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Quasisaddles as relevant points of the potential energy surface
in the dynamics of supercooled liquids

L. Angelani,a) R. Di Leonardo, G. Ruocco, A. Scala, and F. Sciortinoa)

Dipartimento di Fisica and INFM, Universita` di Roma ‘‘La Sapienza,’’ P.le Aldo Moro 2, I-00185,
Roma, Italy

~Received 26 November 2001; accepted 12 March 2002!

The supercooled dynamics of a Lennard-Jones model liquid is numerically investigated studying
relevant points of the potential energy surface, i.e., the minima of the square gradient of total
potential energyV. The main findings are~i! the number of negative curvaturesn of these sampled
points appears to extrapolate to zero at the mode coupling critical temperatureTc ; ~ii ! the
temperature behavior ofn(T) has a close relationship with the temperature behavior of the
diffusivity; ~iii ! the potential energy landscape shows a high regularity in the distances among the
relevant points and in their energy location. Finally we discuss a model of the landscape, previously
introduced by Madan and Keyes@J. Chem. Phys.98, 3342~1993!#, able to reproduce the previous
findings. © 2002 American Institute of Physics.@DOI: 10.1063/1.1475764#
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I. INTRODUCTION

The supercooled liquid regime is the interesting state
the matter which precedes the glass formation~once the crys-
tal state is avoided!. Many efforts have been devoted to be
ter understand the relevant physical processes taking pla
the supercooled state, the most important being the enorm
increase of both relaxation times and inverse diffusivity
many order of magnitude upon decreasing the temperatu1

In recent years the numerical investigation of simple mo
liquids has provided a very useful microscopic description
the supercooled regime and a detailed picture of the st
tural rearrangement of atoms during the dynamic evoluti

One of the most powerful frameworks for the study
supercooled state has been the so-called potential energy
face ~PES! description of the system.2,3 This approach fo-
cuses on the properties of the multidimensional surface
the total potential energy sampled during the time evolut
of the representative point in the 3N-dimensional configura-
tion space~N is the total number of particles!. Different land-
scape features may control the motion of the particles,4–11

and the aim is to find those characteristics of the PES
have a direct relationship with~if possible the main cause
of! the emergent behavior of the relevant physical quantit
The challenge is to find the ‘‘good’’ landscape features tha
one supposes to be responsible for the interesting phen
ena, or at least useful to give a clear interpretation of th
Among others, two different landscape approaches have b
widely used in the last decades in this context: the insta
neous normal modes~INM ! approach,12 based on the inves
tigation of the PES very close to the instantaneous poin
the configuration space during the molecular dynamics e
lution of the system, and the inherent structures~IS!
approach,13 based on the analysis of the minima of PES v
ited by the system during its dynamic evolution. In this pap

a!Also at INFM–Center for Statistical Mechanics and Complexity, Univ
sità di Roma ‘‘La Sapienza,’’ P.le Aldo Moro 2, I-00185, Roma, Italy.
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we describe and revisit in a detailed way an additional
proach, that has been very useful to give new insight in
analysis of the relevant processes taking place in the su
cooled liquid regime. This approach focuses on the mini
of the square gradient of the total potential energy, ‘‘close
to the instantaneous points of the molecular dynamics tra
tory. This approach allows one to obtain a microscopic int
pretation of the relevant processes, the main result being
characterization of the dynamics above and below the m
coupling temperatureTc .14 Moreover, the analysis of thes
points allows one to obtain information about some relev
characteristics of the PES, of great importance to const
simplified models of the landscape.

Let us briefly resume the two main PES approaches,
INM and the IS approach. The INM method is based on
investigation of the PES around the instantaneous config
tions r ~r represents the 3N-dimensional vector of the repre
sentative point in the configuration space! during the mo-
lecular dynamics evolution of the system. The diffusi
quantities are supposed to be related to the shape of the
ergy surface atr , that is to say the eigenvalues and eigenv
tors of the Hessian matrix~the second derivative of the po
tential energy!. The main hypothesis of the INM approach
that the relevant diffusive directions have to be searc
among the downward curvatures~eigenvectors with negative
eigenvalues!. Many attempts have been devoted to exte
this approach to different liquid systems and to develop
theory of the supercooled liquid state based on INM co
cepts. Moreover many efforts have been spent to recog
the true diffusive directions among all the downward ones
it is known there are downward curvatures that do not c
respond to diffusive directions, notably in the crystallin
state. The INM negative curvature directions are classified
shoulder modes~related to anharmonicities of the PES! and
double wells~with a double well shaped one-dimension
profile!. Diffusive directions are finally identified as thos
leading to different minima15 ~this analysis involves the
7 © 2002 American Institute of Physics
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search of the minima of the PES!. The temperature depen
dence of the diffusion coefficient has been shown to be
lated to the temperature dependence of the fraction of di
sive directions.16 On the basis of this analogy, it has be
conjectured a structural interpretation of the mode coup
temperatureTc as the temperature at which the number
diffusive directions goes to zero.17

