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Higher-order glass-transition singularities in colloidal systems with attractive interactions
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The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core
plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width
of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass
line and a glass-glass-transition line are found in the temperature-density plane of the model. For small
well-width values, the glass-glass-transition line terminates in a third-order bifurcation point, i.eA4n a
(cusp singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth-
orderA, (swallow-tai) singularity at a critical well width. Close to th%; andA, singularities the decay of the
density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.
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[. INTRODUCTION cage effect5] which causes the glassy dynamics and the
arrest of density fluctuations at; .

Colloidal suspensions have been studied extensively be- The cage effect is the essential physical concept underly-
cause of their practical importance and because of their reing the mode-coupling theoryMCT) for the evolution of
evance in biophysics. These systems are also of great theglassy dynamics in simple systerfis4,15. This theory al-
retical interest since they are models for conventional mattetows the calculation ofpy(t) and thusf, from the equilib-
They can be prepared for a large span of densities so that thizim structure factoB, . As a function of control parameters
states can be gases, gels, liquids, crystalline solids, dike ¢, singularities off,, called glass-transition singulari-
glasses. Light scattering can be used to measure the staties, may occur. The simplest type, called a fold bifurcation,
structure factor and various correlation functions. The dy-describes a liquid-glass transition at=¢.. It implies a
namics can be explored over a wide range of length scalesubtle dynamical scenario, giving rise to universal features of
and over huge dynamical windoWs,2]. It is fascinating that  glassy dynamics which have been identified in a leading-
with colloidal systems the interaction can be tuned to someérder-asymptotic expansion of the MCT equations. A review
extent by varying the coating of the particles and the comof the basic results is given in Refl6]. In Refs.[8-17]
position of the solven{1-3]. It is possible to realize the detailed quantitative comparisons of the data for hard-sphere
hard-sphere systerfHSS, the basic model underlying all colloids with the MCT predictions are presented. It is shown
theories of simple liquid$4,5]. One can also prepare sys- that the theory accounts for the experimental facts within a
tems where the hard core is complemented by an attractive5%-accuracy level. An illuminating summary of these stud-
shell. This allows one to study the interplay of repulsion andies is given in Ref[17]. Results for the shear modulus have
attraction. As a contribution to such studies, a theory for thealso been interpreted with the universal MCT formUla8].
glass formation resulting from a strong short-range attractiorrhe evolution of glassy dynamics fer increasing towards
among densely packed hard-sphere colloidal particles shay, was also studied for polymer micronetwork collo[d9—
be presented in this paper. 22]. Here, the interparticle interaction is not known. But the

In hard-sphere colloidal dispersions, the liquid-glass tranauthors demonstrated that a consistent fit of their data with
sition has been studied by van Megen and Py$¢yThey the universal MCT formulas was possible. Preliminary stud-
measured correlation functiowfg,(t) for density fluctuations ies of the glassy dynamics of charge-stabilized colloids indi-
of a representative set of wave numbersver about four cate that these data can also be explained within the MCT
decades in timé. It was found that these correlations decay[23]. The reported findings shall be taken as a justification to
to zero as expected for a liquid only for packing fractians base the theory in this paper on the MCT for simple systems.
below a critical valuep... At ¢., the long-time limit of the Our studies deal with the square-well systéBWS),
correlators, f,= ¢4(t—), changes discontinuously to a characterized by a hard-core repulsion for interparticle dis-
certain value‘g>0, increasing further with the packing frac- tances <d, and by a constant attraction potential within the
tion. f is the Debye-Waller factor of the amorphous solid, shelld<r<d+A. The theory focuses on the high-density
i.e., of the glass, and generalizes the order parameter intréegime, sayp>0.4, so that the cage effect is essential for the
duced by Edwards and Anderson in the theory of spirdynamics. The relative attraction-shell widfl+A/d is as-
glasseq7]. The evolution of the glassy dynamics for the sumed to be small, sa§<0.15. The main outcome of our
HSS was studied comprehensively by van Megen and caheory is the prediction of a higher-order glass-transition sin-
workers[8—13]. The data suggest that it is the well-known gularity at a critical packing fractiop* somewhat above the
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critical point ¢, of the hard-sphere system and a critical Il. STRUCTURE FACTOR CALCULATIONS

width &* of about 0.04. This singularity organizes a subtle A. The model

phase diagram and opens up various possibilities for glassy ) o _ _
relaxation. The results reflect the interplay of two mecha- 1he structure facto§, is the essential input information
nisms for particle localization, i.e., for the arrest of density"€€ded to formulate the MCT equations. In this secti&p,
fluctuations. It can either be dominated by repulsion of theshall be discussed for the square-well syst8WS. Only
particle by its cage-forming neighbors, or by the formations'UCh states shall be conS|_dered for whi€y depends
of bonds to the boundaries of the cage. Preliminary calculaSmoothly on the particle denglty on t.he temper.atur'é, and
tions [24,25 based upon Baxter's adhesive hard-sphereOn t.he wave numbeq: The_ |nteract|on_potent|a‘V(r) for
model [27] hinted at some findings to be derived in this particles with separation distanceconsists of a hard-core

paper. Baxter’s model treats the lindit-0, so it cannot deal repulsion forr d, and it has the negative valueu, within .
: - : . ) the attraction shelli<r<d-+A. The structure can be speci-
with the indicated singularity a&*. Moreover, taken liter-

: ied by three control parameters: the packing fractpiof
ally, the Baxter model cannot be used as a basis for MC he hard cores, the ratié of thermal and attractive energy,

applications since there appears a divergency due to excitg—nd the relative widths of the attraction shell,
tions with large wave vectors. The results for this model in

Refs.[24—-26 depend in an ill-defined manner on the large- e=mwpd®6, 0=kgT/uy, 6=A/d. 1)
g cutoff used there, a problem which is avoided with the
SWS. Let us note the standard concepts needed for a discussion

Dense systems of colloidal particles characterized by &f Sq [4]. 9(r) andh(r)=g(r) -1 abbreviate the pair dis-
hard core and strong attractions of a range smaller than tﬂéibut.ion and the total correlation functioq, respectively. The
core diameter by a factor of at least 10 were realized experifoUrier transformhg of the latter determines the structure
mentally, when adding nonadsorbing polymers to either 42¢tor S;=1+ph,. The Ornstein-Zemike equation formu-
suspension of colloidal hard spherE28] or to emulsions |2€S an integral equation fér(r), where the kernel is the
[30] in solutions of sterically stabilized particles when de- diréct correlation functiore(r). In the wave vector domain,
creasing the solvent qualif@1—34, and in copolymer mi- It €8dsSq=111—pcq], where
cellar systems when changing the temperafi@®. Such A (=
systems were also studied in Monte Carlo simulations cq=—f drsin(qr)[rc(r)]. 2
[36,37]. Nonequilibrium phenomena characterized by a num- a4 Jo

e a1 s mehon of the Wi Hopt fconza 3
glassy P ' shall be used to reformulate the Ornstein-Zernike equation.

a_lmorphous solids could be formeql by incr_easing the attracey o asic concept of this theory is the factor functi@fr).
t'orl]l sbtrtlengthhever? thOL;g;I thhe pdacklrr:g fratlztlon was ktggi_f'xe t is defined as a continuous real function fox0, deter-
well below the value of the hard-sphere glass transit mining S, via its Fourier transform:

34]. Second, due to increasing the strength of a short-ranged
attraction by adding small polymers, melting of the glass S 1=0(q)0(q)*, (33)
states was reported for the colloid-polymer mixtur2s,2§. a

Third, the nondecaying frozen structures that were seen R o

when immersing polymer-coated colloidal particles into sol- Q(Q):1—27Tpf drexp(iqr)Q(r). (3b)
vents of decreasing qualit}32] exhibited a much larger 0

Debye-Waller factor at small wave vectors than hard-spherﬁ is anticipated tha©(r) as well asc(r) vanishes beyond a

systems. This indicates a much higher rigidity of the solid o tain distanc&® For 0<r<R. there holds
states on intermediate length scales. In support of this obser- '

vation, viscoelastic measurements for intermediate frequen- R

cies found strongly concentration-dependent elastic moduli re(r)= _Q’(r)JFZWPfr dsQ(s)Q(s—r). (4
[30,31,33,34 It will be shown that our results provide a

qualitative explanation of the reported findings. Furthermore, one finds far>0

The paper is organized as follows. In Sec. Il we report our
results for the structure factor of the SWS and discuss those ) R
features that cause various qualitative results of the McT ~'N(N=-Q “HZWPL ds(r—s)h([r=s)Q(s). (5)
solutions. Section Il presents the main result of this paper,
showing the phase diagram and discussing the properties of For the SWSg(r)=0 is fulfilled for 0<r<d, and there-
the glass states resulting from the interplay between attragore, usingh(r)=g(r)—1, Eq.(5) splits into three subequa-
tion and repulsion. In Sec. IV we present some results for théions. Most simple is the result for the middle paft=r
dynamics which illustrate that the higher-order glass-<d, where the formula known from the theory for the hard-
transition singularities cause relaxation stretching which isphere systertHSS is reproduced,
much more pronounced than is known for the HSS. Section
V presents some concluding remarks. Q'(r)y=ar+h. (6a)
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d+A

