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Higher-order glass-transition singularities in colloidal systems with attractive interactions
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The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core
plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width
of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass
line and a glass-glass-transition line are found in the temperature-density plane of the model. For small
well-width values, the glass-glass-transition line terminates in a third-order bifurcation point, i.e., in aA3

~cusp! singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth-
orderA4 ~swallow-tail! singularity at a critical well width. Close to theA3 andA4 singularities the decay of the
density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.
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I. INTRODUCTION

Colloidal suspensions have been studied extensively
cause of their practical importance and because of their
evance in biophysics. These systems are also of great t
retical interest since they are models for conventional ma
They can be prepared for a large span of densities so tha
states can be gases, gels, liquids, crystalline solids
glasses. Light scattering can be used to measure the s
structure factor and various correlation functions. The
namics can be explored over a wide range of length sc
and over huge dynamical windows@1,2#. It is fascinating that
with colloidal systems the interaction can be tuned to so
extent by varying the coating of the particles and the co
position of the solvent@1–3#. It is possible to realize the
hard-sphere system~HSS!, the basic model underlying a
theories of simple liquids@4,5#. One can also prepare sy
tems where the hard core is complemented by an attrac
shell. This allows one to study the interplay of repulsion a
attraction. As a contribution to such studies, a theory for
glass formation resulting from a strong short-range attrac
among densely packed hard-sphere colloidal particles s
be presented in this paper.

In hard-sphere colloidal dispersions, the liquid-glass tr
sition has been studied by van Megen and Pusey@6#. They
measured correlation functionsfq(t) for density fluctuations
of a representative set of wave numbersq over about four
decades in timet. It was found that these correlations dec
to zero as expected for a liquid only for packing fractionsw
below a critical valuewc . At wc , the long-time limit of the
correlators, f q5fq(t→`), changes discontinuously to
certain valuef q

c.0, increasing further with the packing frac
tion. f q is the Debye-Waller factor of the amorphous sol
i.e., of the glass, and generalizes the order parameter in
duced by Edwards and Anderson in the theory of s
glasses@7#. The evolution of the glassy dynamics for th
HSS was studied comprehensively by van Megen and
workers@8–13#. The data suggest that it is the well-know
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cage effect@5# which causes the glassy dynamics and
arrest of density fluctuations atwc .

The cage effect is the essential physical concept unde
ing the mode-coupling theory~MCT! for the evolution of
glassy dynamics in simple systems@14,15#. This theory al-
lows the calculation offq(t) and thusf q from the equilib-
rium structure factorSq . As a function of control parameter
like w, singularities off q , called glass-transition singulari
ties, may occur. The simplest type, called a fold bifurcatio
describes a liquid-glass transition atw5wc . It implies a
subtle dynamical scenario, giving rise to universal feature
glassy dynamics which have been identified in a leadi
order-asymptotic expansion of the MCT equations. A revi
of the basic results is given in Ref.@16#. In Refs. @8–12#
detailed quantitative comparisons of the data for hard-sph
colloids with the MCT predictions are presented. It is sho
that the theory accounts for the experimental facts withi
15%-accuracy level. An illuminating summary of these stu
ies is given in Ref.@17#. Results for the shear modulus hav
also been interpreted with the universal MCT formulas@18#.
The evolution of glassy dynamics forw increasing towards
wc was also studied for polymer micronetwork colloids@19–
22#. Here, the interparticle interaction is not known. But t
authors demonstrated that a consistent fit of their data w
the universal MCT formulas was possible. Preliminary stu
ies of the glassy dynamics of charge-stabilized colloids in
cate that these data can also be explained within the M
@23#. The reported findings shall be taken as a justification
base the theory in this paper on the MCT for simple syste

Our studies deal with the square-well system~SWS!,
characterized by a hard-core repulsion for interparticle d
tancesr ,d, and by a constant attraction potential within th
shell d,r ,d1D. The theory focuses on the high-densi
regime, sayw.0.4, so that the cage effect is essential for t
dynamics. The relative attraction-shell widthd5D/d is as-
sumed to be small, sayd,0.15. The main outcome of ou
theory is the prediction of a higher-order glass-transition s
gularity at a critical packing fractionw* somewhat above the
©2000 The American Physical Society01-1
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critical point wc of the hard-sphere system and a critic
width d* of about 0.04. This singularity organizes a sub
phase diagram and opens up various possibilities for gla
relaxation. The results reflect the interplay of two mech
nisms for particle localization, i.e., for the arrest of dens
fluctuations. It can either be dominated by repulsion of
particle by its cage-forming neighbors, or by the formati
of bonds to the boundaries of the cage. Preliminary calc
tions @24,25# based upon Baxter’s adhesive hard-sph
model @27# hinted at some findings to be derived in th
paper. Baxter’s model treats the limitd→0, so it cannot dea
with the indicated singularity atd* . Moreover, taken liter-
ally, the Baxter model cannot be used as a basis for M
applications since there appears a divergency due to ex
tions with large wave vectors. The results for this model
Refs.@24–26# depend in an ill-defined manner on the larg
q cutoff used there, a problem which is avoided with t
SWS.

Dense systems of colloidal particles characterized b
hard core and strong attractions of a range smaller than
core diameter by a factor of at least 10 were realized exp
mentally, when adding nonadsorbing polymers to eithe
suspension of colloidal hard spheres@28# or to emulsions
@30# in solutions of sterically stabilized particles when d
creasing the solvent quality@31–34#, and in copolymer mi-
cellar systems when changing the temperature@35#. Such
systems were also studied in Monte Carlo simulatio
@36,37#. Nonequilibrium phenomena characterized by a nu
ber of aspects were found which cannot be understood f
the glassy states formed in hard-sphere solutions. F
amorphous solids could be formed by increasing the att
tion strength even though the packing fraction was kept fi
well below the value of the hard-sphere glass transition@30–
34#. Second, due to increasing the strength of a short-ran
attraction by adding small polymers, melting of the gla
states was reported for the colloid-polymer mixtures@29,28#.
Third, the nondecaying frozen structures that were s
when immersing polymer-coated colloidal particles into s
vents of decreasing quality@32# exhibited a much large
Debye-Waller factor at small wave vectors than hard-sph
systems. This indicates a much higher rigidity of the so
states on intermediate length scales. In support of this ob
vation, viscoelastic measurements for intermediate frequ
cies found strongly concentration-dependent elastic mo
@30,31,33,34#. It will be shown that our results provide
qualitative explanation of the reported findings.

The paper is organized as follows. In Sec. II we report
results for the structure factor of the SWS and discuss th
features that cause various qualitative results of the M
solutions. Section III presents the main result of this pap
showing the phase diagram and discussing the propertie
the glass states resulting from the interplay between att
tion and repulsion. In Sec. IV we present some results for
dynamics which illustrate that the higher-order gla
transition singularities cause relaxation stretching which
much more pronounced than is known for the HSS. Sec
V presents some concluding remarks.
01140
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II. STRUCTURE FACTOR CALCULATIONS

A. The model

The structure factorSq is the essential input information
needed to formulate the MCT equations. In this section,Sq
shall be discussed for the square-well system~SWS!. Only
such states shall be considered for whichSq depends
smoothly on the particle densityr, on the temperatureT, and
on the wave numberq. The interaction potentialV(r ) for
particles with separation distancer consists of a hard-core
repulsion forr ,d, and it has the negative value2u0 within
the attraction shelld,r ,d1D. The structure can be spec
fied by three control parameters: the packing fractionw of
the hard cores, the ratiou of thermal and attractive energy
and the relative widthd of the attraction shell,

w5prd3/6, u5kBT/u0 , d5D/d. ~1!

Let us note the standard concepts needed for a discus
of Sq @4#. g(r ) and h(r )5g(r )21 abbreviate the pair dis
tribution and the total correlation function, respectively. T
Fourier transformhq of the latter determines the structu
factor Sq511rhq . The Ornstein-Zernike equation formu
lates an integral equation forh(r ), where the kernel is the
direct correlation functionc(r ). In the wave vector domain
it readsSq51/@12rcq#, where

cq5
4p

q E
0

`

dr sin~qr !@rc~r !#. ~2!

Baxter’s method of the Wiener-Hopf factorization@4,38#
shall be used to reformulate the Ornstein-Zernike equat
The basic concept of this theory is the factor functionQ(r ).
It is defined as a continuous real function forr>0, deter-
mining Sq via its Fourier transform:

Sq
215Q̂~q!Q̂~q!* , ~3a!

Q̂~q!5122prE
0

`

dr exp~ iqr !Q~r !. ~3b!

It is anticipated thatQ(r ) as well asc(r ) vanishes beyond a
certain distanceR. For 0<r<R, there holds

rc~r !52Q8~r !12prE
r

R

ds Q8~s!Q~s2r !. ~4!

Furthermore, one finds forr .0

rh~r !52Q8~r !12prE
0

R

ds~r 2s!h~ ur 2su!Q~s!. ~5!

For the SWS,g(r )50 is fulfilled for 0,r ,d, and there-
fore, usingh(r )5g(r )21, Eq.~5! splits into three subequa
tions. Most simple is the result for the middle part,D<r
<d, where the formula known from the theory for the har
sphere system~HSS! is reproduced,

Q8~r !5ar1b. ~6a!
1-2
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Here, coefficientsa andb are introduced by

a5122prE
0

d1D

ds Q~s!, b52prE
0

d1D

ds s Q~s!.