The second IS landscape approach is based on the a
sis of the inherent structures, the minima of the PES. To e
instantaneous configurationr one associates a inherent stru
ture r IS ~using, for example, a steepest descent path star
from r !, r→r IS , partitioning the whole PES in the basins
attraction of minima. This kind of analysis has been ve
useful not only in the study of the diffusive directions in th
supercooled regime~see the previous discussion about t
INM !, but also in the study of thermodynamic quantities~for
example, to evaluate the configurational entropy18,19! and in
the study of the out-of-equilibrium dynamics.20,21

In the present work we adopt a new approach in
analysis of the PES, in some way intermediate between
previous two, in that it maintains information about the po
sible diffusive degrees of freedom~as the INM approach!
and uses a mapping in the PES that associates instantan
configurationsr to new points in the PES~as the IS ap-
proach!. In this approach22,23 the minima rS of the square
gradient of the potential energyW5u“Vu2 ~saddles and
some inflection points of the PES!, reached starting from
equilibrated configurationsr , are calculated. This procedur
partitions the PES in basins of attraction of this new poin
r→rS . The choice ofW, suggested long time ago by Web
and Stillinger,24 was motivated by the fact that saddles poin
of V are absolute minima ofW. As pointed out recently by
Doye and Wales25 and discussed in more details in the fo
lowing, the numerical minimization ofW locates mostly lo-
cal minima ofW, i.e., points which are not real saddles ofV.
For this reason in the following we refer to the local minim
of W as quasisaddle points~QSP!.26 In Refs. 22 and 23 the
topological and metrical properties of such points have b
used for a description of the dynamics of supercooled
uids. The investigated systems were monatomic Lenn
Jones and/or binary mixture Lennard-Jones. After equilib
tion of the system at a given temperatureT, corresponding to
a given instantaneous potential energye, the minima ofW
were searched and associated to the stationary pointsV
~saddles!. Then the energyeS and the number of negativ
curvaturesnS at these saddle points were measured. The
pendence ofeS andnS on the temperature22 or one ~Ref. 23!
show interesting properties:~i! the quantitynS extrapolates
to zero atTc , demonstrating the validity of the conjectu
that Tc marks the transition between a dynamics amo
minima at lowT and a dynamics among saddles at highT;
~ii ! the aspects of the energy landscape seen by a given m
mum is highly regular@as demonstrated by the linear depe
dence ofnS on eS2eIS ~Ref. 22! or on eS ~Ref. 23!#. The
previous observation leads to the conclusion that the kno
edge of thesaddlepoints properties can be used to pred
the supercooled dynamics and points out the relevanc
these peculiar PES points.

Following these papers, the concept ofsaddles—as ob-
Downloaded 13 Feb 2004 to 141.108.6.119. Redistribution subject to AIP
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tained by a minimization ofu“Vu2—has been further used i
the investigation of the supercooled liquid dynamics27,28 and
aging dynamics.29

As we anticipated above, there is a drawback in the
proach used in Refs. 22 and 23. In fact, while it is true tha
a saddle point~stationary point! of the 3N-dimensional sur-
face V(r ), the functionW has a minimum~actually,W50
there andW has a global minimum!, the reverse is not guar
anteed to be true. There are local minima ofW, with W
Þ0, that are NOT stationary points ofV. In these points,
along one or more directionsr (j), parametrized byj, the
function V(j) has an inflection point. In these inflectio
points ~QSP!, the Hessian ofV has a number of vanishing
eigenvalues~excluding the three translation directions! equal
to the number of directionsr (j) whereV has an inflection
point. This property has been used in Ref. 22 in order
identify the QSP: a threshold was arbitrarily chosen, and
the minimizations ofW that lead to points where the Hessia
of V has at least one eigenvalue smaller~in modulus! than
the threshold were discarded from the analysis. In Ref. 22
claimed that only a small fraction of minimizations ended
a QSP points, and we estimated in 2% the error introduce
nS by the choice of the threshold.

Doye and Wales25 have shown—by the analysis of th
same system investigated in Refs. 22 and 23, the BMLJ w
periodic boundary conditions—that almost all~around 95%
in their work! the minimizations ofW ended in a QSP point
and not in a true saddle as claimed in Refs. 22 and 23. M
tivated by such contradictory results, we reanalyzed
minima of W found in Ref. 22. In this work we show th
result of such an analysis. We conclude that the results
Doye and Wales are correct and the error in the analysi
Ref. 22 originates from the ‘‘imperfect’’ minimization ofW:
in a point close to~but not exactly at! QSP, the Hessian ofV
no longer has ‘‘small’’ eigenvalues, and the criterion used
identify false saddles fails.