Q(r)=2pr ds Q(s)Q(s—r)+[(d+A)%—r?]/(26).
d+A '
ds Q(s), b=27Tpf dssQs). (8
0
(6b)

Here, coefficienta andb are introduced by

d+A
a=1—277pf
0
Equations(6) and (8) are solved analytically in a leading-
. i . and next-to-leading-order expansion, using the well width
\LVRtlng G(r)=rg(r), one finds for small distances,<I' 55 the small parameter. For the organization of the expan-
= sion, the quantitykK=6/6 is considered fixed. This proce-
dure is motivated by Baxter’'s theory of sticky hard spheres
[27]. He evaluateds, in the limit 6—0,u,—, keeping a
parameter equivalent t& fixed. Details of the calculation
can be found in the Appendix. The hard-core diameter
and for the attraction shelff<r<d+ A, one obtains shall be used as the unit of length. F&=r<1, the factor
function is the parabola known from the theory of the HSS,

d+A

Q’(r)=ar+b—277pf ddsG(s—r)Q(s), (60)

r

—d
ds G(r—s)Q(s). Q(r)=ar?/2+br+c, (93
(6d)

Q’(r)=ar+b—G(r)+27rpf
0

with a, b, and ¢ now being smooth functions of the SWS

Some approximation foc(r) has to be introduced into control parameters. For<Or<34, there is an enhancement
Eq. (4) in order to close the system of Eqd) and(6). In above this parabola,
this paper the Percus-Yevick approximati@®YA) and the
mean-spherical approximatiaiMSA) shall be applied4].
Nezbeda already studied the structure factor for the SWS
using the PYA for small well width§39,40. His equations
could be solved only in a restricted region of parameterswithin the attraction shell, the leading-order result describes
Since the boundary of this region of applicability is close t0a linear decrease @(r) from K to zero. The leading cor-

the parameter regiop~0.5,0~1 of interest in this paper, it rection adds a quadratic modification. One finds fezrl
does not seem appropriate to base the following calculations: 1 + §

on these results.

Q(r)=ar?2+br+c+2¢pK25[1—(r/8)]%.  (9b)

o r—1 1 r—1\2
B. Approximations Q(r)=K l—T +Ké > 1- .
Within  the PYA, one writes c(r)=g(r){1 5
—exg V(r)/kgT]} outside the hard core. Substitution of this L 60c 1— r-1 (90
ansatz into Eq(4) and using Eq(6d) leads to the approxi- ¥Lo 1) '

mation fordsr<d+A,

et d+A Here and in the following we denote the constants from Egs.
e s G(r)=ar+b—27-er' ds Q(s)Q(s—r) (9) asa=ag+Kda,, b=by+Kéb,, andc=cy+Kdc,. The
' leading-order contributions are the result of the Baxter limit
r—d 5—>0,
+27er ds G(r—s)Q(s). (7)
0
1+2¢ 12K ¢
Equations6) and(7) for Q(r) andG(r) are solved numeri- o= (1— )2 T (1-9) (103

cally. To proceed, the equations are discretized straightfor-

wardly. On each of the threeintervals, a grid of equally

spaced points, is chosen, wheren=1,2,...,1000. The

functionsQ’(r) and G(r) are calculated iterating Eq$6) bo=
and (7). At each step, the functio@(r) is evaluated from

Q’(r) using a five-point numerical integration. The proce-

dure is carried out until the difference between two succes-

sive iterations summed over all points of thgrid becomes Co=
less than 102 The integral in Eq(3a) is determined by a

simplified Filon procedure to obtai@(q) and hences, .

The MSA use<(r)=—V(r)/kgT outside the hard core. The terms in large square brackets exhibit the results for the
Substituting this ansatz into E@4), after integration one HSS[4]. The coefficients of the next-to-leading-order contri-
obtains fordsr<d+A butions are

: (10b)

| tK. (100
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a;=[6¢(5¢—2)—72op*(1—¢)1/(1- )%, (118 I B B B

05| 10 €2
by=[9¢(1-2¢)+36co¢*(1-¢))/(1-¢)% (11D _ _
C1=[1-7¢+1200(1-¢)J/[2(1~¢)]. (110 0.4 —
Substitution of Eqgs(9) into Eq. (3a) yields Q(q) as a i T
combination of trigonometric functions. It is elementary to 03} -
work out the somewhat lengthy expression and thus via Eq. @
(3a) the desired result fog, . i T
The largeg asymptote of the direct correlation function 02k -

Cq shall be obtained from Ed2) by evaluating the asymp-
tote of the Fourier-sine transform of the functidifr)
=rc(r). From Eqg.(4) one concludes that(r) is smooth
except for at most three point§V= 6, r?=1, andr®=1

+ 6. At these points there can be a discontinuity, given by
that of the derivative of the factor functiof{V=Q’(r("
—0)-Q'(rY+0). Let us also note from Ed4) the initial

value f(r=0)=A=—Q’(0)—6¢Q(0)?. For the exact so- ()
lution of the problem A=0 must hold, but due to the ap-
proximation scheme used here, a finite valueQd) re- FIG. 1. Control-parameter plane for the square-well system

mains:A= —K5[12qDCO(C1+2K(p)+b1]+(9(52). Thereby, (SWS plotted as dimensionless temperatufe-kgT/u, versus

_ g (i) packing fractiong. The full line shows the spinodal calculated
Lhee 532?;;%?'52{;]{' Afro(?n( 6;) és) lrir:]proz;ﬁih;??((l);gn within the MSA for the relative attraction-well widtté=0.05.
Integrating by parts ythe integral ,in E%Z) becomes[f(oi Dashed(dash-dottefcurves show the corresponding spinodals for

i i . 6=0.03 (6=0.09). Vertical dotted lines mark the region for which
F@0) (i) 2
+2if7 cos@r)J/a+O(1/q°). Hence one arrives atq o phase diagram is discussed below in Fig. 5. Diamonds mark the

_ 3 . .
=Ccq+ O(1/g°), where the asymptotic tail reads state parameters for which the structure factor is shown in Fig. 2.

cy=(4m/g*){A+Bcogq)+2Csinq(1+ 6/2)]sin(qd/2)}.  states marked by diamonds in Fig. 1. TReversuse curves
(12 exhibit a principal refraction peak as known from other

The second term in the curly brackets has a form familiarSlmple liquids[4]. It is caused by the hard-core driven ex-

from the PYA result for the HSS. But the coefficidBtis a cluded volume phenomenong(r<d)=0. The high-

. . temperature curves 1 and 2 exhibit peaks, which are only
?(;‘?%Ot:h;i%ctlon oK and § which reduces to the HSS value slightly smaller and somewhat broader than the peaks of a

HSS at the same densities. The attraction modifies the pair
B=a+b+K(120Ca—1). 13 correlations and thus the excluded volume effects, as can be
(12¢¢0—1) (133 inferred by comparing the curves 1 and 3. Lowerifgthe

The third term in the curly bracket is due to the existence ofhort-ranged attraction causes the particles to move closer,

the attraction well. Its prefactor reads i.e., the most probable interparticle spacing decreases. There-
fore, the peak position shifts to highgrupon cooling. The
C=(1+0d)/6. (13b distributiong(r) develops a more rapidly varying structure
at distances which are multiples of the particle diameter, and
C. Results this explains the decrease of the peak height and the increase

) ) o of the peak wings inS;. A change of the density at low
The spinodal lines of the SWS are shown in Fig. 1 fortemperature modifies the peak in a similar manner as dis-
three representative values of the well widthThey specify  ,ssed above for largg cf. curves 3 and 4. However, low-
the divergence points of the compressibility, i.e., the zeros Oéring ¢ drives the system closer to the spinodal, and there-
S, * for g=0. The spinodal is the boundary of the regime offore the exhibited change @, for small g is larger than
absolute instability with respect to the liquid-vapor transi-expected for a HSS.
tion. Only states outside this regime can be considered in the Results for the pair correlatiog(r) obtained by different
following. Substitution of Egs(9) into Eq. (3b) yields el-  closures of Eqs(4) and(5) and by other methods have been
ementary expressions f@(0) within the MSA. We have published by Langet al. [37]. For both a small and a large
not been able to determine the spinodals within the PYA duevell width considered there§=0.03 and5=0.5, respec-
to numerical instability of the algorithm. The high-density tively, we find our results foig(r) in agreement with the
regime investigated in the following applications of the MCT Monte Carlo simulation results obtained by Lagtgal. Only
is indicated as the strip between the two dotted vertical linesfor the small well width,g(r) is underestimated in the well
Figure 2 exhibits the structure factoy,, calculated regime, <r<1+ 4, by about the same amount as Nezbe-
within the MSA for §=0.05, and the corresponding pair da’'s approximation[39,40 overestimatesgy(r). At r>1
distributionsg(r), calculated numerically from Ed5), for ~ + 8, however, our solution appears to be in better agreement
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4 ! ' -0.6 —
33 '_10' ' ] ] 1 | 1 | 1
3+ gz 0 20 30 40
2sF 7F q
~ I 6F
~’g‘3 21 51 FIG. 3. Direct correlation functior, of the SWS for relative
Lsk ar well width §=0.05 calculated within the MSAsolid line). Density
) ;: and temperature are the ones considered in Figs. 1 and 2 for the
=90 label 3. The dashed line exhibits the leading asymptfteccord-
05'_ oL ing to Eq. (12). The dotted line represents the same result with
L coefficientC replaced by zergsee texk
| 1
% 1 2 3

r For the example in Fig. 3,8,,K)=(4/3,1/3). Forqg below
an upper cutoffg,= /6, the function in the bracket of Eq.

