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Quasisaddles as relevant points of the potential energy surface
in the dynamics of supercooled liquids
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The supercooled dynamics of a Lennard-Jones model liquid is numerically investigated studying
relevant points of the potential energy surface, i.e., the minima of the square gradient of total
potential energy. The main findings aré) the number of negative curvature®f these sampled
points appears to extrapolate to zero at the mode coupling critical tempeiBturéi) the
temperature behavior ofi(T) has a close relationship with the temperature behavior of the
diffusivity; (iii) the potential energy landscape shows a high regularity in the distances among the
relevant points and in their energy location. Finally we discuss a model of the landscape, previously
introduced by Madan and Keyg§3d. Chem. Phys98, 3342(1993], able to reproduce the previous
findings. © 2002 American Institute of Physic§DOI: 10.1063/1.1475764

I. INTRODUCTION we describe and revisit in a detailed way an additional ap-
o o _ . roach, that has been very useful to give new insight in the
The supercooled liquid regime is the interesting state Ogmalysis of the relevant processes taking place in the super-
the matter which precedes the glass formatmmce the crys-  ¢qoled liquid regime. This approach focuses on the minima
tal state is avoided Many efforts have been devoted to bet- ot the square gradient of the total potential energy, “closest”
ter understand the relevant physical processes taking place {g e instantaneous points of the molecular dynamics trajec-

the supercooled state, the most important being the enormoys,y, s approach allows one to obtain a microscopic inter-

mcreasedof b?th rela}?a(;uon t'mej and |r_1vertshe Tffuswg{ bypretation of the relevant processes, the main result being the
many order of magnitude upon decreasing the emperatur€up, , 4 cterization of the dynamics above and below the mode

I_n r?ce”‘ years _the numerical |nves_t|gat|on Qf S'mp'? r.mdefcoupling temperaturd,.'* Moreover, the analysis of these
liquids has provided a very useful microscopic description of__. . !
oints allows one to obtain information about some relevant

the supercooled regime and a detailed picture of the struc- - :
i . . characteristics of the PES, of great importance to construct
tural rearrangement of atoms during the dynamic evolution.

One of the most powerful frameworks for the study of simplified models of the landscape.

supercooled state has been the so-called potential energy sm—MLet;ihb”eg resumehtrjlfahtvvlclj\lmaln ;Ei gpgroac(;hes, tLhe
face (PES description of the systeAr This approach fo- and the 1> approach. The method Is based on the

cuses on the properties of the multidimensional surface ofvestigation of the PES around the instantaneous configura-

the total potential energy sampled during the time evolutior'o"S' (r represents thel$-dimensional vector of the repre-

of the representative point in the\dimensional configura- SeNtative point in the configuration spaaturing the mo-
tion spaceN is the total number of particlesDifferent land- ~ '€cular dynamics evolution of the system. The diffusive
scape features may control the motion of the partitfds, —duantities are supposed to be related to the shape of the en-
and the aim is to find those characteristics of the PES theR'9Y surface at, that is to say the eigenvalues and eigenvec-
have a direct relationship wittif possible the main causes tors of the Hessian matrithe second derivative of the po-
of) the emergent behavior of the relevant physical quantitiesiential energy. The main hypothesis of the INM approach is
The challenge is to find thegood' landscape features that that the relevant diffusive directions have to be searched
one supposes to be responsible for the interesting phenor@mong the downward curvaturésigenvectors with negative
ena, or at least useful to give a clear interpretation of themeigenvalues Many attempts have been devoted to extend
Among others, two different landscape approaches have bedhis approach to different liquid systems and to develop a
widely used in the last decades in this context: the instantatheory of the supercooled liquid state based on INM con-
neous normal mode$NM) approach? based on the inves- cepts. Moreover many efforts have been spent to recognize
tigation of the PES very close to the instantaneous point irthe true diffusive directions among all the downward ones, as
the configuration space during the molecular dynamics evoit is known there are downward curvatures that do not cor-
lution of the system, and the inherent structurdS) respond to diffusive directions, notably in the crystalline
approach;? based on the analysis of the minima of PES vis-state. The INM negative curvature directions are classified as
ited by the system during its dynamic evolution. In this papershoulder modesrelated to anharmonicities of the PEShd
double wells(with a double well shaped one-dimensional
dAlso at INFM—Center for Statistical Mechanics and Complexity, Univer- profile). Diffusive directions are finally identified as those
sitadi Roma “La Sapienza,” P.le Aldo Moro 2, 1-00185, Roma, ltaly. leading to different minim®& (this analysis involves the
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search of the minima of the PESThe temperature depen- tained by a minimization ofVV|2—has been further used in
dence of the diffusion coefficient has been shown to be rethe investigation of the supercooled liquid dynariié§and
lated to the temperature dependence of the fraction of diffuaging dynamicg?
sive directions® On the basis of this analogy, it has been As we anticipated above, there is a drawback in the ap-
conjectured a structural interpretation of the mode couplingproach used in Refs. 22 and 23. In fact, while it is true that in
temperaturel . as the temperature at which the number ofa saddle pointstationary point of the 3N-dimensional sur-
diffusive directions goes to zerd. face V(r), the functionW has a minimum(actually, W=0