One puzzling question, however, still remains open: w
the quantitynS , i.e., the number of negative eigenvalues
the minima ofW, is related to the critical temperature of th
system? It remains true thatnS(T) extrapolates to zero atTc .
In the present paper we address this question, and we
further stress the importance of the quantitynS ; we will
show that also the transport properties~namely the diffusion
coefficient! can be determined by the knowledge ofnS .

The paper is organized as follow: In Sec. II we descr
the new approach, defining the saddles of the PES and st
ing very carefully their operative definition and the problem
related to the presence of false saddles. Then in Sec. III
expose the relevant results obtained with the new PES
proach, giving a topological interpretation of the mode co
pling dynamic transition. In Sec. IV the relationship betwe
diffusivity and saddle properties is evidenced, giving
simple interpretation of the diffusion processes in terms
saddle order. In Sec. V we describe some landscape fea
as emerged from saddle analysis. In Sec. VI a simplifi
model of the PES is described, together with its relev
properties compared to the features of model liquids inve
gated above. At the end~Sec. VII! a brief summary of the
main results and conclusions are reported.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10299J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Dynamics of supercooled liquids
II. QUASISADDLE POINTS

The analyzed system is a simple model liquid, a mo
atomic modified Lennard-Jones 6-12~MLJ!. The model is
able to support strong supercooling without the occurre
of crystallization, due to the presence of a small perturba
term in the Hamiltonian that inhibits ordering~this term is a
function of the static structure factor, see Ref. 30 for m
details!. The system is composed ofN5256 particles en-
closed in a cubic box with periodic boundary condition
Truncated (Rc52.6) and shifted LJ potential are used. Eq
librium configuration are prepared by standard microcano
cal molecular dynamics simulations at constant densityr
51 ~standard LJ units are used hereafter! and at tempera-
tures ranging from the normal liquid phase (T;1.6) down to
the mode coupling temperature~Tc50.475, estimated from
diffusivity!.

The aim of our approach is to use a method of inve
gation of the PES that allows us to reject all thenonrelevant
degrees of freedom for the description of the slow sup
cooled dynamics. The idea is that there are particular po
of the PES associated in some way to the instantaneous
figurations, and that the properties of these points contain
the important information for the determination of the slo
dynamics. Possible and natural candidates are the sa
points of the PES. In principle one can think to partition t
whole configuration space in basins of attraction of sadd
~the definition of the partition is obviously not unique,
possible choice could be that obtained using the Voro
polyhedra in the 3N-dimensional space!. However a useful
partition in basins of saddles~that is local, i.e., allows us to
associate a saddle point to each instantaneous configur
using only local information of the PES! is still not available.
A possible partition is that obtained using th
pseudopotential24 W5u“Vu2, associating to each instanta
neous configuration during the molecular dynamics a m
mum of W:

instantaneous configuration→minimum of W.

However, as already pointed out, the relation between all
minima of W and saddles ofV is not one-to-one: absolut
minima of W ~with W50! are all saddles ofV

absolute minima ofW↔saddles ofV,

but local minima ~with W.0! are inflection points ofV
~more precisely they are inflection points with the first d
rivative of V of the same sign of the first derivative of th
curvature in the inflection direction!:

local minima of W→ inflection points of V.

In Figs. 1 and 2 examples of two possible one-dimensio
profiles ofV and correspondingW are shown as a function o
a generic one-dimensional coordinate. In Fig. 1 the two
solute minima ofW correspond to two saddle points ofV ~in
one dimension a minimum and a maximum!. The arrows
define the basins of attraction of minima ofW, and the
boundaries of these basins are indicated with open symb
In Fig. 2 the local minimum ofW corresponds to an inflec
tion point of V.
Downloaded 13 Feb 2004 to 141.108.6.119. Redistribution subject to AIP
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We note that at inflection points the eigenvalues of
Hessian vanish, so in principle one can recognize them s
ply analyzing the eigenvalues of the Hessian ofV. In a pre-
vious work22 we used this eigenvalues criterion~choosing a
threshold to discriminate inflection directions! and we found
that local minima ofW were found very rarely. A close
inspection, however, has revealed that, due to ‘‘imperfe
minimizations ofW, the eigenvalues associated to a po
‘‘close’’ ~due to the not perfect minimization! to an inflection
point were of the same order of magnitude of the eigenval
associated to a saddle. Refining the analysis of the minim
W, we find that the number of points that are true saddle

FIG. 1. Example of profile ofV andW along a given direction. The mini-
mum and maximum ofV correspond to absolute minima ofW. The arrows
indicate the basins of attraction of the minima ofW.