FIG. 2. Structure factog, and pair correlation functiog(r) of b . . . . .
the SWS calculated within the MSA for the relative well widsh (14b) increases almost Ilnefgtly with This explains the in

=0.05. The labels 1 to 4 correspond to the states indicated by th(é{g)asing impprtance of theq (.:ontr.ibution relativg .to the
diamonds in Fig. 1. They are given by the paigs §) of the pack- Cq ON€, as is demonstrated in Fig. 3.Kfis sufficiently
ing fraction and reduced temperatu(@.50, 0.50, (0.55, 0.50, large or if|By| is sufficiently small, one can identify a lower
(0.50, 0.15, and(0.40, 0.15, respectively. Here and in the follow- cutoff g;=|B|/K such thair:;1tt dominatesc; ™,
ing figures, the hard-core diameter is chosen as the unit of length,
d=1, andq is given h d in the following in units of *. .
andq is given here and in the following in units CSS:(477K/q)SIF[q(1+ o82)], qi<q<q,. (149
with the simulation results. This behavior is similar to what

holds for the optimized random-phase approximafi®n. In the wave-vector interval betweep andq,, ¢, exhibits a
The largeg tail of ¢y will be of importance in the follow-  power-law decrease slower than the one of the true lgrge-
ing. In Fig. 3 it is shown that the asymptote, H42), de-  tail, which dominates only fog>q, .
scribesc, very well forq>20. The results have been evalu-  The PYA and the MSA differ solely by their ansatz for
ated for the state discussed in Fig. 2 with the label 3, whergne direct correlation function(r) within the attraction shell
(A,B,C)=(—0.092,1.63,7). The tail consists of a part duej<r<1+ . Within the PYA, c(r) depends om via ther
to the first two terms in EC(J.Z), which differs from the HSS dependence of the pair distribution functiCEbYA(r) :{l
result merely by modifications of the coefficierisand B. —exd —Uy/(ksT)1}g(r), while the MSA assumes a constant
This part of the asymptote is shown in Fig(dbtted ling in - ¢, . =u,/(kgT). In this paper, systems with narrow attrac-
order to emphasize that the last contribution in B®) can  ton shells are of interes§<1. Therefore it is a reasonable
be dominant. The next-to-leading-order contributions to OUlpproximation to ignore thedependence afpy, by writing
results are not relevant for a discussion of the qualitativeg(r)%gd:g(r:1)_ Thus, for every state where a solution
features of the tail. Therefore, let us write the lowest-ordelyf the PYA exists, there is a solution of the MSA, yielding
formula for the tail acg™= cg+cg". Here, the coefficients the same structure factor. However, the corresponding solu-
of ¢ are obtained via a Baxter-like limig—0, K=4/6  tion for the MSA has to be evaluated for an effective reduced

fixed. NotingA—0 in this limit, we find temperaturedl;”. The latter is a smooth function of
=ug/kgT, d s, estimated b
CiP=(4719%)B, cogq). (143 YoXel. ¢ ando, estimated by
The attraction-induced tail in this approximation reads 1 — U
att 2 - - “VSA 1—eXF’(ﬁ) 9a- (15
Cq = (4m/q°)K(2/5)sin(qd/2) sinq(1+ 6/2)]. (14b) Ot B
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1T T - T T 7 T4 attraction smoothly renormalizes the coefficieat®, andc,

such that the parabola shifts upwards and becomes flatter.
There appears a region of positive values @) near the
core surfaceé~ 1. These shifts cause the smooth drifts of the

Fourier transform forQ(q), which lead to the drifts o5,
discussed in connection with Fig. 2 and to the appearance of
a spinodal, cf. Fig. 1. The only qualitative new feature,
which is caused by the attraction well, is the almost straight
decrease of(r) within the interval K r<1+ 6. Equation

(9¢) yields the slope in leading order &' (r)=—K/é. In

the Baxter limit, this slope diverges. The specified almost
constant part of’(r) causes the attraction-tail contribution
to the asymptote o€,, Eq. (14b). The power-law tail, Eq.
(140, is a precursor of the mentioned divergency.

The structure factor or the pair correlation function deter-
mine the positions of the liquid-gas transition points. How-
0 02 04 06 08 1 ever, one faces the known consistency problem that different
routes for the equation of state yield different results for the
transition points if approximations fd8, or g(r) are used

FIG. 4. Factor functiorQ(r) of the SWS. The hard-core diam- [4]- We will not discuss these problems in this paper, since it
eter is chosen as the unit of length. The dashed line is the PYAS irrelevant for the evolution of glassy dynamics or the glass
result for=0.5293, reduced temperatufie-1.10, and well-width ~ transition whether the fluid is in a stable or metastable ther-
parameter §=0.0429. The full line is the MSA result for, ~ Modynamic state.
=0.5258, 6=0.2332, §=0.0465, chosen to represent the same

physical state of interest in our discussion; see the text for details. IIl. PHASE DIAGRAM
The dotted line shows the result for the HSS at the packing fraction ) ) )
»=0.516. A. The bifurcation equation

The MCT equations of motion for various dynamical

Consequently, the PYA and the MSA yield the same sceguantities are based on the equations for the normalized den-

narios for the structure factor in the parameter regime of;; /% - .12 P
; e T A y correlators ¢q(t)=(p_ (t)pg)/(|pg|). For the liquid
interest in this paper. This finding is demonstrated in Fig. 4 . q .

for the basic quantity of the structure factor theory, the factor, tate these functions approach zero for large tinwensity

function Q(r). The result calculated within the PYA for the quctuatur)]ns \INh'Ch were crﬁated at_ t'rgio disappear for
parameter triple t—o. The glass state is characterized by a spontaneous ar-

rest of these fluctuations, i.e., the long-time limiitsof the
* x * correlators do not vanish. The ideal liquid-glass transition of
¢pya=0.5293, oy, =1.1000, 52 =0.0429 (163 the MCT is characterized by a discontinuous increasé,of
from its value zero in the liquid state to the critical Debye-
Waller factorfg>0 of the glass. For colloidal suspensions,
ohsa=0.5258, 0%, =0.2332, 5sa=0.0465. fq can be deduced frc_>m the dyna_mical light-scattering results
(16b) for ¢4(t). The experlmental flndlngs_ for the HS{$O] a_nd
for a charge stabilized syste@3] confirmed the discontinu-
It will be shown in Sec. Ill that the two states specified aboveity for fy and the data fof ; agree well with the MCT re-
are of central importance. The values found for the corresults.
sponding densitieg* and well widthsé* are close to each The f, obey the equatiof,/(1—f )= F,(f) [14]. Here,
other. The difference in the values for the effective attractiorthe mode-coupling functionaf is given by
strength 16* is well explained by Eq(15). If one inserts

gi~7.5 as obtained from the MSA, one findg¥" :

11 d
~0.2233. Fo(f)= gf qu,kfkfIQ—kl' (173
All calculations within the MSA are based on the small-

expansion for the factor function, s&y®¥r), defined by The mode-coupling vertices are determined by the structure
Egs.(9) to (11). To control this result, Eqg6) and the ana-  factorS;, the direct correlation function,, and the density
log of Eq. (7) for the MSA closure have also been solved p,

numerically to get the correct MSA factor function, say

is very close to the one obtained within the MSA for

QMA(r). The difference 5Q(r)=Q"SA(r)—Q®Ar) is Vii=S:SSiield-Ke+q-(d—K) ¢ g1%/q™
positive and about 3%1%) for §=0.25, (0.15) forr<0.5; (17b)
and it decreases farincreasing above 0.5.