~6b!

Writing G(r )5rg(r ), one finds for small distances, 0<r
<D,

Q8~r !5ar1b22prE
r 1d

d1D

ds G~s2r !Q~s!, ~6c!

and for the attraction shell,d<r<d1D, one obtains

Q8~r !5ar1b2G~r !12prE
0

r 2d

ds G~r 2s!Q~s!.

~6d!

Some approximation forc(r ) has to be introduced into
Eq. ~4! in order to close the system of Eqs.~4! and ~6!. In
this paper the Percus-Yevick approximation~PYA! and the
mean-spherical approximation~MSA! shall be applied@4#.
Nezbeda already studied the structure factor for the S
using the PYA for small well widths@39,40#. His equations
could be solved only in a restricted region of paramete
Since the boundary of this region of applicability is close
the parameter regionw'0.5,u'1 of interest in this paper, i
does not seem appropriate to base the following calculat
on these results.

B. Approximations

Within the PYA, one writes c(r )5g(r )$1
2exp@V(r)/kBT#% outside the hard core. Substitution of th
ansatz into Eq.~4! and using Eq.~6d! leads to the approxi-
mation ford<r<d1D,

e2u0 /kBTG~r !5ar1b22prE
r

d1D

ds Q8~s!Q~s2r !

12prE
0

r 2d

ds G~r 2s!Q~s!. ~7!

Equations~6! and~7! for Q(r ) andG(r ) are solved numeri-
cally. To proceed, the equations are discretized straight
wardly. On each of the threer intervals, a grid of equally
spaced pointsr n is chosen, wheren51,2, . . .,1000. The
functionsQ8(r ) and G(r ) are calculated iterating Eqs.~6!
and ~7!. At each step, the functionQ(r ) is evaluated from
Q8(r ) using a five-point numerical integration. The proc
dure is carried out until the difference between two succ
sive iterations summed over all points of ther grid becomes
less than 10212. The integral in Eq.~3a! is determined by a
simplified Filon procedure to obtainQ̂(q) and henceSq .

The MSA usesc(r )52V(r )/kBT outside the hard core
Substituting this ansatz into Eq.~4!, after integration one
obtains ford<r<d1D
01140
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Q~r !52prE
r

d1D

ds Q~s!Q~s2r !1@~d1D!22r 2#/~2u!.

~8!

Equations~6! and ~8! are solved analytically in a leading
and next-to-leading-order expansion, using the well widthd
as the small parameter. For the organization of the exp
sion, the quantityK5d/u is considered fixed. This proce
dure is motivated by Baxter’s theory of sticky hard sphe
@27#. He evaluatedSq in the limit d→0,u0→`, keeping a
parameter equivalent toK fixed. Details of the calculation
can be found in the Appendix. The hard-core diameted
shall be used as the unit of length. Ford<r<1, the factor
function is the parabola known from the theory of the HS

Q~r !5ar2/21br1c, ~9a!

with a, b, and c now being smooth functions of the SW
control parameters. For 0<r<d, there is an enhancemen
above this parabola,

Q~r !5ar2/21br1c12wK2d@12~r /d!#3. ~9b!

Within the attraction shell, the leading-order result describ
a linear decrease ofQ(r ) from K to zero. The leading cor-
rection adds a quadratic modification. One finds for 1<r
<11d

Q~r !5KF12
r 21

d G1KdH 1

2 F12S r 21

d D 2G
16wc0F12

r 21

d G2J . ~9c!

Here and in the following we denote the constants from E
~9! asa5a01Kda1 , b5b01Kdb1 , andc5c01Kdc1. The
leading-order contributions are the result of the Baxter lim
d→0,

a05F 112w

~12w!2G2
12Kw

~12w!
, ~10a!

b05F 23w

2~12w!2G1
6Kw

~12w!
, ~10b!

c05F 21

2~12w!G1K. ~10c!

The terms in large square brackets exhibit the results for
HSS@4#. The coefficients of the next-to-leading-order cont
butions are
1-3



to
E

n
-

b

-

lia

e

o

fo

s o
o
si
t

du
ty
T
e

ir

er
x-

nly
of a
pair
n be

ser,
ere-

re
and
ease

dis-
-
re-

n
e

ll
e-

ent

em

d

for
h
the
2.

K. DAWSON et al. PHYSICAL REVIEW E 63 011401
a15@6w~5w22!272c0w2~12w!#/~12w!2, ~11a!

b15@9w~122w!136c0w2~12w!#/~12w!2, ~11b!

c15@127w112c0w~12w!#/@2~12w!#. ~11c!

Substitution of Eqs.~9! into Eq. ~3a! yields Q̂(q) as a
combination of trigonometric functions. It is elementary
work out the somewhat lengthy expression and thus via
~3a! the desired result forSq .

The large-q asymptote of the direct correlation functio
cq shall be obtained from Eq.~2! by evaluating the asymp
tote of the Fourier-sine transform of the functionf (r )
5rc(r ). From Eq. ~4! one concludes thatf (r ) is smooth
except for at most three pointsr (1)5d, r (2)51, andr (3)51
1d. At these points there can be a discontinuity, given
that of the derivative of the factor function:f ( i )5Q8(r ( i )

20)2Q8(r ( i )10). Let us also note from Eq.~4! the initial
value f (r 50)5A52Q8(0)26wQ(0)2. For the exact so-
lution of the problem,A50 must hold, but due to the ap
proximation scheme used here, a finite value ofO(d) re-
mains:A52Kd@12wc0(c112Kw)1b1#1O(d2). Thereby,
the Baxter result@27#, A5O(d0), is improved. Thef ( i ) can
be determined easily from Eqs.~9!, in particular f (1)50.
Integrating by parts, the integral in Eq.~2! becomes@ f (0)

1( i f
( i ) cos(qr(i))#/q1O(1/q2). Hence one arrives atcq

5cq
as1O(1/q3), where the asymptotic tail reads

cq
as5~4p/q2!$A1B cos~q!12C sin@q~11d/2!#sin~qd/2!%.

~12!

The second term in the curly brackets has a form fami
from the PYA result for the HSS. But the coefficientB is a
smooth function ofK andd which reduces to the HSS valu
for K5d50,

B5a1b1K~12wc021!. ~13a!

The third term in the curly bracket is due to the existence
the attraction well. Its prefactor reads

C5~11d!/u. ~13b!

C. Results

The spinodal lines of the SWS are shown in Fig. 1
three representative values of the well widthd. They specify
the divergence points of the compressibility, i.e., the zero
Sq

21 for q50. The spinodal is the boundary of the regime
absolute instability with respect to the liquid-vapor tran
tion. Only states outside this regime can be considered in
following. Substitution of Eqs.~9! into Eq. ~3b! yields el-
ementary expressions forQ̂(0) within the MSA. We have
not been able to determine the spinodals within the PYA
to numerical instability of the algorithm. The high-densi
regime investigated in the following applications of the MC
is indicated as the strip between the two dotted vertical lin

Figure 2 exhibits the structure factorsSq , calculated
within the MSA for d50.05, and the corresponding pa
distributionsg(r ), calculated numerically from Eq.~5!, for
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states marked by diamonds in Fig. 1. TheSq-versus-q curves
exhibit a principal refraction peak as known from oth
simple liquids@4#. It is caused by the hard-core driven e
cluded volume phenomenon,g(r ,d)50. The high-
temperature curves 1 and 2 exhibit peaks, which are o
slightly smaller and somewhat broader than the peaks
HSS at the same densities. The attraction modifies the
correlations and thus the excluded volume effects, as ca
inferred by comparing the curves 1 and 3. LoweringT, the
short-ranged attraction causes the particles to move clo
i.e., the most probable interparticle spacing decreases. Th
fore, the peak position shifts to higherq upon cooling. The
distribution g(r ) develops a more rapidly varying structu
at distances which are multiples of the particle diameter,
this explains the decrease of the peak height and the incr
of the peak wings inSq . A change of the density at low
temperature modifies the peak in a similar manner as
cussed above for largeT, cf. curves 3 and 4. However, low
ering w drives the system closer to the spinodal, and the
fore the exhibited change ofSq for small q is larger than
expected for a HSS.

Results for the pair correlationg(r ) obtained by different
closures of Eqs.~4! and~5! and by other methods have bee
published by Langet al. @37#. For both a small and a larg
well width considered there,d50.03 andd50.5, respec-
tively, we find our results forg(r ) in agreement with the
Monte Carlo simulation results obtained by Langet al. Only
for the small well width,g(r ) is underestimated in the we
regime, 1,r ,11d, by about the same amount as Nezb
da’s approximation@39,40# overestimatesg(r ). At r .1
1d, however, our solution appears to be in better agreem

FIG. 1. Control-parameter plane for the square-well syst
~SWS! plotted as dimensionless temperatureu5kBT/u0 versus
packing fractionw. The full line shows the spinodal calculate
within the MSA for the relative attraction-well widthd50.05.
Dashed~dash-dotted! curves show the corresponding spinodals
d50.03 (d50.09). Vertical dotted lines mark the region for whic
the phase diagram is discussed below in Fig. 5. Diamonds mark
state parameters for which the structure factor is shown in Fig.
1-4
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with the simulation results. This behavior is similar to wh
holds for the optimized random-phase approximation@37#.