The second IS landscape approach is based on the analjrere andW has a global minimum the reverse is not guar-
sis of the inherent structures, the minima of the PES. To eachnteed to be true. There are local minima\Wf with W
instantaneous configuratisrone associates a inherent struc- # 0, that are NOT stationary points &f. In these points,
turers (using, for example, a steepest descent path startinglong one or more directiong ¢), parametrized by, the
fromr), r—r,g, partitioning the whole PES in the basins of function V(£) has an inflection point. In these inflection
attraction of minima. This kind of analysis has been verypoints (QSP, the Hessian oV has a number of vanishing
useful not only in the study of the diffusive directions in the eigenvaluegexcluding the three translation directiorexjual
supercooled regimésee the previous discussion about theto the number of directions(¢) whereV has an inflection
INM), but also in the study of thermodynamic quantitits  point. This property has been used in Ref. 22 in order to
example, to evaluate the configurational entf8py) and in  identify the QSP: a threshold was arbitrarily chosen, and all
the study of the out-of-equilibrium dynamié%?! the minimizations of/ that lead to points where the Hessian

In the present work we adopt a new approach in theof V has at least one eigenvalue smaller modulug than
analysis of the PES, in some way intermediate between thihe threshold were discarded from the analysis. In Ref. 22 we
previous two, in that it maintains information about the pos-claimed that only a small fraction of minimizations ended in
sible diffusive degrees of freedoffas the INM approach a QSP points, and we estimated in 2% the error introduced in
and uses a mapping in the PES that associates instantaneausby the choice of the threshold.
configurationsr to new points in the PE%as the IS ap- Doye and Wales have shown—by the analysis of the
proach. In this approact??® the minimarg of the square same system investigated in Refs. 22 and 23, the BMLJ with
gradient of the potential energW=|VV|? (saddles and periodic boundary conditions—that almost éround 95%
some inflection points of the PESreached starting from in their work) the minimizations ofV ended in a QSP point,
equilibrated configurations, are calculated. This procedure and not in a true saddle as claimed in Refs. 22 and 23. Mo-
partitions the PES in basins of attraction of this new pointstivated by such contradictory results, we reanalyzed the
r—rg. The choice oW, suggested long time ago by Weber minima of W found in Ref. 22. In this work we show the
and Stillinger?* was motivated by the fact that saddles pointsresult of such an analysis. We conclude that the results of
of V are absolute minima d#V. As pointed out recently by Doye and Wales are correct and the error in the analysis in
Doye and Wale® and discussed in more details in the fol- Ref. 22 originates from the “imperfect” minimization of:
lowing, the numerical minimization dfV locates mostly lo- in a point close tqbut not exactly atQSP, the Hessian &f
cal minima ofW, i.e., points which are not real saddles\of  no longer has “small” eigenvalues, and the criterion used to
For this reason in the following we refer to the local minima identify false saddles fails.
of W as quasisaddle pointQSP.?° In Refs. 22 and 23 the One puzzling question, however, still remains open: why
topological and metrical properties of such points have beethe quantityng, i.e., the number of negative eigenvalues at
used for a description of the dynamics of supercooled ligthe minima ofW, is related to the critical temperature of the
uids. The investigated systems were monatomic Lennardsystem? It remains true thag(T) extrapolates to zero at. .
Jones and/or binary mixture Lennard-Jones. After equilibrain the present paper we address this question, and we will
tion of the system at a given temperatlrecorresponding to  further stress the importance of the quantity; we will
a given instantaneous potential eneggythe minima ofW  show that also the transport properti@eamely the diffusion
were searched and associated to the stationary point of coefficienj can be determined by the knowledgerny.
(saddles Then the energyes and the number of negative The paper is organized as follow: In Sec. Il we describe
curvaturemng at these saddle points were measured. The dethe new approach, defining the saddles of the PES and study-
pendence oég andng on the temperatuféor one (Ref. 23 ing very carefully their operative definition and the problems
show interesting propertie$t) the quantityng extrapolates related to the presence of false saddles. Then in Sec. Il we
to zero atT., demonstrating the validity of the conjecture expose the relevant results obtained with the new PES ap-
that T, marks the transition between a dynamics amongroach, giving a topological interpretation of the mode cou-
minima at lowT and a dynamics among saddles at high pling dynamic transition. In Sec. IV the relationship between
(i) the aspects of the energy landscape seen by a given mirdiffusivity and saddle properties is evidenced, giving a
mum is highly regulafas demonstrated by the linear depen-simple interpretation of the diffusion processes in terms of
dence ofng on es—e;g (Ref. 22 or on eg (Ref. 23]. The  saddle order. In Sec. V we describe some landscape features
previous observation leads to the conclusion that the knowlas emerged from saddle analysis. In Sec. VI a simplified
edge of thesaddlepoints properties can be used to predictmodel of the PES is described, together with its relevant
the supercooled dynamics and points out the relevance gfroperties compared to the features of model liquids investi-
these peculiar PES points. gated above. At the en(Bec. VI)) a brief summary of the