The dotted line in Fig. 4 exhibits the parabola f(r), In the following, the wave-vector integrals will be dis-

Eq. (99, for coefficients of the HSS. Introduction of the cretized to points on a grid d¥l values, which are equally
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spaced with step sizB, starting atqn,,=h/2. Thereby the Debye-Waller factorf, exhibits A; singularities considered
mode-coupling functional is changed to a second-order polyas a function of the variableg, #, and 8. The liquid-glass

nomial transition is an example for the simplest bifurcation singular-
ity A,, called a fold bifurcation. Such transitions occur on
h surfaces in the three-dimensional parameter space.
)= Vorofulp. 19 ~ Smoot three- : meter.
FalP) % akplkip (18 These surfaces can terminate in smooth line&-p$ingulari-

ties, which are also called cusp bifurcations. The inner points
The explicit representation of the coefficients can be found irbf the A, surfaces are characterized by@ <1, and for the
Ref.[41]. TheM parameterd, obey the algebraic equations end points there holds=1. The most complicated generic

singularity in a three-parameter system is the meeting of two

fo/(1=fg)=F4(f), q=1,... M. (19 Az lines in anA, point. Its position shall be denoted by

. . . ©*, 6%, ands*. This singularity is also called a swallow-tail
Besides the long-time limify, Eq. (19) can have further y.q,.cation [44]. The possibility of the described scenarios
solutions, sayf 4, obeying O<f,<1. The Debye-Waller fac- has been demonstrated earlier for schematic MCT models,
tor is distinguished by the maximum property=f,, q invented with the mere intention of demonstrating the exis-

=1,... M [42]. We used the iteration procedurfcg”“) tence ofA; andA, points[42]. This paper is the first dem-

= F[TM]/(1+F[f™]), n=0,1,... to determinef,.  onstration of the existence of @ for a microscopic model;
With increasingn the f{" decrease monotonically towards the values for the SWS are given in E¢s6).
fq, if the iteration is started Witmg‘))zl [43]. The numerical work is done with step sibel=0.4. It

Two concepts are needed in the following, namely thewas checked for representative cases, that choosing smaller
maximum eigenvalu€& and the exponent parameter{42].  Step sizes does not alter the results to be presented. Choosing
For the discussion of the implicit equations, H@9), the M is equivalent to introducing an upper wave-vector cutoff

Jacobian] is of importance. It is equivalent to-1C, where 4" =(M—1/2)h in Eq. (173. The previous comprehensive
the M XM matrix C is determined by studies for the HS$41,45 were done withM =100. For

sufficiently large 16 and sufficiently smalb, the direct cor-

dFq(f) relation functionc, develops a largertail, discussed in Egs.
_ 2 o a. .
Cor= ot (1-f° (208 (14). This is decisive for fixing the valug* needed to en-
sure the correct handling of Eq4.7). If the coefficientK in
Also the variation ofC with changes of is needed Eq. (140 is kept fixed, the cutoffi* will increase with the
decreasing well-width parameter proportional t@.1The
1 ﬁzfq(f) ) ) maximum value foiM that can be handled in the numerical
akp~ o ifaf, (1= (1= fp)% (20D \work defines the lower limit for ¥ and &, which can be

treated. We used values ftdt up to 2000 occasionally, in
There is a nondegenerate eigenvafuef matrix C with the  order to guarantee the cutoff independence of the results re-

property that all other eigenvalués obey E<E. There Ported in this paper.

holdsE=<1, and liquid-glass transition points are determined

by the conditiorE=E.=1. Itis helpful to follow the drift of B. Results

E with changes of control parameters while searching for the 114 phase diagram for the SWS is shown in Fig. 5 for
transition points. The left and right eigenvectorsfor the ¢ eral constant cuts through the three-dimensional

eigenvalueE, denoted bye ande, respectively, are uniquely - control-parameter space. The results based on the PYA and
determined by the conditions:e,;=0,e,=0,2.e.€, the MSA are qualitatively the same. Let us first consider the

= ]_'Eqéq(l_fq)eé: 1. They are used to characterize everythree states 1, 2, and 3 from Fig. 1 f6+0.06. Within the

transition point by a single numbay, defined as MSA, state 1 refers to the liquid phase, cf. Figh)5 Increas-
ing ¢ to the state 2 increases the height of the first sharp

Aeme  CoC diffraction peak ofS,, located neaqgy=7, cf. Fig. 2. Thus
)\:Ek €qCq kpBkep - (21)  the compressibility for fluctuations in the shejkqq in-
P creases. This leads to arrest in a glass state, as known from
The solutions of Eq(19), considered as functions of the the HSS. If one cools state 1 at fixgd=0.50 down to state
M3 coefficientsV, ,, can exhibit singularities, which are 3, §,, decreases, as was explained in connection with Fig. 2.
called bifurcation point$44]. The singularities occur if the This effect stabilizes the liquid, but it is overcompensated by
Jacobian] is a singular matrix, i.e., if the matri€ has ei- the increase o, in the small-wave-vector regiog<6.1,
genvalue unity. The special singularities, which are exhibitedand, more important, in the larggregion, q>7.4. As a
by the Debye-Waller factors, are called glass-transition sinfesult of this compressibility increase on the wings of the
gularities. These are members of the simplest family of sinstructure factor peak, the liquid freezes to a glass upon cool-
gularities, labeledA,1=2,3, ... [44]. They are topologi- ing, cf. Fig. 5. For large temperatur&, depends only
cally equivalent to the bifurcation singularities of the realweakly onT; the terms proportional t&K = duq/(kgT) Iin
roots of real polynomials of degrele Since theV,,, are  Egs.(9) to (11) cause only small modifications of the coef-
smooth functions of the control parameters, in the SWS théicients determining the factor functid@(r). This explains
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FIG. 6. Exponent parameter for points on three transition
es. The upper parfa) was calculated within the PYA for the
ratios 6/(1+ 8) noted in the legend. Patb) shows the results for
the MSA, where the dashed line indicates the valee.735 of the
HSS.

FIG. 5. The phase diagram of the SWS showing cuts througt?in
the control parameter space for fixed relative attraction-well width
8=A/d. The upper parta) is based on the PYA for the structure
factorS;, and the ratiod/(1+ 6) is noted in the legend. The lower
part (b) is based on the MSA foB,, and the well widths areS

=0.09, 0.06, 0.0465, 0.035, and 0.03, subsequently. Afend long-distance motion characteristic for a liquid. Consider
points are marked by open circles and theby an asterisk. The 9 quid.

vertical dashed line marks the transition lipe=0.516 for the hard- StaFes th(P:O_'SZ ands=0.06. For the_ MSA results one
sphere system. For reference, states 1 and 2 from Fig. 1 are ifotices from Fig. &) that the system is in a glass for
cluded as diamonds. =0.10 and it melts upon heating i® approachesé,,
~0.30. This transition occurs due to the temperature drift of
why the transition lines are almost vertical in Figabfor  the coupling to modes with wave vectors in the wings of the
kgT/uo>3 and in Fig. 8b) for >1. The peak wings are not s, peak. The system remains in the liquid upon further heat-
very sensitive to density changes by a few percentdor ng until it reenters the glass #'~1.41. This freezing is
<0.51. This explains why the transition lines in Fig. 5 are5,,sed by the drift of the coupling to modes wigk go. The
rather flat there. The two pieces of the transition line joingescribed reentry phenomenf24,25 is a manifestation of
smoothly and\ remains below unity for6=0.06, as is  two mechanisms for localization due to the cage effect in the
shown in Fig. b). Thus, the described curve represents Bhigh-density SWS to be explained below.
cut through a smooth surface &% bifurcations. ~ The preceding two paragraphs can be summarized as fol-
The mentioned high-temperature pieces of the transitiofows. There is a subtle interplay of excluded-volume and
surface are located at packing fractiops, which exceed ponding effects which determine the variations of the pair
the value for the HSSe(>~0.516. This means that the correlation functiong(r) on the length scale of the particle
attraction forces have stabilized the liquid phase. This effecliameterd. This is reflected in the properties of the structure
is smaller for largefT and therefore thec-versusT, curve  factorS, for wave numbers| at and around the peak position
decreases. There is the possibility of glass melting due tg: the relevang range is the one exhibited in Fig. 2. Fluc-
cooling, if the decrease @&, is not overcompensated by the tuations with longer wavelength are of no qualitative impor-
increase of the structure-factor-peak wings. The attractiotance for those parameter points studied in this paper. This
causes bonding, in the sense that the average separationasinclusion was corroborated by dropping all contributions to
two particles is smaller than expected for a HSS. Thereforé¢he mode-coupling functional, Eq18), wherek or p are
the average size of the holes increases and this favors ttemaller than 4; there was no significant change of the phase
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diagram calculated with the MSA structure compared to e ' T ]
what is shown in Fig. &). Similarly, a cutoffq, =20 was h

introduced such that all contributions to the mode-coupling 0.9 ]
functional withq>q, are dropped. The MSA results shown £ | eeqd= 34| |
in Fig. 5(b) for §=0.09 and5=0.06 did not change, nor was sl s-aqd= 7.0 |
there a noticeable change for the other curvegfe0.6. We I ++qd=106]
conclude that the two specified sources for correlations on 07l \\M_

the intermediate length scale explain the phase transition
points, which are marked by open symbols in Fig) ®r by P PR Gt , ,
the corresponding light lines in Fig(15. 06 08 1 1k2T/111'4 16 18 2