FIG. 2. Example of profile ofV andW along a given direction. The inflec
tion point of V corresponds to a local minimum ofW with W.0. The
arrows indicate the basins of attraction of the minima ofW.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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very small~about 1% of the total!, so almost all the minima
of W found are inflection points. However, there is anoth
interesting characteristic that has to be considered, the n
ber of inflection directions~number of zero eigenvalues o
Hessian, excluding the translations! at the minima ofW: if
this number is small one can think of the minima ofW as a
‘‘quasi’’ saddle point~QSP!, as they aretrue saddle points in
the subspace orthogonal to the small number of inflec
directions. One can conjecture that the properties of a Q
are very similar to that of a true saddle point associate to
instantaneous configuration; however, a relationship betw
them has still to be proved. In the simulated MLJ system
number of inflection directionsn0 with respect to the numbe
of negative curvaturesnS are reported in Table I for the
different investigated temperatures. The values ofn0 ~from 1
to 4! indicate that they correspond to few directions in t
configuration space; a small value that allows us to sp
about QSP as good candidates to approximate the prope
of the true saddle points. We note that the fractionf
5n0 /nS is higher for the low temperature data~where the
quantitynS is small!, evidencing how these points are mo
influenced by inflection directions. However, also in this ca
it is possible to estimate the error in the calculation of
order~see Fig. 5 in the next section!, evidencing the robust
ness of the obtained results.

A natural question now arises: what are the relevant f
tures of the found minima ofW that are useful to describe th
long time dynamics of the supercooled liquids analyzed?
the spirit of our early simple conjecture that the releva
quantity is related to the number of negative curvatures
saddle points, we speculate that the relevant information
the negative curvatures and not in the few inflection dir
tions. So, no matter if they aretrue or quasisaddle points, we
are going to check if their properties are able to describe
to give a microscopic interpretation of the dynamic proces
in the supercooled regime.

III. DYNAMIC TRANSITION

We first analyze the temperature behavior of some qu
tities related to quasisaddle points, and compare them to

TABLE I. Average number of negative curvatures (nS) and inflection direc-
tions (n0), and their ratio~f ! at minima ofW for different temperatures.

T nS
a n0

b f c

0.49 1.4 1.1 0.78
0.53 3.0 2.4 0.80
0.57 5.6 2.5 0.45
0.61 7.0 3.1 0.44
0.64 7.6 2.8 0.37
0.71 10.3 2.9 0.28
0.81 15.9 3.6 0.23
0.97 20.3 3.4 0.17
1.13 24.5 4.3 0.18
1.28 30.1 3.9 0.13
1.44 32.9 3.9 0.12
1.57 36.2 4.4 0.12

aAbsolute number of negative curvatures.
bAbsolute number of zero curvatures~excluding translations!.
cFraction of inflection directionsn0 /nS .
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corresponding behavior of the same quantities calculate
instantaneous configurations and at inherent structures.

For each temperature~ranging fromT;1.6 to T;Tc!,
we analyze 20 independent equilibrium configurations. F
each configuration we calculate the associated IS, im
menting a steepest descent algorithm which moves in
direction of 2“V5F, and the associated minimum ofW,
moving in the direction of2“W5H•F, whereH is the
Hessian matrix. So, at each temperature, we have three
ferent points of the configuration space: the instantane
configurationr , the inherent structurer IS , and the quasi-
saddle configurationrS .

In Fig. 3 the temperature dependence of the energie
the different points are shown:e, eIS , andeS . The value of
the mode coupling temperatureTc50.475 ~obtained by dif-
fusivity data, see Sec. IV! is also indicated. The energy of th
inherent structures shows a constant behavior down tT
;0.8, below which it starts to decrease abruptly~note how-
ever the small variation range with respect to that of theeS!.
Below this temperature the system starts to visit basins
minima of lower and lower energy. The quantityeS shows a
different behavior, decreasing gradually with temperat
and approachingeIS close toTc . The fact thateS lies well
below e indicates that the process of minimization of th
pseudopotentialW consists in a downward path in the PE
along the majority of the degrees of freedom. The coin
dence ofeIS and eS at Tc suggests the hypothesis that th
sampled saddles start to be mainly minima at this temp
ture. The answer to this question is in the behavior of
number of negative curvatures as a function of temperat
In Fig. 4 the fraction of negative curvatures~number of nega-
tive curvatures over the total degrees of freedom 3N! is
shown for the analyzed configurationsr (n) andrS (nS) ~ob-
viously this number is zero for the inherent structuresr IS!.
The first thing to observe is that the quantitynS lies well
below the instantaneous ordern, indicating that the proces
of minimization ofW leads to a point well below in the PES
with a number of negative curvatures less than that at
equilibrium starting point. We have then found a dire
method to reject many negative eigenvalues~corresponding
to not diffusive directions! of the Hessian at the instanta
neous configurations. If the remaining negative curvature
rections are those useful to describe the slow dynamics of