The large-q tail of cq will be of importance in the follow-
ing. In Fig. 3 it is shown that the asymptote, Eq.~12!, de-
scribescq very well for q.20. The results have been eval
ated for the state discussed in Fig. 2 with the label 3, wh
(A,B,C)5(20.092,1.63,7). The tail consists of a part d
to the first two terms in Eq.~12!, which differs from the HSS
result merely by modifications of the coefficientsA and B.
This part of the asymptote is shown in Fig. 3~dotted line! in
order to emphasize that the last contribution in Eq.~12! can
be dominant. The next-to-leading-order contributions to
results are not relevant for a discussion of the qualita
features of the tail. Therefore, let us write the lowest-or
formula for the tail ascq

as5cq
rep1cq

att. Here, the coefficients
of cq

rep are obtained via a Baxter-like limit,d→0, K5d/u
fixed. NotingA→0 in this limit, we find

cq
rep5~4p/q2!B0 cos~q!. ~14a!

The attraction-induced tail in this approximation reads

cq
att5~4p/q2!K~2/d!sin~qd/2! sin@q~11d/2!#. ~14b!

FIG. 2. Structure factorSq and pair correlation functiong(r ) of
the SWS calculated within the MSA for the relative well widthd
50.05. The labels 1 to 4 correspond to the states indicated by
diamonds in Fig. 1. They are given by the pairs (w,u) of the pack-
ing fraction and reduced temperature~0.50, 0.50!, ~0.55, 0.50!,
~0.50, 0.15!, and~0.40, 0.15!, respectively. Here and in the follow
ing figures, the hard-core diameter is chosen as the unit of len
d51, andq is given here and in the following in units ofd21.
01140
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For the example in Fig. 3, (B0 ,K)5(4/3,1/3). Forq below
an upper cutoffqu5p/d, the function in the bracket of Eq
~14b! increases almost linearly withq. This explains the in-
creasing importance of thecq

att contribution relative to the
cq

rep one, as is demonstrated in Fig. 3. IfK is sufficiently
large or if uB0u is sufficiently small, one can identify a lowe
cutoff ql5uB0u/K such thatcq

att dominatescq
rep,

cq
as5~4pK/q! sin@q~11d/2!#, ql!q!qu . ~14c!

In the wave-vector interval betweenql andqu , cq exhibits a
power-law decrease slower than the one of the true largq
tail, which dominates only forq@qu .

The PYA and the MSA differ solely by their ansatz fo
the direct correlation functionc(r ) within the attraction shell
1,r ,11d. Within the PYA, c(r ) depends onr via the r
dependence of the pair distribution function,cPYA(r )5$1
2exp@2u0 /(kBT)#%g(r), while the MSA assumes a consta
cMSA5u0 /(kBT). In this paper, systems with narrow attra
tion shells are of interest,d!1. Therefore it is a reasonabl
approximation to ignore ther dependence ofcPYA by writing
g(r )'gd5g(r 51). Thus, for every state where a solutio
of the PYA exists, there is a solution of the MSA, yieldin
the same structure factor. However, the corresponding s
tion for the MSA has to be evaluated for an effective reduc
temperatureueff

MSA . The latter is a smooth function ofu
5u0 /kBT, w andd, estimated by

1

ueff
MSA

'F12expS 2u0

kBT D Ggd . ~15!

he

th,

FIG. 3. Direct correlation functioncq of the SWS for relative
well width d50.05 calculated within the MSA~solid line!. Density
and temperature are the ones considered in Figs. 1 and 2 fo
label 3. The dashed line exhibits the leading asymptotecq

as accord-
ing to Eq. ~12!. The dotted line represents the same result w
coefficientC replaced by zero~see text!.
1-5
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Consequently, the PYA and the MSA yield the same s
narios for the structure factor in the parameter regime
interest in this paper. This finding is demonstrated in Fig
for the basic quantity of the structure factor theory, the fac
function Q(r ). The result calculated within the PYA for th
parameter triple

wPYA* 50.5293, uPYA* 51.1000, dPYA* 50.0429 ~16a!

is very close to the one obtained within the MSA for

wMSA* 50.5258, uMSA* 50.2332, dMSA* 50.0465.
~16b!

It will be shown in Sec. III that the two states specified abo
are of central importance. The values found for the cor
sponding densitiesw* and well widthsd* are close to each
other. The difference in the values for the effective attract
strength 1/u* is well explained by Eq.~15!. If one inserts
gd* '7.5 as obtained from the MSA, one findsueff

MSA

'0.2233.
All calculations within the MSA are based on the smalld

expansion for the factor function, sayQexp(r ), defined by
Eqs.~9! to ~11!. To control this result, Eqs.~6! and the ana-
log of Eq. ~7! for the MSA closure have also been solv
numerically to get the correct MSA factor function, sa
QMSA(r ). The difference dQ(r )5QMSA(r )2Qexp(r ) is
positive and about 3%~1%! for d50.25, (0.15) forr<0.5;
and it decreases forr increasing above 0.5.

The dotted line in Fig. 4 exhibits the parabola forQ(r ),
Eq. ~9a!, for coefficients of the HSS. Introduction of th

FIG. 4. Factor functionQ(r ) of the SWS. The hard-core diam
eter is chosen as the unit of length. The dashed line is the P
result forw50.5293, reduced temperatureu51.10, and well-width
parameterd50.0429. The full line is the MSA result forw
50.5258, u50.2332, d50.0465, chosen to represent the sa
physical state of interest in our discussion; see the text for det
The dotted line shows the result for the HSS at the packing frac
w50.516.
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attraction smoothly renormalizes the coefficientsa, b, andc,
such that the parabola shifts upwards and becomes fla
There appears a region of positive values forQ(r ) near the
core surfacer'1. These shifts cause the smooth drifts of t
Fourier transform forQ̂(q), which lead to the drifts ofSq
discussed in connection with Fig. 2 and to the appearanc
a spinodal, cf. Fig. 1. The only qualitative new featur
which is caused by the attraction well, is the almost strai
decrease ofQ(r ) within the interval 1,r ,11d. Equation
~9c! yields the slope in leading order asQ8(r )52K/d. In
the Baxter limit, this slope diverges. The specified alm
constant part ofQ8(r ) causes the attraction-tail contributio
to the asymptote ofcq , Eq. ~14b!. The power-law tail, Eq.
~14c!, is a precursor of the mentioned divergency.

The structure factor or the pair correlation function det
mine the positions of the liquid-gas transition points. Ho
ever, one faces the known consistency problem that diffe
routes for the equation of state yield different results for
transition points if approximations forSq or g(r ) are used
@4#. We will not discuss these problems in this paper, sinc
is irrelevant for the evolution of glassy dynamics or the gla
transition whether the fluid is in a stable or metastable th
modynamic state.

III. PHASE DIAGRAM

A. The bifurcation equation

The MCT equations of motion for various dynamic
quantities are based on the equations for the normalized
sity correlatorsfq(t)5^rqW

* (t)rqW&/^urqW u2&. For the liquid
state these functions approach zero for large timet; density
fluctuations which were created at timet50 disappear for
t→`. The glass state is characterized by a spontaneou
rest of these fluctuations, i.e., the long-time limitsf q of the
correlators do not vanish. The ideal liquid-glass transition
the MCT is characterized by a discontinuous increase of q
from its value zero in the liquid state to the critical Deby
Waller factor f q

c.0 of the glass. For colloidal suspension
f q can be deduced from the dynamical light-scattering res
for fq(t). The experimental findings for the HSS@10# and
for a charge stabilized system@23# confirmed the discontinu-
ity for f q and the data forf q

c agree well with the MCT re-
sults.

The f q obey the equationf q /(12 f q)5Fq( f ) @14#. Here,
the mode-coupling functionalFq is given by

Fq~ f !5
1

2E d3k

~2p!3
VqW ,kW f kf uqW 2kW u . ~17a!

The mode-coupling vertices are determined by the struc
factorSq , the direct correlation functioncq , and the density
r,

VqW ,kW[SqSkSuqW 2kW ur@qW •kW ck1qW •~qW 2kW ! cuqW 2kW u#
2/q4.

~17b!

In the following, the wave-vector integrals will be dis
cretized to points on a grid ofM values, which are equally

A

ls.
n
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spaced with step sizeh, starting atqmin5h/2. Thereby the
mode-coupling functional is changed to a second-order p
nomial

Fq~ f !5(
kp

Vq,kpf kf p . ~18!

The explicit representation of the coefficients can be found
Ref. @41#. TheM parametersf q obey the algebraic equation

f q /~12 f q!5Fq~ f !, q51, . . . ,M . ~19!