To substantiate the previous conclusion, we have con- BT00
structed a further phase diagram based on the MSA structure g, 7. The Debye-Waller factdr, as a function of the reduced
factor, using the above specified cutoff . As mentioned,  temperature for the fixed packing fractign=0.539 672 and fixed
the curves for6=0.09 andé=0.06 were reproduced up to §/(1+ 8)=0.03. The wave vectagd="7.0 is close to the structure
minor deviations. Upon decreasi@further, curves emerge, factor peak position. The calculations are based on the PY&{for
which continue the trend of the two curves for largerThe  The path through the parameter space deals with a glass-glass tran-
limit —0 can be carried out; no new features appear. Thigition occuring atf;=1.0471, compare Fig.(8).
ad hocMCT model yields a smooth liquid-glass transition . .
surface ofA, bifurcation points withx<1. Obviously, the Every pair of glass states can be connected by a curve in
true phase diagram of the SWS shown in Fig. 5 is quiteoarameter space such that,_upon shifting the control param-
different. There are the transition points marked by filled®ters ¢. 6, and § along this curve, th? glass properties
symbols in Fig. §a) or by the corresponding heavy lines in change smoqthly. Thus one cannot Q|scr|m|nate precisely be-
Fig. 5(b). These define transition lines, which do not join tween repulsion- gnd attraction-dominated 'g'Iass states. How-
smoothly the previously discussed lines. Rather they cro ever, upon crossing the glass-glass-transition surface, there

s§ : . .
: e . ccurs a discontinuous change of the glass-state properties.
the former lines. Thus, for sufficiently smad a|_1d Suffi-  These discontinuities can be used to differentiate quantita-
ciently large attraction strength,/(kgT), there is a new

) ) \ ) tively between the two types of glasses. From a mathemati-
glass formation mechanism, dominated by density fluctuaza| point of view, the situation is analogous to the termina-
tions with large wave number=q . These are due t0 Spa- tjon of the liquid-gas-transition line at the critical point.
tial correlations on the length scale of the attraction-wellggme results shall be presented from the theory based on the
width A. PYA for S,. Let us consider states fap~0.54 for the

For a discussion of the identified new pieces of the transmallests used in Fig. %). Figure 7 exhibits as filled sym-
sition surface, the mode-coupling coefficients in EGSa  bols the decrease of the Debye-Waller factor for three repre-
and(17b) can be simplified. As explained in connection with sentative wave numbers, if the attraction-dominated glass is
Fig. 3, one can write fok=|k|=q. andp=|q—k|=q, the heated towards the transition temperatifg, KgT./ug
leading asymptotic expression for the structure fac®rs =1.047% 6.. Thef decrease towards the critical valtig
=S,=1, and for the direct correlations functiam=cg®, ~ according to the asymptotic square-root lay,—
Eq. (14b). Thus, the dominant part of the mode-coupling *hqv6:.— 6, which is the signature of the fold bifurcation
functional depends explicitly on the control parameters by{42]. Upon crossing the line into the repulsion-dominated
the prefactopK?= o[ suy/(ksT)]? and otherwise only oé4  glass,f, drops and keeps on decreasing upon further heating
via the large-wave-vector cutoff,. A further density de- up to #~1.3, as shown by the open symbols. Notice that
pendence is due to fluctuations with<q, only. This ex- does not exhibit any singularity f& decreasing towards, .
plains why the lowT transition lines in Fig. 5 are so flak?  The remarkable variation df, for 6 near but above, is a
decreases proportionally t6?, and this effect is not over- precursor phenomenon of the neamsy singularity. Thef,
compensated by the increaseqgf. As a result, the horizon- for 6> 6. is smaller than the Debye-Waller factor for the
tal transition lines decrease with decreaséhd-or low pack- HSS at the same packing fraction. Hence the attraction has
ing fractions, such a trend can be shown explicitly by ansoftened the glass. This effect has to disappear for very large
analytic calculatiorf25,4€. Along this transition linex in- T, and this explains why, increases again, reflecting a glass
creases with increasing until it approaches unity signaliz- stiffening upon heating. The described effects #or 6, are
ing an end point at someZ(d), 62(5). This is demon- the counterparts to what was discussed above in connection
strated in Fig. €) for three values of and in Fig. gb) for ~ with the reentry phenomenon.
6=0.03. The line stops the previously discussed line in some The wave-vector dependence fof changes qualitatively
crossing point. Between the crossing point and the end pointjpon crossing the glass-glass-transition line as is shown in
there occur glass-glass transitions. Upon increaginghe  Fig. 8. Let us focus in this paragraph on the wave-vector
length of the glass-glass transition line shrinks, until it van-regime at and above the structure factor peak positjon
ishes for somes* at someg* = ¢ (5*) and 0* = 62(5*);  =do~7. Here,f, oscillates with wave-vector scalen2d
and this is theA, singularity whose coordinates are listed in around the M8bauer-Lamb factofy . The latter is the ana-
Eqgs.(16). log to f,, constructed for a tagged particle with position

qr

011401-9



K. DAWSON et al. PHYSICAL REVIEW E 63 011401

1.0

0.8

fq G’ g

_—

06 ]

m, E

049 5 10 15 20 . | | | | — ]
q 10906 08 1 12 14 16 18 2

FIG. 8. The Debye-Waller factorg, for ¢=0.539672,4/(1 kg Tha,
+6)=0.03. The temperature increases from top to bottond as
=kgT/uy=0.600, 0.900, 1.000, 1.035, 1.047dashed linesand #
=1.047, 1.150, 1.300full lines). The calculations are based on the
PYA for S;.

FIG. 9. The shear modulUs’ and the dimensionless longitudi-
nal elastic modulusn, as a function of the reduced temperature.
The result is based on the PYA &, and the parameters of state
deal with the same path through the glass-glass transition as dis-

> L . d in Figs. 7 and 8.
vector rg(t) via its denS|ty—correIator¢§(t):<p§(t)*p§); cussed in Figs. fan
pz(t)zexp[idfs(t)]. This quantity, in particular its long-time godic glass[42]. The latter is given by the zero-wave-
limit f$, can also be measurel3]. One finds f§=1 number limit of the mode-coupling functional, E4.8), m,
—g2r2+0(q%), wherer, is the localization length of the =Fo(f). The g=0 limit can be carried out easily in Eq.
. . - - . 17 that on rives from E¢L7 formula[14
particle: r2=lim,_..(|rs(t) —r(0)|?) [42]. In the Gaussian (17b), so that one derives from E¢L73 a formula[14]

approximation, one can Writéf]:exp(—qzrlz) so that the o . 5
half-width wave vecto, , defined byf, =0.5, can be used Mo= Jo dkv=(k)fj. (22)

to estimater,~1/q,. For the Debye-Waller factors on the

high-temperature side of the transition line, which are showrAfter discretization, one can substitute the results fipto

as full lines in Fig. 8, one estimateg~ 20. The localization getmg, and via Eq.(19) one hasfo=mq/(1+mg). For the

lengthr,=0.05 is about the same size as expected for a paglass with6> 6., the integral in Eq(22) is dominated by

ticle rattling between the hard walls of its cage in a HSS. Thdluctuations on the intermediate wave-vector scéke,qp.

fq andr; are close to those of a H982,45. However, on  As known from the HSSi, is of order unity and thus, is

the low-temperature side of the transition, fevary by less  about 0.5. However, fof< 6., the integral is dominated by

than 10% ifq increases up to @, as shown by the dashed largek fluctuations. This enhances,. For 8= 6., one finds

lines in Fig. 8. The wave numbey, is much larger than my~12.7 and this increase of the modulus explains the in-

expected from the free volume in the cage. At the transitiongrease off; to about 0.927, exhibited by the lowest dashed

gi~44, i.e., the localization length is decreased discontinuline in Fig. 8. Decreasing the temperature kgl/uy=0.6

ously by a factor of about 2.3. F#=0.9 and 0.6 the local- leads to my=385 and this explains the large valug

ization length is about 0.01 and 0.006, respectively. This~0.997, exhibited by the uppermost dashed curve in Fig. 8.

shows that the localization length is of ord&rThe particle  For the shear modulu&’, a formula like Eq.(22) holds,

is bound to the wall of the cage and localization is deterwhere the expression far' is similar to that foro" [14].

mined entirely by the particle attraction. This localization Therefore, the shear modulus also exhibits the specified

mechanism via bond formation is operative at low packingstrong enhancement due to the attraction wells. Figure 9

fractions also, and it has been studied within the MCT in thisshows that the dramatic change of the moduli is the most

regime. There, bond formation has been argued to be of imrelevant feature to be observed upon crossing the glass-glass-

portance for colloidal gelatiof25,46,41. transition surface. The strong short-ranged attraction causes
There is no strong dependencefgfon wave numbers bond formation, and this increases the rigidity of the glass

<4. The low-temperature glass is distinguished from thewith respect to compressions or shearing considerably rela-

high-temperature one by the fact that the zero-wave-numbsdive to that of a glass at a similar density, where the structural

limit of the Debye-Waller factorf, is larger for the former arrest is dominated by mere hard-sphere repulsion.

than for the latter. Therefore, upon crossing the glass-glass-

transition surface by cooling, the peak fgr=qq of the IV. STRUCTURAL RELAXATION

fq-versusg diagram disappears, Fig. 8. The numbgris

related to the longitudinal elastic modulus of the system.