FIG. 3. Instantaneouse, saddlees , and inherent structureeIS energies as a
function of temperature.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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system, will be soon clear. A first good indication of th
relevance of the quantitynS for the description of the dynam
ics is the fact that its well defined temperature behavior
trapolates to zero very close to theTc value. In Fig. 5 the
temperature behavior ofnS(T) is shown in a larger scale. I
is shown thenS calculated in a direct way~as the fraction
number of negative curvatures at the minima ofW! and an
upper and lower estimation of the ‘‘true’’ saddle order, co
sidering all the inflection directions as if they contributed
the saddle order~upper points! and as if they did not contrib
ute to it ~lower points!. Fitting the three different data with
power law (T2T0)g, we obtain very similar value ofT0

;Tc , indicating the robustness of the analysis.
The sampled minima ofW are then QSP with a numbe

of negative curvatures that decreases lowering the temp
ture, and approaches zero at the temperature of the dyn
mode coupling transition. AtTc and below it,T,Tc , the
sampled saddles are in average minima ofV, i.e., saddles
with order zero. The emergent scenario for the dynamic
then the following:

For T.Tc the system lies with high probability close t
borders of basins of attraction of inherent structures.

For T,Tc the system spends most of the time trapped
the basins of inherent structures.

These findings confirm the conjecture thatTc marks a

FIG. 4. Instantaneous ordern, and saddle orderns as a function of tempera-
ture T.

FIG. 5. Saddle orderns as a function of temperature. The open squares
the upper and lower estimations considering the ‘‘false’’ directions~see text
for details!.
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dynamics crossover, evidencing a possible structural PES
terpretation of this change in the dynamics.

We conclude this section showing the distributions of t
quasi saddle order for different temperatures. In Fig. 6
distributionPn of saddle ordern ~now we indicate withn the
absolute saddle order, i.e., the total number of negative
vatures, not the fraction! is shown for four different tempera
tures. A simple conjecture allow us to obtain a prediction
these distributions. Assuming the independence of the
evant slow degrees of freedom and a simple one-dimensi
profile of the independent coordinate~with only a minimum
and a maximum! we have that the distribution of the sadd
ordern of N degrees of freedom is simply the binomial di
tribution Pn5(n

N)pn(12p)N2n, where p is the probability
that the single degree of freedom is close to~inside the basin
of attraction of! the maximum. In the largeN and smallp
limit we obtain a Poisson distribution

Pn;
^n&n

G~n11!
e2^n&, ~1!

written in term of theG function (G(n11)5n!) and of the
mean value of the saddle order^n&5pN ~the temperature
dependence is in thep parameter—smallp means low tem-
perature!. Lines in Fig. 6 are the distributions obtained fro
Eq. ~1!, with the ^n& value fixed by the data. They well de
scribe the measured distributions, suggesting the correct
of the simple viewpoint of independent degrees of freed
~a simple model with this ingredient will be study in detail
the last section!.

IV. DIFFUSION

As demonstrated in the preceding section, some feat
of the saddles probed during the dynamic evolution of
system are able to capture the dynamic crossover atTc . In
order to corroborate this finding we now go to analyze
diffusion properties in the supercooled regime and to e
dence a possible relationship with the saddle ordernS .

For different temperature aboveTc we have calculated
the mean square displacement

R2~ t !5
1

N (
i

^urW i~ t !2rW i~0!u2&, ~2!
e

FIG. 6. Distribution of saddle ordern ~the absolute number of negativ
curvatures! for four different temperatures. The line are the Poisson dis
butions~see the text!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10302 J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Angelani et al.
and, from its long time behavior, the diffusion coefficientD,

D5 lim
t→`

R2~ t !

6t
. ~3!

In Fig. 7 the diffusion coefficientD is shown as a function o
temperature. The mode coupling theory predicts a power
divergence of the inverse diffusivity close toTc , so the be-
havior of the diffusion coefficient is a method to estima
Tc . Fitting the data with power law~line in Fig. 7!

D~T!}~T2Tc!
g, ~4!

we obtain the valueTc50.475.
The fact that also the saddle ordernS extrapolates to zero

at Tc , suggests the possibility of a relationship betweennS

and the diffusivityD. A direct prediction of a relation be
tween the two quantities arises from a simple interpreta
of the dynamic processes. Supposing that the slow degre
freedom responsible of the diffusion processes are in s
way related to the number of negative curvatures of
probed saddle points at a given temperature, one can tr
predict a relationship between the saddle ordernS and the
diffusion coefficient. Assuming that the number of diffusiv
directions at a given temperature are proportional to
saddle order at the same temperature, we can think of
diffusive process as a random walk process in a spac
dimension equal~or proportional! to the saddle ordernS . In
this case one expects that the diffusion coefficient is prop
tional to the temperature times the saddle order,

D~T!}Tns~T!. ~5!