Besides the long-time limitf q , Eq. ~19! can have further
solutions, sayf̃ q , obeying 0< f̃ q,1. The Debye-Waller fac-
tor is distinguished by the maximum propertyf q> f̃ q , q
51, . . . ,M @42#. We used the iteration proceduref q

(n11)

5Fq@ f (n)#/(11Fq@ f (n)#), n50, 1, . . . to determinef q .
With increasingn the f q

(n) decrease monotonically toward
f q , if the iteration is started withf q

(0)51 @43#.
Two concepts are needed in the following, namely

maximum eigenvalueE and the exponent parameterl @42#.
For the discussion of the implicit equations, Eq.~19!, the
JacobianJ is of importance. It is equivalent to 12C, where
the M3M matrix C is determined by

Cqk5
]Fq~ f !

] f k
~12 f k!

2. ~20a!

Also the variation ofC with changes off is needed

Cq,kp5
1

2

]2Fq~ f !

] f k] f p
~12 f k!

2 ~12 f p!2. ~20b!

There is a nondegenerate eigenvalueE of matrix C with the
property that all other eigenvaluesẼ obey Ẽ,E. There
holdsE<1, and liquid-glass transition points are determin
by the conditionE5Ec51. It is helpful to follow the drift of
E with changes of control parameters while searching for
transition points. The left and right eigenvectors ofC for the
eigenvalueE, denoted byê ande, respectively, are uniquely
determined by the conditions: êq>0,eq>0,(qêqeq

51,(qêq(12 f q)eq
251. They are used to characterize eve

transition point by a single numberl, defined as

l5(
qkp

êq
cCq,kp

c ek
cep

c . ~21!

The solutions of Eq.~19!, considered as functions of th
M3 coefficientsVq,kp , can exhibit singularities, which ar
called bifurcation points@44#. The singularities occur if the
JacobianJ is a singular matrix, i.e., if the matrixC has ei-
genvalue unity. The special singularities, which are exhibi
by the Debye-Waller factors, are called glass-transition s
gularities. These are members of the simplest family of s
gularities, labeledAl , l 52, 3, . . . @44#. They are topologi-
cally equivalent to the bifurcation singularities of the re
roots of real polynomials of degreel. Since theVq,kp are
smooth functions of the control parameters, in the SWS
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Debye-Waller factorf q exhibits Al singularities considered
as a function of the variablesw, u, andd. The liquid-glass
transition is an example for the simplest bifurcation singul
ity A2, called a fold bifurcation. Such transitions occur o
smooth surfaces in the three-dimensional parameter sp
These surfaces can terminate in smooth lines ofA3 singulari-
ties, which are also called cusp bifurcations. The inner po
of theA2 surfaces are characterized by 0,l,1, and for the
end points there holdsl51. The most complicated generi
singularity in a three-parameter system is the meeting of
A3 lines in an A4 point. Its position shall be denoted b
w* , u* , andd* . This singularity is also called a swallow-ta
bifurcation @44#. The possibility of the described scenario
has been demonstrated earlier for schematic MCT mod
invented with the mere intention of demonstrating the ex
tence ofA3 andA4 points @42#. This paper is the first dem
onstration of the existence of anA4 for a microscopic model;
the values for the SWS are given in Eqs.~16!.

The numerical work is done with step sizehd50.4. It
was checked for representative cases, that choosing sm
step sizes does not alter the results to be presented. Cho
M is equivalent to introducing an upper wave-vector cut
q* 5(M21/2)h in Eq. ~17a!. The previous comprehensiv
studies for the HSS@41,45# were done withM5100. For
sufficiently large 1/u and sufficiently smalld, the direct cor-
relation functioncq develops a large-q tail, discussed in Eqs
~14!. This is decisive for fixing the valueq* needed to en-
sure the correct handling of Eqs.~17!. If the coefficientK in
Eq. ~14c! is kept fixed, the cutoffq* will increase with the
decreasing well-width parameter proportional to 1/d. The
maximum value forM that can be handled in the numeric
work defines the lower limit for 1/K and d, which can be
treated. We used values forM up to 2000 occasionally, in
order to guarantee the cutoff independence of the results
ported in this paper.

B. Results

The phase diagram for the SWS is shown in Fig. 5
several constant-d cuts through the three-dimension
control-parameter space. The results based on the PYA
the MSA are qualitatively the same. Let us first consider
three states 1, 2, and 3 from Fig. 1 ford50.06. Within the
MSA, state 1 refers to the liquid phase, cf. Fig. 5~b!. Increas-
ing w to the state 2 increases the height of the first sh
diffraction peak ofSq , located nearq057, cf. Fig. 2. Thus
the compressibility for fluctuations in the shellq'q0 in-
creases. This leads to arrest in a glass state, as known
the HSS. If one cools state 1 at fixedw50.50 down to state
3, Sq0

decreases, as was explained in connection with Fig
This effect stabilizes the liquid, but it is overcompensated
the increase ofSq in the small-wave-vector region,q,6.1,
and, more important, in the large-q region, q.7.4. As a
result of this compressibility increase on the wings of t
structure factor peak, the liquid freezes to a glass upon c
ing, cf. Fig. 5. For large temperature,Sq depends only
weakly on T; the terms proportional toK5du0 /(kBT) in
Eqs. ~9! to ~11! cause only small modifications of the coe
ficients determining the factor functionQ(r ). This explains
1-7
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why the transition lines are almost vertical in Fig. 5~a! for
kBT/u0.3 and in Fig. 5~b! for u.1. The peak wings are no
very sensitive to density changes by a few percent fow
,0.51. This explains why the transition lines in Fig. 5 a
rather flat there. The two pieces of the transition line jo
smoothly andl remains below unity ford50.06, as is
shown in Fig. 6~b!. Thus, the described curve represents
cut through a smooth surface ofA2 bifurcations.

The mentioned high-temperature pieces of the transi
surface are located at packing fractionswc , which exceed
the value for the HSS,wc

HSS'0.516. This means that th
attraction forces have stabilized the liquid phase. This ef
is smaller for largerT and therefore thewc-versus-Tc curve
decreases. There is the possibility of glass melting due
cooling, if the decrease ofSq0

is not overcompensated by th
increase of the structure-factor-peak wings. The attrac
causes bonding, in the sense that the average separati
two particles is smaller than expected for a HSS. Theref
the average size of the holes increases and this favors

FIG. 5. The phase diagram of the SWS showing cuts thro
the control parameter space for fixed relative attraction-well wi
d5D/d. The upper part~a! is based on the PYA for the structur
factorSq , and the ratiod/(11d) is noted in the legend. The lowe
part ~b! is based on the MSA forSq , and the well widths ared
50.09, 0.06, 0.0465, 0.035, and 0.03, subsequently. TheA3 end
points are marked by open circles and theA4 by an asterisk. The
vertical dashed line marks the transition linew'0.516 for the hard-
sphere system. For reference, states 1 and 2 from Fig. 1 ar
cluded as diamonds.
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long-distance motion characteristic for a liquid. Consid
states withw50.52 andd50.06. For the MSA results one
notices from Fig. 5~b! that the system is in a glass foru
50.10 and it melts upon heating ifu approachesum

2

'0.30. This transition occurs due to the temperature drift
the coupling to modes with wave vectors in the wings of t
Sq peak. The system remains in the liquid upon further he
ing until it reenters the glass atum

1'1.41. This freezing is
caused by the drift of the coupling to modes withq'q0. The
described reentry phenomenon@24,25# is a manifestation of
two mechanisms for localization due to the cage effect in
high-density SWS to be explained below.

The preceding two paragraphs can be summarized as
lows. There is a subtle interplay of excluded-volume a
bonding effects which determine the variations of the p
correlation functiong(r ) on the length scale of the particl
diameterd. This is reflected in the properties of the structu
factorSq for wave numbersq at and around the peak positio
q0; the relevantq range is the one exhibited in Fig. 2. Fluc
tuations with longer wavelength are of no qualitative impo
tance for those parameter points studied in this paper. T
conclusion was corroborated by dropping all contributions
the mode-coupling functional, Eq.~18!, where k or p are
smaller than 4; there was no significant change of the ph

h
h

in-

FIG. 6. Exponent parameterl for points on three transition
lines. The upper part~a! was calculated within the PYA for the
ratiosd/(11d) noted in the legend. Part~b! shows the results for
the MSA, where the dashed line indicates the valuel50.735 of the
HSS.
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HIGHER-ORDER GLASS-TRANSITION SINGULARITIES . . . PHYSICAL REVIEW E 63 011401
diagram calculated with the MSA structure compared
what is shown in Fig. 5~b!. Similarly, a cutoffq1520 was
introduced such that all contributions to the mode-coupl
functional withq.q1 are dropped. The MSA results show
in Fig. 5~b! for d50.09 andd50.06 did not change, nor wa
there a noticeable change for the other curves foru.0.6. We
conclude that the two specified sources for correlations
the intermediate length scale explain the phase trans
points, which are marked by open symbols in Fig. 5~a! or by
the corresponding light lines in Fig. 5~b!.