This consists of a part expected for the ergodic liquid and a The MCT equations of motion are based on the exact

part my reflecting the incomplete relaxation of the noner-expression of the density correlatafy(t) in terms of a

A. Some general MCT equations
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fluctuating-force correlatdr,5], which in turn is splitinto a  Most of the known universal results for the MCT bifurcation
part treating normal liquid effects, and a relaxation kerneldynamics are based on the understanding of the leading-
mg(t) describing the cage-effect contribution. This kernel isorder contribution G(t). The next-to-leading-order term
approximated by the mode-coupling functional, discussedsM(t) allows one to discuss the range of validity of the
above in connection with Eqs(17) and (18): mg(t) leading-order formulas. A comprehensive demonstration of
=Fq #(t)] [14,42. This paper will be restricted to the sim- the cited results for the HSS can be found in Rp44] and
plest approximation for the normal liquid effects, i.e., the[45].
colloid will be treated as a system of Brownian particles, so Equation(25) reduces to a particular transparent form for
that only the instantaneous correlations as given by the stru¢he critical dynamics, i.e., for control parameters placed on
ture factorS, are incorporated. As a result one obtaidg] the glass-transition points. For the fold bifurcation, one finds
a power-law decay

t
Tqat¢q(t)+¢q(t)+fomq(t_t,)at’(i)q(t,)dt,zo G(t):(tolt)a, G(l)(t):(tolt)Za (26a

(23
The critical exponena is given by the exponent parameter

. RS s _

This equation implies the short-time asymptag(t)=1 vial'(1—a)*/I'(1—-2a)=\, 0<a<0.5. The end points of

—(t/7)+O(t?). For the time scale, one findsr the A, bifurcation surfaces are characterized by exporent
q : '

=Sq/(Doq2), whereD, denotes the single-particle diffusion approaching zero. For the cusp bifurcation, there hpbd$
coefficient. D reflects the property of the solvent, and it

2
fixes the time scale for the transient motion. The unit of time G(t)e 1in(t/to)%,
shall be chosen such thatDly=160 to ease comparisons ) 5 (26b)
with the results for the HSS from preceding wdrl,45). G () InfIn(t/to) J/In(t/to)*.

Two comments on the implications of E@3) might be o ]
appropriate. First, the solutions are completely monoton&©r the swallow-tail bifurcation, one h#51,52 for A,
functions, i.e., there is a rate densjiy(y)=0, normalized G (1) Lin(t/ty)
to [5 pg(7y) dy=1, such that - o)
0 Pq (260
B GO (t)eIn[In(t/to) 1/ In(t/tg)?.
t)= f e 7! dy. 24
oV 0 po(7)dy 24 The dependence of the leading-order contribut@(t) on
the control parameters is well understood, but shall not be

Thus, the MCT approximations maintain a fundamentaconsidered in this paper.
property of colloidal dynamics: autocorrelation functions can

be written as superpositions of Debye-relaxation functions B. Results
[43]. Second, outside the transient, the solutions can be writ-
ten as ¢4(t) =Fq4(t/ty). Here, F, is given by the mode-
coupling functionalF,, i.e., by the equilibrium structure fac-
tor Sy. The transient dynamics, no matter how complicated

enters via the single time scallg only [16,48,49. The fol- ¢, yhe transient dynamics. After a crossover window of

lowing results for the long-time dynamics are thus not influ-5), \t one or two decades, the leading-order asymptotic law
enced by the simplified treatment of the short-time dynamics J(D)= fg+th(t) becomes valid at about=1%. This

n Eq._ (23), except up to a Chaf‘ge of the (_)ver_all time Sca.levalue may be an order of magnitude smaller or larger, de-
to. It is known that the short-time dynamics in colloids is

. L . ending on the wave numbgi41]. The same is true for the
influenced by hydrodynamic interactiofig]. Unfortunately, gata ogtained by van Megg’t{ al.]for hard-sphere colloids,

it is not known how to incorporate these interactions in aprovided one identifies the time urtit 1 with 1 msed17].

theory for high-density colloids. But we consider it plausible,.l_he correlators have been measured up fan€ec. and thus
that the hydrodynamic interactions merely renormalize thF‘[he so far explored windows extend UFF)J 1051 :[he units

transient dynamic50], thereby being irrelevant for the used here. This limit might shift up in future work, using

structural-relaxation effects. ; .
For control parameters approaching a glass-transition Sinq#ferent experimental setups.
Figure 10 exhibits the critical correlator¢g(t) for q

gularity, there appears an increasingly larger dynamical win-_ ) o
dow, where the solutions are arbitrarily close to the critical_4'2 for five states on the transition lirgs=0.0465 through

Debye-Waller factorfg. Therefore, one can solve the MCT therAr; St'ng\%eg'gyd T?]et;tat?(sj, 1 ?nt?] 5 rtef[l;er ttionag ?;](iaort‘egt
equations of motion by an asymptotic expansion, usin arameten =v.6t o € side of the attraction-dominate

B ¢ nd repulsion-dominated glass, respectively. For times of the
g)?;r(;)s;e(zqi(r:)th;qf;?na small parameter. The result can beg 4" ¢'1§ ang larger, the leading-order formuley(t)
—fgoc(tolt)a, a~0.28, describes the results. Thus, the sce-
nario is similar to the one known from the HSS, and this is
ba(t) = Fi=hG(t) +h{NGM (1) + - - . (25 also true for other states on the line wikk<0.80. However,

Let us first estimate the dynamical window relevant for
the discussion. For the HSS, the correlatgig(t) decay
from 1.00 to 0.95 for times increasing up to abos&tl for
representative wave vectors. In this sertsel is the scale

011401-11



K. DAWSON et al.

10

12
log,,t

FIG. 10. The full lines are the critical correlatoq!é(t) for the
wave vectorq=4.2 calculated with the MSA-structure factor for
the critical attraction well widths* =0.0465. The states are located
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FIG. 11. Correlatorsb,(t) for q=4.2 calculated for the MSA
structure factor of a SWS with attraction well widéh=0.03 and
the reduced temperatuge=0.1875 for the three packing fractions

on the transition line as shown in the inset and refer to criticale,=0.5000,p,=0.5300,p3=0.5357 (full lines). The inset shows

Debye-Waller factorsfg=0.973, 0.910, 0.772, 0.593, 0.46®om
top to bottom as indicated by horizontal straight lind<or states 1
and 5,\ =0.80 corresponding to a critical exponent 0.279; state
2 (4) refers ton =0.895(0.908 corresponding t@=0.210(0.202.
The dash-dotted lines show the asympto‘@asAqt‘a. State 3 is at
the A, singularity, given by Eq(16b).

if one considers states closer to thg point, the onset of the
critical power law gets shifted to larger times. This is dem-
onstrated for the two states 2 and 4, which deal with
~0.90. For the state 4, the ? law with a~0.20 is valid
only for t>10°. This trend continues if one moves even
closer to theA, point, whereby\ increases even further;
compare Fig. 6. At thé\, singularity, the correlator decays

from 1.00 tofg~0.77. This decay is stretched so enormously

that even fort=10'2 it only reaches the valug(t)~0.80,

as is shown by curve 3 in Fig. 10. One can describe the

critical correlator with Eqs(25) and (260 for the window
10"°<t<10%, usingh, andh{" as fit parameters. But this fit
does not describe the correlator fior 10'° Thus one con-
cludes that the critical correlator of thg, for the SWS can-
not be described by the asymptotic Eg6c within acces-
sible dynamical windows. Nor can the critical power-law
decay of theA, singularity be measured K exceeds a cer-
tain value, say 0.9. Thus, there is a part of the transition line
near theA, point, characterized b)=0.9, where the corr-

elators exhibit structural relaxation patterns towards the pla.

teau values¢ that are stretched up to=10° or larger. The

q

known asymptotic formulas cannot be used to describe th%

MCT solutions within this regime.
The liquid dynamics on the smadi-side of theA, point is
particularly subtle, since there is &3 singularity in addition

S

the relevant section from the phase diagram of Fi@).5The
dashed-dotted lines with labels and B exhibit the critical law
e+ A4/t and the von Schweidler lavi{" °—Bgt®*%, re-
spectively. The straight dashed lines exhibit logarithmic decay laws,
Eq. (27), see text.

=0.250. Curve 3 was calculated for such a small distance
from the transition point,—e=(@.— @)/ @.=7.9x10 %,

that ¢4(t) decays to zero just within the dynamical window
displayed in the figure. The dash-dotted line with laBel
presents the leading-order critical law for thg singularity,
Egs.(25 and(26a), with the time scale, fitted to the decay

at long times foro=¢.. One observes the same phenom-
enon as explained above in connection with Fig. 10: sice
is rather large, the asymptotic law describes the data only for
rather large timest>10°°. After falling below the plateau
aluefgl)c, the correlator decays towards zero. This isdhe
process, and it starts with the von Schweidler asymptote
f{°—hq(t/7)®, which is shown by the dash-dotted line with
label B. The exponenb=0.396 obeys a similar relation as
the critical exponentI'(1+b)%/T'(1+2b)=\. Thus the
structural relaxation connected with the liquid-glass transi-
tion follows the known scenario, except that the famikgr
patterns can be observed only for times far out of the tran-
sient regimet>10°°.