We note that this hypothesis does not mean that in genera
the negative curvatures at a generic saddle point are re
to a slow diffusive process, as there are saddles relate
small local rearrangements of atoms. It means only that
process of minimization ofW, starting from an equilibrated
configuration, leads in average to a point~saddles or quasi
saddle does not matter! with negative curvature directions i
some way related to the true diffusive directions. In Fig
the diffusivity over the temperature calculated through m
lecular dynamics simulations and the saddle ordernS are
shown as a function of temperature: it seems that the sim
random walk model on a reduced space works well. Elim

FIG. 7. Diffusion coefficientD as a function of temperature. The line is
power law fit with parameters reported in the text.
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nating the temperature and plotting the two quantities o
against the other in a double log scale~inset of Fig. 8! we see
that the Eq.~5! is well suited, except the last low temperatu
point, which is however the most influenced by a possi
not good equilibration procedure. This kind of analysis d
serves further investigations, for example, analyzing in
more direct way the paths during the molecular dynam
evolution and their relation with the negative curvature
rections at saddle points. However one result emerges
strong way: the quantitynS seems to be very useful to repro
duce dynamic processes and to give a possible PES inte
tation of them.

V. LANDSCAPE FEATURES

The previous analysis of the PES allows us to infer so
topological characteristics of the landscape itself. The fi
feature of the PES we analyze is the energy organizatio
the saddles, i.e., a possible relation between energy and o
of saddle points. Plotting@see Fig. 9~a!# the saddle energyeS

FIG. 8. Diffusivity over temperatureD/T and saddle orderns ~multiplied by
a constant factora! as a function of temperature. The line is the power la
fit of diffusivity. In the inset the two quantities one against the other in
double log scale. The line has slope equal to 1.

FIG. 9. Saddle energyes ~a! and saddle energy elevation from underlyin
minima es2eIS ~b! as a function of saddle orderns .
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as a function of the saddle ordernS ~using all the saddles
found at different temperatures!, as done in Ref. 23, i.e.,

es~ns!}De8nS , ~6!

the data can be reproduced withDe8513.5. However, data
at low energy~and order! deviate from the linear fit. Observ
ing that these points are those sampled in the tempera
range where the inherent structures start to decrease in
energy values, one is attempted to relate the deviation f
the linear fit of the energy-order relation to the inhere
structure behavior. In Fig. 9~b! the quantity plotted agains
the saddle ordernS is the elevation energyeS2eIS of saddles
with respect to the corresponding local minima~minima vis-
ited at the same temperatures!, obtaining now a remarkable
linear relationship in the full temperature range

eS~nS!2eIS5DenS , ~7!

with De513.3. This suggests that the energy landsc
above a given minimum is organized in families of equa
spaced energy saddle points, with only a single energy
rier parameter~in average! De, that represents the energ
gap between a saddle of ordernS and a saddle of ordernS

11. A possible explanation of this result is the followin
saddles of a given order are obtained from a combination
independent saddles of order 1, that lie a fixed amount o
minima. One can think of the excitations as a ‘‘gas’’ of no
interacting degrees of freedom~in the next section we de
velop this viewpoint in a deeper way, introducing a simp
landscape model!. Similar results are found in the out-o
equilibrium regime,29 suggesting that the PES properties o
tained are not influenced by the kind of dynamics the sys
uses to explore its PES.

Another interesting topological information about th
PES is obtained calculating the distance relations betw
adjacent inherent structures. For each saddle point we h
perturbed the system along a randomly chosen negative
vature direction and then started a minimization procedur
the potentialV in order to find the underlying minimum. Th
same minimization has been performed perturbing the
tem along the previous negative curvature direction bu
the opposite way. In this way we obtain couples of inher
structures associated to each negative direction~we call them
adjacentinherent structures!. We then evaluated the Euclid
ean distance between adjacent IS, defined as

dIS
2 5

1

N (
i

^urW i~ IS1!2rW i~ IS2!u2&, ~8!

where IS1 and IS2 are two adjacent minima and the avera
is over different couples of adjacent IS. In Fig. 10 the qu
tity dIS

2 is shown as a function of the ordernS of the starting
saddle. The observed linear relation between the two qua
ties

dIS
2 ~nS!5d0

2nS ~9!

~with d0
259.6! suggests a simple topological interpretatio

the descent path from a saddle of ordernS towards the un-
derlying minima can be viewed as a sequence of indepen
random steps, each of them decreasing the saddle order
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and increasing the mean square distance between the u
lying local minima by a constant amountd0

2.
The above results seem to indicate that in some asp

the PES exhibits a very simple and organized structure. T
suggests the possible use of simple solvable mathema
models in order to capture some of the relevant feature
the PES explored in the supercooled regime.

VI. TRIGONOMETRIC MODEL

A very simplified model that is able to capture some
the regular characteristics of the PES of liquids eviden
above, is the so-called trigonometric model~TM!, introduced
by Madan and Keyes.31 In this section we calculate for th
TM the behavior of the quantities previously analyzed for t
Lennard-Jones system.