To substantiate the previous conclusion, we have c
structed a further phase diagram based on the MSA struc
factor, using the above specified cutoffq1 . As mentioned,
the curves ford50.09 andd50.06 were reproduced up t
minor deviations. Upon decreasingd further, curves emerge
which continue the trend of the two curves for largerd. The
limit d→0 can be carried out; no new features appear. T
ad hocMCT model yields a smooth liquid-glass transitio
surface ofA2 bifurcation points withl,1. Obviously, the
true phase diagram of the SWS shown in Fig. 5 is qu
different. There are the transition points marked by fill
symbols in Fig. 5~a! or by the corresponding heavy lines
Fig. 5~b!. These define transition lines, which do not jo
smoothly the previously discussed lines. Rather they cr
the former lines. Thus, for sufficiently smalld and suffi-
ciently large attraction strengthu0 /(kBT), there is a new
glass formation mechanism, dominated by density fluct
tions with large wave numberq>q1 . These are due to spa
tial correlations on the length scale of the attraction-w
width D.

For a discussion of the identified new pieces of the tr
sition surface, the mode-coupling coefficients in Eqs.~17a!
and~17b! can be simplified. As explained in connection wi

Fig. 3, one can write fork5ukW u>q1 andp5uqW 2kW u>q1 the
leading asymptotic expression for the structure factorsSk

5Sq51, and for the direct correlations functioncq5cq
as,

Eq. ~14b!. Thus, the dominant part of the mode-coupli
functional depends explicitly on the control parameters
the prefactor%K25%@du0 /(kBT)#2 and otherwise only ond
via the large-wave-vector cutoffqu . A further density de-
pendence is due to fluctuations withq,q1 only. This ex-
plains why the low-T transition lines in Fig. 5 are so flat.K2

decreases proportionally tod2, and this effect is not over
compensated by the increase ofqu . As a result, the horizon
tal transition lines decrease with decreasingd. For low pack-
ing fractions, such a trend can be shown explicitly by
analytic calculation@25,46#. Along this transition line,l in-
creases with increasingw until it approaches unity signaliz
ing an end point at somewc°(d), uc°(d). This is demon-
strated in Fig. 6~a! for three values ofd and in Fig. 6~b! for
d50.03. The line stops the previously discussed line in so
crossing point. Between the crossing point and the end po
there occur glass-glass transitions. Upon increasingd, the
length of the glass-glass transition line shrinks, until it va
ishes for somed* at somew* 5wc°(d* ) and u* 5uc°(d* );
and this is theA4 singularity whose coordinates are listed
Eqs.~16!.
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Every pair of glass states can be connected by a curv
parameter space such that, upon shifting the control par
eters w, u, and d along this curve, the glass propertie
change smoothly. Thus one cannot discriminate precisely
tween repulsion- and attraction-dominated glass states. H
ever, upon crossing the glass-glass-transition surface, t
occurs a discontinuous change of the glass-state prope
These discontinuities can be used to differentiate quan
tively between the two types of glasses. From a mathem
cal point of view, the situation is analogous to the termin
tion of the liquid-gas-transition line at the critical poin
Some results shall be presented from the theory based o
PYA for Sq . Let us consider states forw'0.54 for the
smallestd used in Fig. 5~a!. Figure 7 exhibits as filled sym
bols the decrease of the Debye-Waller factor for three rep
sentative wave numbers, if the attraction-dominated glas
heated towards the transition temperatureTc , kBTc /u0

51.04715uc . The f q decrease towards the critical valuef q
c

according to the asymptotic square-root lawf q2 f q
c

}hqAuc2u, which is the signature of the fold bifurcatio
@42#. Upon crossing the line into the repulsion-dominat
glass,f q drops and keeps on decreasing upon further hea
up to u'1.3, as shown by the open symbols. Notice thatf q
does not exhibit any singularity foru decreasing towardsuc .
The remarkable variation off q for u near but aboveuc is a
precursor phenomenon of the nearbyA3 singularity. Thef q
for u.uc is smaller than the Debye-Waller factor for th
HSS at the same packing fraction. Hence the attraction
softened the glass. This effect has to disappear for very la
T, and this explains whyf q increases again, reflecting a gla
stiffening upon heating. The described effects foru.uc are
the counterparts to what was discussed above in connec
with the reentry phenomenon.

The wave-vector dependence off q changes qualitatively
upon crossing the glass-glass-transition line as is show
Fig. 8. Let us focus in this paragraph on the wave-vec
regime at and above the structure factor peak positionq
*q0'7. Here, f q oscillates with wave-vector scale 2p/d
around the Mo¨ßbauer-Lamb factorf q

s . The latter is the ana-
log to f q , constructed for a tagged particle with positio

FIG. 7. The Debye-Waller factorf q as a function of the reduced
temperature for the fixed packing fractionw50.539 672 and fixed
d/(11d)50.03. The wave vectorqd57.0 is close to the structure
factor peak position. The calculations are based on the PYA forSq .
The path through the parameter space deals with a glass-glass
sition occuring atuc51.0471, compare Fig. 5~a!.
1-9
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K. DAWSON et al. PHYSICAL REVIEW E 63 011401
vector rWs(t) via its density-correlatorfq
s(t)5^rqW

s(t)* rqW
s
&;

rqW
s(t)5exp@iqWrWs(t)#. This quantity, in particular its long-time

limit f q
s , can also be measured@13#. One finds f q

s51
2q2r l

21O(q4), where r l is the localization length of the

particle: r l
25 limt→`^urWs(t)2rWs(0)u2& @42#. In the Gaussian

approximation, one can writef q
s5exp(2q2rl

2) so that the
half-width wave vectorql , defined byf ql

50.5, can be used

to estimater l'1/ql . For the Debye-Waller factors on th
high-temperature side of the transition line, which are sho
as full lines in Fig. 8, one estimatesql'20. The localization
lengthr l50.05 is about the same size as expected for a
ticle rattling between the hard walls of its cage in a HSS. T
f q and r l are close to those of a HSS@42,45#. However, on
the low-temperature side of the transition, thef q vary by less
than 10% ifq increases up to 2q0, as shown by the dashe
lines in Fig. 8. The wave numberql is much larger than
expected from the free volume in the cage. At the transiti
ql'44, i.e., the localization length is decreased disconti
ously by a factor of about 2.3. Foru50.9 and 0.6 the local-
ization length is about 0.01 and 0.006, respectively. T
shows that the localization length is of orderd. The particle
is bound to the wall of the cage and localization is det
mined entirely by the particle attraction. This localizatio
mechanism via bond formation is operative at low pack
fractions also, and it has been studied within the MCT in t
regime. There, bond formation has been argued to be of
portance for colloidal gelation@25,46,47#.

There is no strong dependence off q on wave numbersq
,4. The low-temperature glass is distinguished from
high-temperature one by the fact that the zero-wave-num
limit of the Debye-Waller factor,f 0, is larger for the former
than for the latter. Therefore, upon crossing the glass-gl
transition surface by cooling, the peak forq'q0 of the
f q-versus-q diagram disappears, Fig. 8. The numberf 0 is
related to the longitudinal elastic modulus of the syste
This consists of a part expected for the ergodic liquid an
part m0 reflecting the incomplete relaxation of the none

FIG. 8. The Debye-Waller factorsf q for w50.539 672,d/(1
1d)50.03. The temperature increases from top to bottom au
5kBT/u050.600, 0.900, 1.000, 1.035, 1.0471~dashed lines! and u
51.047, 1.150, 1.300~full lines!. The calculations are based on th
PYA for Sq .
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godic glass@42#. The latter is given by the zero-wave
number limit of the mode-coupling functional, Eq.~18!, m0
5F0( f ). The q50 limit can be carried out easily in Eq
~17b!, so that one derives from Eq.~17a! a formula@14#

m05E
0

`

dk vL~k! f k
2. ~22!

After discretization, one can substitute the results forf k to
get m0, and via Eq.~19! one hasf 05m0 /(11m0). For the
glass withu.uc , the integral in Eq.~22! is dominated by
fluctuations on the intermediate wave-vector scale,k'q0.
As known from the HSS,m0 is of order unity and thusf 0 is
about 0.5. However, foru<uc , the integral is dominated by
large-k fluctuations. This enhancesm0. Foru5uc , one finds
m0'12.7 and this increase of the modulus explains the
crease off 0 to about 0.927, exhibited by the lowest dash
line in Fig. 8. Decreasing the temperature tokBT/u050.6
leads to m0'385 and this explains the large valuef 0
'0.997, exhibited by the uppermost dashed curve in Fig
For the shear modulusG8, a formula like Eq.~22! holds,
where the expression forvT is similar to that forvL @14#.
Therefore, the shear modulus also exhibits the speci
strong enhancement due to the attraction wells. Figur
shows that the dramatic change of the moduli is the m
relevant feature to be observed upon crossing the glass-g
transition surface. The strong short-ranged attraction cau
bond formation, and this increases the rigidity of the gla
with respect to compressions or shearing considerably r
tive to that of a glass at a similar density, where the structu
arrest is dominated by mere hard-sphere repulsion.