Figure 11 exhibits a large dynamical window, 2%(t
<10>°, where the structural relaxation does not follow the

V

asymptotic laws for a fold bifurcation. Instead, the dashed
straight line demonstrates that the correlator labeled 3 fol-
ws a logarithmic decay law,

ba(t) =F2°—CqInt, (27)

to the line-crossing point. Figure 11 exhibits as an examplédor the major part of the mentioned window, 2£0t<10*°,

such a situation fo=0.03. Parameters on a straight line,
0=0.1875, which is slightly above th&; point, are consid-

Here, f{?)°~0.87 is the Debye-Waller factor at the; sin-
gularity. There is a line through evedy; singularity, which

ered. The transition to a repulsion-dominated glass state theg transversal to the transition line ending at #hg such that

occurs ate.=0.5360. At the transition point, the critical

Debye-Waller factor i${"°~0.50, and the exponent param-

eter is given byx=0.847, implying a critical exponerd

Eq.(27) is a leading-order solution for the MCT equations of
motion on a certain intermediate time window. The length of
the window expands and the prefac@y in front of the Int
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T the window of validity for the leading-order asymptotic laws
] depends on the chosen correlator. If the correction term
h{PG™(t) in Eq. (25) could be neglected, i.e., if the factor-
ization theoremp(t) — fg=h,G(t) would hold, the rescaled
correlatorsfﬁq(t)=[¢q(t)—fg]/hq should collapse on the

. common functionG(t). In particular, all correlators should

1 cross their plateau valulﬁ at the same timé_, given by
G(t_)=0. The latter property is fulfilled within a small er-

L ] ror margin fort_=8.9x 10°. Figure 12b) demonstrates the
_02F \ . validity of the factorization property for a two-decade win-
= o ] dow. The size of this window is considerably smaller than

P \ h the one found for the HSS for a state with a similar overall

“I . relaxation timg41]. Thus, the next-to-leading-order correc-

04 (b)l . . 3L Ap L tion in Eq. (25 is much larger near thé, than the one
-2 0 2 4 . 6t 8 10 12 known from the bifurcation dynamics of the simple HSS.
9210
FIG. 12. Correlators for a liquid state close to thesingularity V. CONCLUSIONS

calculated with the MSA for the structure factor. The curves in the
upper panela) show theg,(t) where the labels 1 to 5 indicate the  In this paper ideal liquid-glass transitions and the evolu-
wave numberg=4.2,7.0,8.2,20.2,24.2. The corresponding criti- tion of glassy dynamics were analyzed within the basic ver-
cal Debye-Waller factord are 0.764,0.943,0.860, 0.507,0.369, sion of the mode-coupling theofiICT) for a simple colloid
respectivel)f. The curves in the lower paiiiel exhibit the rescaled model, where the particles interact via a square-well poten-
correlators ¢hg(t) =[ ¢4(t) — fgl/hy . Here, the critical amplitudes tial. The discussion was restricted to the high-density regime.
hg=(1-1fg)%e, have the values 0.4665, 0.1343, 0.2881, 0.7291Hence the excluded-volume effects play a crucial role for the
0.7835. The dashed vertical line marks the time=8.9x 10°. structure, and the cage effect is an essential feature of the
dynamics. The presence of short-ranged attractions leads to a
decreases, if one moves closer towards Ahepoint [53].  variety of new features compared to the ones known from the
These results explain the appearance of theplrt and the  hard-sphere systeiHSS. We find a subtle phase diagram
change of its prefactor if one compares curve 2 with curve 3or the glass-transition lines in the plane spanned by the two
in Fig. 11. One concludes that it is the bifurcation dynamicscontrol parameters, packing fractiap, and reduced tem-
of the Az singularity which prevents the evolution of the®*  perature# (Fig. 5. The diagram is organized around an
law for the fold bifurcation. Similarly, thex process for A,-glass-transition singularity. This occurs for a critical
curve 2 does not start with von Schweidler’s law. Thereforeyalue §* ~0.04 of the ratios of the attraction-well width and
contrary to what one observes for the dynamics of the HS$he hard-core diameter, a packing fractigh exceeding the
for comparable large timdg 1], the « processes for curves 2 transition densitye™5S of the HSS, and a certain critical
and 3 do not obey the superposition principle. Close to theemperature, cf. Eqg16).
A; point, the dynamics outside the transient and preceding For 6> 5* and sufficiently low temperature, there is a
the onset of the Indecay law follows the critical law for the part of the liquid-glass transition line where the critical tem-
Az, as given by Eqs(25) and (26b). But for the shown peratured, increases with the critical density,. As ex-
curves, the situation is similar as explained comprehensivelgected for conventional liquids with, e.g., Lennard-Jones in-
for the critical decay for the HSRI1]. The plateatfff)C isso  teractions, the glass transition can occur either upon cooling
high that there is only a small variation remaining for the or upon compression. This part of the transition line extends
1/(Int)? law to manifest itself. The correction terms for the up to densities where exceedse">S, since the bonding
cited leading-order and next-to-leading-order contributionsffects due to the attraction stabilize the liquid phase. For
are so large that one has to consider states much closer to th#ge temperatures, the effects of the attraction get sup-
A; to see the result of Eq26h). pressed. Therefore, there exists a high-temperature piece of
For state 1, theA,, Az, and A, singularities are so far the transition line, wher&. decreases with increasing. .
away that none of the cited asymptotic laws is clearly develThere appears a regime of high density, where the liquid can
oped. On the other hand, they are close enough to causetnsform to a glass either by cooling or by heating. The
considerable relaxation stretching. The correlaipy(t) possibility of such a reentry phenomenon is characteristic for
needs a dynamical window of three orders of magnitude tegystems with a hard-core repulsion. In a conventional system
complete the 80% of its decay from 0.9 to 0.1, as is shown irthe effect cannot occur since a soft-core repulsion implies a
Fig. 11. decrease of the effective repulsion-core diameter with heat-
In Fig. 12a) a set of correlatorgh,(t) for five represen- ing, and this decrease overcompensates the effect of the de-
tative wave numbers is shown. The state refers to the liquidrease of the effective attraction strength.
close to theA, point. Forq=24.2 the window for the loga- For 6<é* the two mentioned transition-line parts no
rithmic decay extends frorh=10° to t=10'". For the other longer join smoothly. Rather, the low-temperature line termi-
wave numbers the corresponding windows are smaller, i.enates the high-temperature one at some crossing point, such
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that they appear as two separate transition lines. At very highibit changes of the second derivatives i#g(t) near the
temperature the mechanism of glass formation is similar tglateau fg. It was shown that the higher-order glass-
the one of the HSS, and in general, the temperature depetransition singularitie®\; andA, cause strong perturbations
dence of the high-temperature transition line is weak. Glassf the asymptotic laws usually considered, valid close to the
transitions across this line are caused by an arrest of densify, bifurcation. In the present case they can only be observed
fluctuations on the length scale of the interparticle distancein windows, which might be outside the regimes accessible
A tagged particle is localized due to repulsion by its cageby experiments. In addition, the known asymptotic laws for
forming neighbors. In contrast, the low-temperature line dethe relaxation neah; or A, glass-transition singularities also
scribes glass formation due to the arrest of density fluctuaShow up only in windows, which are irrelevant for experi-
tions on a length scale of the order of the attraction-shelMental studies. These predictions of our theory do not seem
width. Here, tagged particles are localized due to a formatioft® b€ @ peculiarity of the square-well system. Similar results
of short bonds with their cage-forming neighbors. The den@/réady hold for simple one-component schematic models

sity dependence of these transition points is weak, and th ZA tion to the findi ized in th di
transition line extends into the regime of gel formation at N exception 1o the indings summarized In the preceding

low densities. On the high-density side, it extends into theP@ragraph is the logarithmic-decay law, E27). This char-

lass regime. until it ends at dw-alass-transition sinaular- acteristic feature of the dynamics near higher-order glass-
giass regime, u at_l:g glass-r: 9 transition singularities could be identified easily in our re-
ity, as indicated by the open circles in Fighh

Between the mentioned line-crossina boint and the en ults, as shown in Fig. 12. Indeed, it is shown in Fig. 11 that
. e 9 point his Int decay is a precursor phenomenon, hindering the evo-
point of the second transition line, there is a line of glass-

glass transitions. The averaged equilibrium structure, alsutlon of the A, asymptotics. In particular, there can be a

. ! . crossover from the Ihdecay to the von Schweidler decay
characterized by the structure fac&y, is the same on either .

. I : - around the point where the,(t)-versus-Irt curve crosses
side of this line. But the two different localization mecha- the plateatf® is sh bq 3in Fia. 11. A simil
nisms imply qualitatively different frozen structures, re- € plateall 4, as IS Shown by CUlve o In Fig. L1 A simiiar
flected by differences in the Debye-Waller factpy. The scenario was recently observed for relaxation in a micellar

X . tem[55].
one on the high-temperature side, shown by the uppermo§§/S . .
solid line in Fig. 8, is similar to the Debye-Waller factor of . The found extreme stretching phenomena have important

the HSS at the same density. It exhibits a pronounced pedwplicatigns for thg experimental tests of MCT. In an experi-
near the positiorg, of the structure-factor peak, and the men_t, Itis no.t easily possmle. to measure sglf-averaggd cor-
zero-wave-number limitfS is about 0.7. On the low- relation functions for states like the ones discussed in Fig.