The TM is a model forN independent degrees of free
dom with Hamiltonian

HTM5D(
i

@12cos~w i !#, ~10!

where $w i% are angular variables:w iP@0,2p). The PES of
TM reproduce the regularity of the average saddle proper
of the Lennard-Jones PES: saddles of ordernS are 2D over
~in energy! andp near~in distance! saddles of ordernS21.
The thermodynamics is easily computable, as the parti
function is factorized,

ZTM~b!5Z0
N~b!, ~11!

whereb5T21 ~we use the unitKB51! and

Z0~b!5E
0

2p

dw e2bD@12cos~w!#52pe2bDI 0~bD!, ~12!

where I 0 is the Bessel function of order zero. The ener
densityeTM52N21]b log(ZTM) is easily written in terms of
I 0 and I 1 @the Bessel function of order 1,I 1(x)5I 08(x)#,

eTM~b!5DF12
I 1~bD!

I 0~bD!G . ~13!

In order to test the reliability of TM in the description o
liquid behavior, we now calculate the diffusion coefficie
and the saddle order as a function of temperature. The d

FIG. 10. The mean square distance between adjacent minimadIS
2 vs saddle

orderns .
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sion coefficientDTM is exactly computable calculating th
mobility in linear response,32 with the introduction of Lange-
vin dynamics,

gẇ i~ t !5F2“ iHTM1h~ t !, ~14!

whereF is an external force,g is the friction,h is a random
variable with mean zero andd correlate in time
^h(t)h(t8)&5(2g/b)d(t2t8) ~we choosem51 mass unit!.
Following Ref. 32 we obtain

DTM5
1

gbI 0
2~Db!

. ~15!

Using the expansion ofI 0 for large argument@I 0(x)
;exp(x)/Ax, for largex# we obtain the Arrhenius behavio
for the diffusivity at low temperature,

DTM}e22bD for low T ~16!

~we note the value 2D is the energy barrier value for th
single degree of freedom!. The dimensionless quantity

DTM

D0
5I 0

22~Db!, ~17!

where D05(gb)21 is the free Brownian diffusion coeffi
cient, is shown in Fig. 11 as a function of temperature~line!.
An interesting observation arises from the comparison
tween this theoretical canonical result and a numerical
potential~dynamics at constant potential energy! calculation.
The points in Fig. 11 are obtained from a simulation ofN
51000 variables constrained to move at constant poten
energy~the dynamics is a random walk dynamics in whi
the forces2“ iH are projected to the constant potential e
ergy surface!. The coincidence between analytical and n
merical data evidences how canonical and isopotential ca
lations lead to the same equilibrium dynamic properties.
Fig. 12 the diffusion coefficientDTM is shown as a function
of temperature in a semilogarithmic scale. We note that,
thoughDTM is a smooth function, one can define a change
the behavior extrapolating a critical temperatureTc , using a
power law fit in the low temperature range~from 0.5 to 1.5!:

DTM~T!}~T2Tc!
g, ~18!

FIG. 11. The reduced diffusivityDTM /D0 as a function of reduced tempera
ture T/D. The symbols are from isopotential simulation~see the text!.
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obtaining the valuesTc /D50.38 andg51.2. BelowTc the
diffusion coefficient can be approximated by Eq.~16!, a low
T Arrhenius behavior with energy barrier value 2D ~see the
inset in Fig. 12!.

The saddle ordernTM is also computable in an exac
way. Defining it as the negative curvatures at minima ofW
5u“Hu2 ~we note that, in the TM, all the minima ofW are
true saddles ofH and, moreover, the instantaneous ord
coincides with the saddle order! we can calculate the equi
librium mean value ofnTM as the probability that the vari
ablew is in the range@p/2, 3p/2#, where theH profile as a
negative curvature

nTM5Z0
21E

p/2

3p/2

dw e2bD@12cos~w!#

5@2pI 0~bD!#21E
p/2

3p/2

dw ebD cos~w!. ~19!

The temperature behavior ofnTM is shown in Fig. 13. Also in
this case it is possible to fit the data with a power law

FIG. 12. The diffusivityDTM as a function of reduced temperatureT/D in a
logarithmic plot~full line!. The dashed line is the power law fit of the hig
temperature range (Tc /D50.38,g51.2). In the inset the low temperatur
behavior of diffusivityDTM is shown as a function of inverse temperature
an Arrhenius plot~dashed line indicates slope 2!.

FIG. 13. The saddle ordernTM as a function of reduced temperatureT/D.
The dashed line is the power law fit in the temperature range 0.5–
(Tc /D50.41,g50.58). In the inset reduced diffusivityDTM /D0 against the
saddle ordernTM in a double logarithmic scale. The dashed line has slo
equal to 1.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



iv

t

-
t

e
ti

a
e-

m
rd
na

th
iq
n
tr
pl
he

rg
e
tie
te

th
he
e

fo
o

i-
R
iv
ou

d
lu

de

ni
r-
io
tiv
e

-
s is
se
or-
ints

t
not

t
ses

with
at

se
ot

h

has

o an

ral
rel-
S

s
ob-

fied
tics

na-
an
of
d
the
as-

ng
this

–

,

10305J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Dynamics of supercooled liquids
close toTc ~from 0.5 to 1.5!, obtaining a value ofTc /D
50.41, close to that obtained from diffusivity (Tc /D
50.38).

