for Si-O and O-O if q is larger than the
location of the first peak. Thus we conclude that the c2
MCT is able to give a good description of the cage for the
oxygens only on the length scale corresponding to the first
maximum of F�q, 0�.

The strong influence of the c3 terms on Fc�q� is also
found in the value of Tc. If one sets c3 � 0, one finds Tc �
3962 K, whereas the c3 theory predicts Tc � 4676 K.
Thus, whereas for the BMLJ system we found only a
change of the order of 1%, we now find a change around
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(upper and lower panels, respectively). The labeling of the
curves is as in Fig. 1.
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18%. We mention, however, that MCT usually over-
estimates the value of Tc, and indeed we have TMD

c �
0.435 and TMD

c � 3330 K for BMLJ and SiO2, respec-
tively [10,18].

Finally we show in Fig. 3 the q dependence of
NAA�q, `� and NSiSi�q, `� from Eq. (2) at the correspond-
ing Tc. From this figure we see that for the BMLJ case the
c2-memory function is very similar to the one in which
c3 is taken into account and thus it is not surprising that
also the NEP and the Tc are not changing. This is in
stark contrast to the SiO2 system, for which the memory
functions from the c2 and c3 theories are very different.
Note that in a binary mixture each component of the
memory function has contributions from 16 different
terms [see Eq. (2)]. We found that in the case of SiO2
the inclusion of the c3 terms leads to a significant change
of the contribution involving the off-diagonal terms. In
the c2 case these contributions are negative, thus they
drive the transition to lower temperatures. If the c3 terms
are taken into account, these contributions become less
negative and hence the transition takes place already at
higher temperatures.

In summary, the present calculation shows that MCT is
able to give an accurate quantitative description of the NEP
for a strong glass former. This opens the way for a detailed
description of the dynamics in the MCT region for this
class of materials. Hence our results support the possibility
that MCT is able to make quantitative predictions for all
types of glass formers.
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