IV. STRUCTURAL RELAXATION

A. Some general MCT equations

The MCT equations of motion are based on the ex
expression of the density correlatorfq(t) in terms of a

FIG. 9. The shear modulusG8 and the dimensionless longitud
nal elastic modulusm0 as a function of the reduced temperatur
The result is based on the PYA forSq , and the parameters of stat
deal with the same path through the glass-glass transition as
cussed in Figs. 7 and 8.
1-10
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HIGHER-ORDER GLASS-TRANSITION SINGULARITIES . . . PHYSICAL REVIEW E 63 011401
fluctuating-force correlator@4,5#, which in turn is split into a
part treating normal liquid effects, and a relaxation ker
mq(t) describing the cage-effect contribution. This kernel
approximated by the mode-coupling functional, discus
above in connection with Eqs.~17! and ~18!: mq(t)
5Fq@f(t)# @14,42#. This paper will be restricted to the sim
plest approximation for the normal liquid effects, i.e., t
colloid will be treated as a system of Brownian particles,
that only the instantaneous correlations as given by the st
ture factorSq are incorporated. As a result one obtains@41#

tq] tfq~ t !1fq~ t !1E
0

t

mq~ t2t8!] t8fq~ t8! dt850.

~23!

This equation implies the short-time asymptotefq(t)51
2(t/tq)1O(t2). For the time scale, one findstq
5Sq /(D0q2), whereD0 denotes the single-particle diffusio
coefficient. D0 reflects the property of the solvent, and
fixes the time scale for the transient motion. The unit of tim
shall be chosen such that 1/D05160 to ease comparison
with the results for the HSS from preceding work@41,45#.

Two comments on the implications of Eq.~23! might be
appropriate. First, the solutions are completely monot
functions, i.e., there is a rate densityrq(g)>0, normalized
to *0

` rq(g) dg51, such that

fq~ t !5E
0

`

e2g t rq~g! dg. ~24!

Thus, the MCT approximations maintain a fundamen
property of colloidal dynamics: autocorrelation functions c
be written as superpositions of Debye-relaxation functio
@43#. Second, outside the transient, the solutions can be w
ten asfq(t)5Fq(t/t0). Here, Fq is given by the mode-
coupling functionalFq , i.e., by the equilibrium structure fac
tor Sq . The transient dynamics, no matter how complicat
enters via the single time scalet0 only @16,48,49#. The fol-
lowing results for the long-time dynamics are thus not infl
enced by the simplified treatment of the short-time dynam
in Eq. ~23!, except up to a change of the overall time sc
t0. It is known that the short-time dynamics in colloids
influenced by hydrodynamic interactions@2#. Unfortunately,
it is not known how to incorporate these interactions in
theory for high-density colloids. But we consider it plausib
that the hydrodynamic interactions merely renormalize
transient dynamics@50#, thereby being irrelevant for the
structural-relaxation effects.

For control parameters approaching a glass-transition
gularity, there appears an increasingly larger dynamical w
dow, where the solutions are arbitrarily close to the criti
Debye-Waller factorf q

c . Therefore, one can solve the MC
equations of motion by an asymptotic expansion, us
dfq(t)5fq(t)2 f q

c as a small parameter. The result can
expressed in the form

fq~ t !2 f q
c5hqG~ t !1hq

(1)G(1)~ t !1•••. ~25!
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Most of the known universal results for the MCT bifurcatio
dynamics are based on the understanding of the lead
order contribution G(t). The next-to-leading-order term
G(1)(t) allows one to discuss the range of validity of th
leading-order formulas. A comprehensive demonstration
the cited results for the HSS can be found in Refs.@41# and
@45#.

Equation~25! reduces to a particular transparent form f
the critical dynamics, i.e., for control parameters placed
the glass-transition points. For the fold bifurcation, one fin
a power-law decay

G~ t !5~ t0 /t !a, G(1)~ t !5~ t0 /t !2a. ~26a!

The critical exponenta is given by the exponent parameterl
via G(12a)2/G(122a)5l, 0,a<0.5. The end points of
the A2 bifurcation surfaces are characterized by exponena
approaching zero. For the cusp bifurcation, there holds@51#

G~ t !}1/ln~ t/t0!2,
~26b!

G(1)~ t !} ln@ ln~ t/t0!#/ ln~ t/t0!3.

For the swallow-tail bifurcation, one has@51,52# for A4

G~ t !}1/ln~ t/t0!,
~26c!

G(1)~ t !} ln@ ln~ t/t0!#/ ln~ t/t0!2.

The dependence of the leading-order contributionG(t) on
the control parameters is well understood, but shall not
considered in this paper.

B. Results

Let us first estimate the dynamical window relevant f
the discussion. For the HSS, the correlatorsfq(t) decay
from 1.00 to 0.95 for times increasing up to aboutt51 for
representative wave vectors. In this sense,t51 is the scale
for the transient dynamics. After a crossover window
about one or two decades, the leading-order asymptotic
fq(t)5 f q

c1hqG(t) becomes valid at aboutt5102. This
value may be an order of magnitude smaller or larger,
pending on the wave numberq @41#. The same is true for the
data obtained by van Megenet al. for hard-sphere colloids
provided one identifies the time unitt51 with 1 msec@17#.
The correlators have been measured up to 106 msec, and thus
the so far explored windows extend up to 106 in the units
used here. This limit might shift up in future work, usin
different experimental setups.

Figure 10 exhibits the critical correlatorsfq
c(t) for q

54.2 for five states on the transition lined50.0465 through
the A4 singularity. The states 1 and 5 refer to an expon
parameterl'0.80 on the side of the attraction-dominate
and repulsion-dominated glass, respectively. For times of
order of 103 and larger, the leading-order formula,fq(t)
2 f q

c}(t0 /t)a, a'0.28, describes the results. Thus, the s
nario is similar to the one known from the HSS, and this
also true for other states on the line withl,0.80. However,
1-11
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if one considers states closer to theA4 point, the onset of the
critical power law gets shifted to larger times. This is de
onstrated for the two states 2 and 4, which deal withl
'0.90. For the state 4, thet2a law with a'0.20 is valid
only for t.106. This trend continues if one moves eve
closer to theA4 point, wherebyl increases even further
compare Fig. 6. At theA4 singularity, the correlator decay
from 1.00 tof q

c'0.77. This decay is stretched so enormou
that even fort51012 it only reaches the valuefq(t)'0.80,
as is shown by curve 3 in Fig. 10. One can describe
critical correlator with Eqs.~25! and ~26c! for the window
1015,t,1025, usinghq andhq

(1) as fit parameters. But this fi
does not describe the correlator fort,1010. Thus one con-
cludes that the critical correlator of theA4 for the SWS can-
not be described by the asymptotic Eq.~26c! within acces-
sible dynamical windows. Nor can the critical power-la
decay of theA2 singularity be measured ifl exceeds a cer
tain value, say 0.9. Thus, there is a part of the transition li
near theA4 point, characterized byl>0.9, where the corr-
elators exhibit structural relaxation patterns towards the
teau valuesf q

c that are stretched up tot5106 or larger. The
known asymptotic formulas cannot be used to describe
MCT solutions within this regime.

The liquid dynamics on the small-d side of theA4 point is
particularly subtle, since there is anA3 singularity in addition
to the line-crossing point. Figure 11 exhibits as an exam
such a situation ford50.03. Parameters on a straight lin
u50.1875, which is slightly above theA3 point, are consid-
ered. The transition to a repulsion-dominated glass state
occurs atwc50.5360. At the transition point, the critica
Debye-Waller factor isf q

(1)c'0.50, and the exponent param
eter is given byl50.847, implying a critical exponenta

FIG. 10. The full lines are the critical correlatorsfq
c(t) for the

wave vectorq54.2 calculated with the MSA-structure factor fo
the critical attraction well widthd* 50.0465. The states are locate
on the transition line as shown in the inset and refer to criti
Debye-Waller factorsf q

c50.973, 0.910, 0.772, 0.593, 0.460~from
top to bottom as indicated by horizontal straight lines!. For states 1
and 5,l50.80 corresponding to a critical exponenta50.279; state
2 ~4! refers tol50.895~0.908! corresponding toa50.210~0.202!.
The dash-dotted lines show the asymptotesf q

c1Aqt2a. State 3 is at
the A4 singularity, given by Eq.~16b!.
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50.250. Curve 3 was calculated for such a small dista
from the transition point,2«5(wc2w)/wc57.931024,
that fq(t) decays to zero just within the dynamical windo
displayed in the figure. The dash-dotted line with labelA
presents the leading-order critical law for theA2 singularity,
Eqs.~25! and~26a!, with the time scalet0 fitted to the decay
at long times forw5wc . One observes the same pheno
enon as explained above in connection with Fig. 10: sincl
is rather large, the asymptotic law describes the data only
rather large times,t.105.5. After falling below the plateau
value f q

(1)c , the correlator decays towards zero. This is thea
process, and it starts with the von Schweidler asympt
f q

(1)c2hq(t/t)b, which is shown by the dash-dotted line wit
label B. The exponentb50.396 obeys a similar relation a
the critical exponent,G(11b)2/G(112b)5l. Thus the
structural relaxation connected with the liquid-glass tran
tion follows the known scenario, except that the familiarA2
patterns can be observed only for times far out of the tr
sient regime,t.105.5.