Having calculated the temperature behavior of diffus
ity DTM(b) and saddle ordernTM(b), we can now try to
study the relationship between them. Due to the fact tha
direct analytical expression ofDTM as a function ofnTM is
not available, we study it numerically eliminating the tem
perature parameter. The relationship is shown in the inse
Fig. 13, where the quantityDTM /D0 is plotted againstnTM in
a logarithmic scale~this plot corresponds to that of th
Lennard-Jones system—inset of Fig. 8—as the quan
DTM /D0 is proportional tobDTM!. The investigatedT range
is close to the critical temperatureTc ~as in the liquid sys-
tem! and also in this case we find an approximatively line
relationship~the dashed line in the inset of Fig. 13 corr
sponds to a power law with exponent 1!:

DTM}TnTM . ~20!

In conclusion, the very simple TM is able to reproduce so
of the properties emerged in the analysis of the Lenna
Jones liquid system, indicating that the use of simplified a
lytical model of the PES is a promising field of research.

VII. CONCLUSIONS

The analysis of the PES has been very useful in
investigation of supercooled dynamics of simple model l
uids. Besides the two main approaches in the investigatio
the PES, the instantaneous normal mode and inherent s
ture approaches, we have discussed an additional sam
of the PES explored during the dynamic evolution of t
system in configuration space: it consists in the analysis
the minima of the square gradient of the potential ene
W5u“Vu2. The characteristics of these sampled points se
to have a very close relationship with the transport proper
of the system. The main result we obtained is the charac
ization of the dynamic transition temperatureTc as the tem-
perature at which the behavior of quantities related to
minima of W changes on character: more specifically t
number of negative eigenvalues of the Hessian at th
points extrapolates to zero atTc . The minima ofW sampled
at different temperatures appear to contain the relevant in
mation about the diffusive directions and the process
minimization of W eliminates the nondiffusive negative d
rections usually present at instantaneous configurations.
cently, an interesting technique to evaluate the nondiffus
directions as been adopted in Ref. 33. In some previ
works we called these pointssaddles, as the absolute minima
of the function W are true saddle points ofV. However,
following Doye and Wales25 a closer inspection has reveale
that very often the sampled minima during dynamic evo
tion are local minima ofW, that correspond toinflection
points of V ~the energy profile along some normal mo
directions at these points is an inflection direction!. The fact
that the number of inflection directions at a given local mi
mum of W is small, allows us to think that the main prope
ties of these points are determined by the saddle direct
~that give the value of the order, i.e., the number of nega
curvatures!. A further evidence of the relevance of th
Downloaded 13 Feb 2004 to 141.108.6.119. Redistribution subject to AIP
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minima of W is obtained analyzing the diffusivity. The tem
perature behavior of the number of negative curvature
related to that of the diffusion coefficient, indicating a clo
relationship between them. It could be that the main inf
mation about the dynamic processes is in the saddle po
and the relevant properties of the local minima ofW are good
approximations of the properties of thesetrue saddle points.
But there is also the possibility that thetrue saddles are no
so relevant in the description of the dynamics, at least
more relevant than points with inflection directions~local
minima of W!.

All these findings lead to the following viewpoint abou
the supercooled dynamics: the relevant diffusion proces
happen in a subspace of the total configuration space
dimension proportional to the number of saddle directions
the sampled minima ofW, and, due to the presence of the
‘‘open’’ directions, the relevant diffusive processes are n
activated in energy. BelowTc things are different, as the
number of negative directions at sampled minima ofW is
vanishingly small, indicating that the system is with hig
probability in a basin of an inherent structure~minimum of
V!. In order to change basin and diffuse, now the system
to find the ‘‘good’’ directions leading to other minima~an
entropic process, considering the whole 3N dimensional
space of the degrees of freedom, that could correspond t
energy activatedprocess in a suitablen dimensional
subspace—withn!3N!.

Another important result obtained refers to the structu
organization of the PES, i.e., the relationship among the
evant points of it. A very simple structure of the PE
emerges: saddles of ordern11 lie above saddles of ordern
by a constant quantityDe and adjacent inherent structure
are equally spaced in configuration space. The above
served regularities suggest the possible use of simpli
models of the PES in order to capture relevant characteris
of the supercooled dynamics of liquids. The model we a
lyzed here is the trigonometric model, introduced by Mad
and Keyes,31 a model of independent sinusoidal degrees
freedom. The behavior of the calculated diffusivity an
saddle order seems to indicate that the model, despite
absence of cooperativity, is able to reproduce important
pects of liquid dynamics close toTc . The study of more
complex and realistic PES models, with interactions amo
the degrees of freedom, is a interesting development of
kind of analysis.
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