; t ES | hi i< sh by the | t12. Thus, experimental results are likely to refer to history-
emperature side, IS much 1arger, as I1s Snown by the IOWest 4o sangent nonequilibrium states, and aging effects are likely
of the dashed lines in Fig. 8. In particuldf, is considerably to be more pronounced than they are for the normal liquid-

increased. The fg-versusg curve for the attraction- gjass transition. Even if proper averaging could be achieved,
dominated glass is bell-shaped like a Bb@uer-Lamb factor. gne cannot determine the Debye-Waller facfr= ¢q(t
The increase of; towards the upper limit unity is connected ) within accessible time windows, if the states are simi-
with a large enhancement of the longitudinal modulus jar to the ones shown with labels 3 and 4 in Fig. 10. Similar
Crossing the glass-glass transition line, the longitudinakonclusions apply for the measurements of the moduli near
modulus as well as the shear modulus experiences a largge glass-glass-transition line.
discontinuity, as shown in Fig. 9. The large differences in the  The presented theory is based on some assumptions which
macroscopic elastic properties are the most obvious manifegye would like to discuss in more detail. First, one should
tations of the two localization mechanisms in the high-expect that the equilibrium state of the system in the density
density system predicted by our theory. regime considered is a crystal rather than the assumed amor-
Two general MCT predictions for the relaxation near aphous phase. In experiments for colloids, crystallization is
critical temperature or critical density have been confirmedyypassed by chosing a polydispersitfor the particle diam-
by many experiments and molecular-dynamics simulationgters. Since nucleation rates decrease dramatically with in-
[54]. First, the structural relaxation exhibits a two-step scecreasingp, a choice ofp of some percent is sufficient to
nario. Outside the transient, there occurs a relaxation towardsstablish a metastable amorphous state for practically arbi-
the plateauf. For this stepd®pq(t)/d(Int)* is positive.  trarily long times. A smallp causes only small changes of
Then there is ther process dealing with the relaxation from the calculated structure factors, and thus only small changes
the plateau to zero. Its initial part exhibits a negative seconéh the coupling coefficients entering the MCT equations.
derivative of theg,(t)-versus-Irt curve. Second, there holds Hence a smalp will only imply small changes of the pre-
the superposition principle for the process. On a time win- sented results. Indeed, it was shown for the HSS that a
dow that expands with increasing relaxation time, thechange of did not yield detectable changes of the measured
¢q(t)-versus-Irt curves can be collapsed on a common mas,(t) [56,57). But, it is unclear how strongly, e.g., the cal-
ter curve by shifts along the abscissa. These two simple rezulated values* for the attraction-well width at thé, sin-
sults, which are fingerprints of tha, bifurcation, are not gularity will change, if a realistic value fqu is considered.
valid for the relaxation at states close to Ap singularity. The structure facto, of the stable or metastable equi-
The curves in Fig. 11 cannot be rescaled onto arlibrium is used as input information for our work. Thus, the
a-relaxation master curve. The results in Fig. 12 do not exsecond source of reservations is due to the errors hidden in
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the usedS,. A well-known problem is that of the so-called a,(r), o<r<é

thermodynamic inconsistency. Thermodynamic quantities

calculated along different routes using an approxingtes Q(r)=y an(r),  o<r=<1 (A1)

input often are not consistent with each other. Sophisticated qu(r’), 0<r'=r—-1<6.

closures involving adjustable parameters could be used to . . ] ] ]

overcome this probleni4]. Alas, since thermodynamics Q(r) is continuous at the boundaries of the m_tervals, in par-

deals with theg— 0 limit, for which the phase volume in the ticular Q(1+48)=0. From Eq.(5), together withg(r)=1

mode-coupling integrals becomes small, one would gain na h(r) andG(r')=(1+r")g(1+r’), the derivatives for the

further insight carrying out our calculations of Secs. Il andthree parts of the factor function are obtained

IV using an improved closure f&, . For the HSS, one finds s

only minor changes in the numerical values for the transition q/(r)=ar+b— 12¢J ds G(s—r)qy(s), (A2a)

points[52,58, and the same is anticipated for the SWS. A r

further difficulty arises regarding the smalllimit of c(r)

andg(r). Due to the approximations introduced fQ(r), qu(r)=ar+b, (A2D)

one cannot guarantee that the excluded-volume eftgct,

<d)=0, is exactly reproduced. In fact, we find tlegt) and P , r’ ,

thusg(r) develop a poled/r, cf. Eq.(12). Sinceg(r) is a G (r')=ar+b=G(r )+12‘Pfo ds Gr' =s)qi(s)-

distribution and sincé\/r is integrable in three dimensions, (A20)

anA/r term is to be viewed as small, providéds small. In

the original work on the sticky hard spherég7], A Hereg(r)=0 for 0<r<1 was used, and the definition far

=0O(K2¢). In our solution,A=O(Kd¢). The limitsr—0  andb is given in Eq.(6b). The integrated form of Eq4) is

and 6—0 do not commute, and our analytical solution de-Used to introduce the MSA closure as in K8),

creases the error from & to a &* effect. Since our results s

based on the Percus-Yevick closure and on the mean- Qm(r'):l?‘PJ ds gy (s)q(s—r’)

spherical approximation are in semiquantitative agreement, r'

we anticipate that better theories 8 will not change the

qualitative results of our theory. +K
Third, the range of applicability of the MCT is not under-

stood. One can use the successful tests of the theory by the

experiments performed on hard-sphere colloids, which werwhere K=uy6/kgT. In the following, Egs.(A2) and (A3)

cited in Sec. |, as aa posteriorijustification of the MCT. are solved together with the reformulated expressionsafor

But it is not clear whether or not this theory can handle theandb

effects caused by the formation of strong short bonds. On the 5 L 5

other hand, the phenomenon of liquid stabilization due to _,_,_

bond formation and the resulting reentry effect, as well as the a=1-12 fo dsa(s)+ L dsas)+ fo ds Qu(s)

drastic changes of the elastic properties at the glass-glass (Ada)

transition, seem very plausible. The fact that the MCT brings s S

out these subtleties might be considered as an argument in | !

favor of this approach. In summary, it is the intention of this b= 12"0[ fo dssq(s)+ L dssa(s)+ fo ds s Gu(s)

paper to point out the possibility of new features of glassy

rrZ

e

r 6
1-—+ =

o 2 ' (A3)

dynamics and to suggest a search for these features by ex- g
periments on colloids. * 0 ds u(s) . (A4b)
Equation(A2b) gives Eq.(93),
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2. Leading order
APPENDIX: THE MSA FACTOR FUNCTION In Eq. (A3), r'/& is of order 8° and the integral is of
1. General formulas higher orders®. Therefore, in leading order,
Starting from Eqgs.(4) and (5), Egs. (9) for the factor au(r")y=K(1-r’/9). (AB)

function and expressiondl0) and (11) for the parameters
a, b, c shall be derived. The region<Or <1+ 6, for which  The boundary condition mentioned above fixesK —a/2
Q(r) is nonzero, can be split into three parts, —b in leading order. Substituting EqA6) into Eq. (A2c)
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and keeping only terms in lowest order i results in  which is integrated to give the last term in E§b). In Eq.
G(r')=K/§8. The integral in Eq(A2a) is again of higher (A3) the entire last line has to be taken into account for the
order and the continuity at the boundary 5 gives the pa- next-to-leading order. The integral reads

rabola also for region I,

S
q(r)=ar?/2+br+c. (A7) 12(pf,ds Gn(S)a(s—r")=6K dpCo(1—r'18)%+O(52).
r
Inserting the factor function into Eq6A4) and keeping only (A10)
lowest-order terms, linear equations for the parameters are
obtained Combinig Eqs(A3) and(A10) yields the expression for the
next-to-leading order term for the factor function in the outer
=1- +b/2+ - . o
a=1-12¢(al6+bl2+c), (ABa) shell, Eg.(9¢). The continuity atr =1 introduces a modifi-
b=120(a/8+ b/3+c/2) (A8D) cation ofc from its leading-order value,
which leads to Eqs(10). c=K—a/2—b+ 5K/2+ 65K ¢Co, (A11)

3. Next-to-leading order . . . . .
9 wherea andb are given by inserting the factor functions into

Substituting the leading-order results into E¢&82) and Egs.(A4),
(A3) produces the next-to-leading order. Subtracting Eq.
(A2b) from Eq.(A2a), the result for the interval | is given as

the derivative a=1-12p(al6+b/2+c+ 6K/2), (A12a)
5
Q((r)—Qﬁ(r):—ﬂ‘PJ ds KISK(1—s/6) b=12¢(a/8+b/3+c/2+ 5K/2). (A12b)
.
=—6¢oK?(1—r/6)? (A9)  This yields Eqs(9), (10), and(11).
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