Figure 11 exhibits a large dynamical window, 102,t
,105.5, where the structural relaxation does not follow t
asymptotic laws for a fold bifurcation. Instead, the dash
straight line demonstrates that the correlator labeled 3
lows a logarithmic decay law,

fq~ t !5 f q
(2)c2Cq ln t, ~27!

for the major part of the mentioned window, 102<t<104.5.
Here, f q

(2)c'0.87 is the Debye-Waller factor at theA3 sin-
gularity. There is a line through everyA3 singularity, which
is transversal to the transition line ending at theA3, such that
Eq. ~27! is a leading-order solution for the MCT equations
motion on a certain intermediate time window. The length
the window expands and the prefactorCq in front of the lnt

l

FIG. 11. CorrelatorsFq(t) for q54.2 calculated for the MSA
structure factor of a SWS with attraction well widthd50.03 and
the reduced temperatureu50.1875 for the three packing fraction
w150.5000,w250.5300,w350.5357~full lines!. The inset shows
the relevant section from the phase diagram of Fig. 5~b!. The
dashed-dotted lines with labelsA and B exhibit the critical law
f q

(1) c1Aq /t0.250 and the von Schweidler lawf q
(1) c2Bqt0.396, re-

spectively. The straight dashed lines exhibit logarithmic decay la
Eq. ~27!, see text.
1-12
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decreases, if one moves closer towards theA3 point @53#.
These results explain the appearance of the lnt part and the
change of its prefactor if one compares curve 2 with curv
in Fig. 11. One concludes that it is the bifurcation dynam
of theA3 singularity which prevents the evolution of thet2a

law for the fold bifurcation. Similarly, thea process for
curve 2 does not start with von Schweidler’s law. Therefo
contrary to what one observes for the dynamics of the H
for comparable large times@41#, thea processes for curves
and 3 do not obey the superposition principle. Close to
A3 point, the dynamics outside the transient and preced
the onset of the lnt decay law follows the critical law for the
A3, as given by Eqs.~25! and ~26b!. But for the shown
curves, the situation is similar as explained comprehensiv
for the critical decay for the HSS@41#. The plateauf q

(2)c is so
high that there is only a small variation remaining for t
1/(ln t)2 law to manifest itself. The correction terms for th
cited leading-order and next-to-leading-order contributio
are so large that one has to consider states much closer t
A3 to see the result of Eq.~26b!.

For state 1, theA2 , A3, and A4 singularities are so fa
away that none of the cited asymptotic laws is clearly dev
oped. On the other hand, they are close enough to cau
considerable relaxation stretching. The correlatorfq(t)
needs a dynamical window of three orders of magnitude
complete the 80% of its decay from 0.9 to 0.1, as is show
Fig. 11.

In Fig. 12~a! a set of correlatorsfq(t) for five represen-
tative wave numbers is shown. The state refers to the liq
close to theA4 point. Forq524.2 the window for the loga-
rithmic decay extends fromt5103 to t51010. For the other
wave numbers the corresponding windows are smaller,

FIG. 12. Correlators for a liquid state close to theA4 singularity
calculated with the MSA for the structure factor. The curves in
upper panel~a! show thefq(t) where the labels 1 to 5 indicate th
wave numbersq54.2, 7.0, 8.2, 20.2, 24.2. The corresponding cr
cal Debye-Waller factorsf q

c are 0.764, 0.943, 0.860, 0.507, 0.36
respectively. The curves in the lower panel~b! exhibit the rescaled

correlatorsf̂q(t)5@fq(t)2 f q
c#/hq . Here, the critical amplitudes

hq5(12 f q
c)2eq have the values 0.4665, 0.1343, 0.2881, 0.72

0.7835. The dashed vertical line marks the timet258.93105.
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the window of validity for the leading-order asymptotic law
depends on the chosen correlator. If the correction te
hq

(1)G(1)(t) in Eq. ~25! could be neglected, i.e., if the facto
ization theoremfq(t)2 f q

c5hqG(t) would hold, the rescaled

correlatorsf̂q(t)5@fq(t)2 f q
c#/hq should collapse on the

common functionG(t). In particular, all correlators should
cross their plateau valuef q

c at the same timet2 , given by
G(t2)50. The latter property is fulfilled within a small er
ror margin fort258.93105. Figure 12~b! demonstrates the
validity of the factorization property for a two-decade wi
dow. The size of this window is considerably smaller th
the one found for the HSS for a state with a similar over
relaxation time@41#. Thus, the next-to-leading-order corre
tion in Eq. ~25! is much larger near theA4 than the one
known from the bifurcation dynamics of the simple HSS.

V. CONCLUSIONS

In this paper ideal liquid-glass transitions and the evo
tion of glassy dynamics were analyzed within the basic v
sion of the mode-coupling theory~MCT! for a simple colloid
model, where the particles interact via a square-well pot
tial. The discussion was restricted to the high-density regi
Hence the excluded-volume effects play a crucial role for
structure, and the cage effect is an essential feature of
dynamics. The presence of short-ranged attractions leads
variety of new features compared to the ones known from
hard-sphere system~HSS!. We find a subtle phase diagram
for the glass-transition lines in the plane spanned by the
control parameters, packing fractionw, and reduced tem-
peratureu ~Fig. 5!. The diagram is organized around a
A4-glass-transition singularity. This occurs for a critic
valued* '0.04 of the ratiod of the attraction-well width and
the hard-core diameter, a packing fractionw* exceeding the
transition densitywc

HSS of the HSS, and a certain critica
temperature, cf. Eqs.~16!.

For d.d* and sufficiently low temperature, there is
part of the liquid-glass transition line where the critical tem
peratureuc increases with the critical densitywc . As ex-
pected for conventional liquids with, e.g., Lennard-Jones
teractions, the glass transition can occur either upon coo
or upon compression. This part of the transition line exten
up to densities wherew exceedswc

HSS, since the bonding
effects due to the attraction stabilize the liquid phase.
large temperatures, the effects of the attraction get s
pressed. Therefore, there exists a high-temperature piec
the transition line, whereuc decreases with increasingwc .
There appears a regime of high density, where the liquid
transform to a glass either by cooling or by heating. T
possibility of such a reentry phenomenon is characteristic
systems with a hard-core repulsion. In a conventional sys
the effect cannot occur since a soft-core repulsion implie
decrease of the effective repulsion-core diameter with h
ing, and this decrease overcompensates the effect of the
crease of the effective attraction strength.

For d,d* the two mentioned transition-line parts n
longer join smoothly. Rather, the low-temperature line term
nates the high-temperature one at some crossing point,

e

,
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that they appear as two separate transition lines. At very h
temperature the mechanism of glass formation is simila
the one of the HSS, and in general, the temperature de
dence of the high-temperature transition line is weak. Gl
transitions across this line are caused by an arrest of de
fluctuations on the length scale of the interparticle distan
A tagged particle is localized due to repulsion by its ca
forming neighbors. In contrast, the low-temperature line
scribes glass formation due to the arrest of density fluc
tions on a length scale of the order of the attraction-sh
width. Here, tagged particles are localized due to a forma
of short bonds with their cage-forming neighbors. The d
sity dependence of these transition points is weak, and
transition line extends into the regime of gel formation
low densities. On the high-density side, it extends into
glass regime, until it ends at anA3-glass-transition singular
ity, as indicated by the open circles in Fig. 5~b!.

Between the mentioned line-crossing point and the
point of the second transition line, there is a line of gla
glass transitions. The averaged equilibrium structure,
characterized by the structure factorSq , is the same on eithe
side of this line. But the two different localization mech
nisms imply qualitatively different frozen structures, r
flected by differences in the Debye-Waller factorf q . The
one on the high-temperature side, shown by the upperm
solid line in Fig. 8, is similar to the Debye-Waller factor o
the HSS at the same density. It exhibits a pronounced p
near the positionq0 of the structure-factor peak, and th
zero-wave-number limitf 0

c is about 0.7. On the low-
temperature sidef q

c is much larger, as is shown by the lowe
of the dashed lines in Fig. 8. In particular,f 0

c is considerably
increased. The f q

c-versus-q curve for the attraction-
dominated glass is bell-shaped like a Mo¨ßbauer-Lamb factor
The increase off 0

c towards the upper limit unity is connecte
with a large enhancement of the longitudinal modul
Crossing the glass-glass transition line, the longitudi
modulus as well as the shear modulus experiences a l
discontinuity, as shown in Fig. 9. The large differences in
macroscopic elastic properties are the most obvious man
tations of the two localization mechanisms in the hig
density system predicted by our theory.

Two general MCT predictions for the relaxation near
critical temperature or critical density have been confirm
by many experiments and molecular-dynamics simulati
@54#. First, the structural relaxation exhibits a two-step s
nario. Outside the transient, there occurs a relaxation tow
the plateauf q

c . For this step,d2fq(t)/d(ln t)2 is positive.
Then there is thea process dealing with the relaxation fro
the plateau to zero. Its initial part exhibits a negative sec
derivative of thefq(t)-versus-lnt curve. Second, there hold
the superposition principle for thea process. On a time win
dow that expands with increasing relaxation time, t
fq(t)-versus-lnt curves can be collapsed on a common m
ter curve by shifts along the abscissa. These two simple
sults, which are fingerprints of theA2 bifurcation, are not
valid for the relaxation at states close to anA4 singularity.
The curves in Fig. 11 cannot be rescaled onto
a-relaxation master curve. The results in Fig. 12 do not
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hibit changes of the second derivatives forfq(t) near the
plateau f q

c . It was shown that the higher-order glas
transition singularitiesA3 andA4 cause strong perturbation
of the asymptotic laws usually considered, valid close to
A2 bifurcation. In the present case they can only be obser
in windows, which might be outside the regimes access
by experiments. In addition, the known asymptotic laws
the relaxation nearA3 or A4 glass-transition singularities als
show up only in windows, which are irrelevant for expe
mental studies. These predictions of our theory do not se
to be a peculiarity of the square-well system. Similar resu
already hold for simple one-component schematic mod
@52#.

An exception to the findings summarized in the preced
paragraph is the logarithmic-decay law, Eq.~27!. This char-
acteristic feature of the dynamics near higher-order gla
transition singularities could be identified easily in our r
sults, as shown in Fig. 12. Indeed, it is shown in Fig. 11 t
this lnt decay is a precursor phenomenon, hindering the e
lution of the A2 asymptotics. In particular, there can be
crossover from the lnt decay to the von Schweidler deca
around the point where thefq(t)-versus-lnt curve crosses
the plateauf q

c , as is shown by curve 3 in Fig. 11. A simila
scenario was recently observed for relaxation in a mice
system@55#.

The found extreme stretching phenomena have impor
implications for the experimental tests of MCT. In an expe
ment, it is not easily possible to measure self-averaged
relation functions for states like the ones discussed in F
12. Thus, experimental results are likely to refer to histo
dependent nonequilibrium states, and aging effects are lik
to be more pronounced than they are for the normal liqu
glass transition. Even if proper averaging could be achiev
one cannot determine the Debye-Waller factorf q5fq(t
→`) within accessible time windows, if the states are sim
lar to the ones shown with labels 3 and 4 in Fig. 10. Simi
conclusions apply for the measurements of the moduli n
the glass-glass-transition line.

The presented theory is based on some assumptions w
we would like to discuss in more detail. First, one shou
expect that the equilibrium state of the system in the den
regime considered is a crystal rather than the assumed a
phous phase. In experiments for colloids, crystallization
bypassed by chosing a polydispersityp for the particle diam-
eters. Since nucleation rates decrease dramatically with
creasingp, a choice ofp of some percent is sufficient to
establish a metastable amorphous state for practically a
trarily long times. A smallp causes only small changes o
the calculated structure factors, and thus only small chan
in the coupling coefficients entering the MCT equation
Hence a smallp will only imply small changes of the pre
sented results. Indeed, it was shown for the HSS tha
change ofp did not yield detectable changes of the measu
fq(t) @56,57#. But, it is unclear how strongly, e.g., the ca
culated valued* for the attraction-well width at theA4 sin-
gularity will change, if a realistic value forp is considered.

The structure factorSq of the stable or metastable equ
librium is used as input information for our work. Thus, th
second source of reservations is due to the errors hidde
1-14
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the usedSq . A well-known problem is that of the so-calle
thermodynamic inconsistency. Thermodynamic quanti
calculated along different routes using an approximateSq as
input often are not consistent with each other. Sophistica
closures involving adjustable parameters could be use
overcome this problem@4#. Alas, since thermodynamic
deals with theq→0 limit, for which the phase volume in th
mode-coupling integrals becomes small, one would gain
further insight carrying out our calculations of Secs. III a
IV using an improved closure forSq . For the HSS, one finds
only minor changes in the numerical values for the transit
points @52,58#, and the same is anticipated for the SWS.
further difficulty arises regarding the small-r limit of c(r )
and g(r ). Due to the approximations introduced forQ(r ),
one cannot guarantee that the excluded-volume effect,g(r
,d)50, is exactly reproduced. In fact, we find thatc(r ) and
thus g(r ) develop a poleA/r , cf. Eq. ~12!. Sinceg(r ) is a
distribution and sinceA/r is integrable in three dimensions
anA/r term is to be viewed as small, providedA is small. In
the original work on the sticky hard spheres@27#, A
5O(K2w). In our solution,A5O(Kdw). The limits r→0
and d→0 do not commute, and our analytical solution d
creases the error from ad0 to a d1 effect. Since our results
based on the Percus-Yevick closure and on the me
spherical approximation are in semiquantitative agreem
we anticipate that better theories forSq will not change the
qualitative results of our theory.

Third, the range of applicability of the MCT is not unde
stood. One can use the successful tests of the theory by
experiments performed on hard-sphere colloids, which w
cited in Sec. I, as ana posteriori justification of the MCT.
But it is not clear whether or not this theory can handle
effects caused by the formation of strong short bonds. On
other hand, the phenomenon of liquid stabilization due
bond formation and the resulting reentry effect, as well as
drastic changes of the elastic properties at the glass-g
transition, seem very plausible. The fact that the MCT brin
out these subtleties might be considered as an argume
favor of this approach. In summary, it is the intention of th
paper to point out the possibility of new features of glas
dynamics and to suggest a search for these features by
periments on colloids.

ACKNOWLEDGMENTS

The work of F.S. and P.T. was supported by PRIN9
MURST and PRA-HOP-INFM, the work of M.F. by th
Deutsche Forschungsgemeinschaft Grant No. Fu 309/3,
the work of Th.V. by Verbundprojekt No. BMBF 03
G05TUM.

APPENDIX: THE MSA FACTOR FUNCTION

1. General formulas

Starting from Eqs.~4! and ~5!, Eqs. ~9! for the factor
function and expressions~10! and ~11! for the parameters
a, b, c shall be derived. The region 0,r ,11d, for which
Q(r ) is nonzero, can be split into three parts,
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Q~r !5H qI~r !, 0,r ,d

qII~r !, d,r ,1

qIII ~r 8!, 0,r 85r 21,d.

~A1!

Q(r ) is continuous at the boundaries of the intervals, in p
ticular Q(11d)50. From Eq.~5!, together withg(r )51
1h(r ) andG(r 8)5(11r 8)g(11r 8), the derivatives for the
three parts of the factor function are obtained

qI8~r !5ar1b212wE
r

d
ds G~s2r !qIII ~s!, ~A2a!

qII8~r !5ar1b, ~A2b!

qIII8 ~r 8!5ar1b2G~r 8!112wE
0

r 8
ds G~r 82s!qI~s!.

~A2c!

Hereg(r )50 for 0,r ,1 was used, and the definition fora
andb is given in Eq.~6b!. The integrated form of Eq.~4! is
used to introduce the MSA closure as in Eq.~8!,

qIII ~r 8!512wE
r 8

d
ds qIII ~s!qI~s2r 8!

1KF12
r 8

d
1

d

2 S 12
r 82

d2 D G , ~A3!

where K5u0d/kBT. In the following, Eqs.~A2! and ~A3!
are solved together with the reformulated expressions foa
andb

a51212wF E
0

d
ds qI~s!1E

d

1

ds qII~s!1E
0

d
ds qIII ~s!G ,

~A4a!

b512wF E
0

d
ds s qI~s!1E

d

1

ds s qII~s!1E
0

d
ds s qIII ~s!

1E
0

d
ds qIII ~s!G . ~A4b!

Equation~A2b! gives Eq.~9a!,

qII~r !5ar2/21br1c, ~A5!

where the continuityqII(r 51)5qIII (r 850) yieldsc. For in-
tervals I and III an expansion ind for fixed K will be per-
formed.

2. Leading order

In Eq. ~A3!, r 8/d is of order d0 and the integral is of
higher orderd1. Therefore, in leading order,

qIII ~r 8!5K~12r 8/d!. ~A6!

The boundary condition mentioned above fixesc5K2a/2
2b in leading order. Substituting Eq.~A6! into Eq. ~A2c!
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and keeping only terms in lowest order ind results in
G(r 8)5K/d. The integral in Eq.~A2a! is again of higher
order and the continuity at the boundaryr 5d gives the pa-
rabola also for region I,

qI~r !5ar2/21br1c. ~A7!

Inserting the factor function into Eqs.~A4! and keeping only
lowest-order terms, linear equations for the parameters
obtained

a51212w~a/61b/21c!, ~A8a!

b512w~a/81b/31c/2!, ~A8b!

which leads to Eqs.~10!.

3. Next-to-leading order

Substituting the leading-order results into Eqs.~A2! and
~A3! produces the next-to-leading order. Subtracting
~A2b! from Eq.~A2a!, the result for the interval I is given a
the derivative

qI8~r !2qII8~r !5212wE
r

d
ds K/d K~12s/d!

526wK2~12r /d!2, ~A9!
.

e

J

01140
re

.

which is integrated to give the last term in Eq.~9b!. In Eq.
~A3! the entire last line has to be taken into account for
next-to-leading order. The integral reads

12wE
r 8

d
ds qIII ~s!qI~s2r 8!56Kdwc0~12r 8/d!21O~d2!.

~A10!

Combinig Eqs.~A3! and~A10! yields the expression for the
next-to-leading order term for the factor function in the ou
shell, Eq.~9c!. The continuity atr 51 introduces a modifi-
cation ofc from its leading-order valuec0,

c5K2a/22b1dK/216dKwc0 , ~A11!

wherea andb are given by inserting the factor functions in
Eqs.~A4!,

a51212w~a/61b/21c1dK/2!, ~A12a!

b512w~a/81b/31c/21dK/2!. ~A12b!

This yields Eqs.~9!, ~10!, and~11!.
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