Following these papers, the conceptsaiddles—as ob-  main results and conclusions are reported.
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II. QUASISADDLE POINTS

The analyzed system is a simple model liquid, a mon- A
atomic modified Lennard-Jones 6-1®ILJ). The model is \
able to support strong supercooling without the occurrence v oI~ e
of crystallization, due to the presence of a small perturbation
term in the Hamiltonian that inhibits orderirithis term is a :
function of the static structure factor, see Ref. 30 for more
detailg. The system is composed &f=256 particles en-
closed in a cubic box with periodic boundary conditions.
Truncated R,=2.6) and shifted LJ potential are used. Equi-
librium configuration are prepared by standard microcanoni-
cal molecular dynamics simulations at constant dengity
=1 (standard LJ units are used heregfteand at tempera- w
tures ranging from the normal liquid phase~+ 1.6) down to
the mode coupling temperatu(@.=0.475, estimated from
diffusivity).

The aim of our approach is to use a method of investi-
gation of the PES that allows us to reject all tienrelevant Coordinate
degrees of frgedom fo.r the_ description of the ?IOW Sup_erf:IG. 1. Example of profile o/ andW along a given direction. The mini-
cooled dynamics. The idea is that there are particular POINtSym and maximum o¥ correspond to absolute minima . The arrows
of the PES associated in some way to the instantaneous Comdicate the basins of attraction of the minimawf
figurations, and that the properties of these points contain all
the important information for the determination of the slow
dynamics. Possible and natural candidates are the saddle We note that at inflection points the eigenvalues of the
points of the PES. In principle one can think to partition theHessian vanish, so in principle one can recognize them sim-
whole configuration space in basins of attraction of saddle®ly analyzing the eigenvalues of the HessiarVofin a pre-

(the definition of the partition is obviously not unique, a Vious work? we used this eigenvalues criteri¢choosing a
possible choice could be that obtained using the Voronothreshold to discriminate inflection directiorend we found
polyhedra in the Bl-dimensional spageHowever a useful that local minima ofW were found very rarely. A closer
partition in basins of saddlgshat is local, i.e., allows us to inspection, however, has revealed that, due to “imperfect”
associate a saddle point to each instantaneous configuratiofinimizations of W, the eigenvalues associated to a point
using only local information of the PES still not available.  “close” (due to the not perfect minimizatipto an inflection

A possible partition is that obtained using the pointwere of the same order of magnitude of the eigenvalues
pseudopotentidt W=|VV|?, associating to each instanta- associated to a saddle. Refining the analysis of the minima of
neous configuration during the molecular dynamics a miniW, we find that the number of points that are true saddles is
mum of W

instantaneous configuratiepminimum of W.

However, as already pointed out, the relation between all the
minima of W and saddles o¥ is not one-to-one: absolute
minima of W (with W=0) are all saddles o¥ v

absolute minima ofW+« saddles ofV,

but local minima(with W>0) are inflection points ofV
(more precisely they are inflection points with the first de-
rivative of V of the same sign of the first derivative of the
curvature in the inflection direction

local minima of W—inflection points of V.

In Figs. 1 and 2 examples of two possible one-dimensional
profiles ofV and corresponding/ are shown as a function of

a generic one-dimensional coordinate. In Fig. 1 the two ab-
solute minima ofW correspond to two saddle points\&f(in

one dimension a minimum and a maximunihe arrows
define the basins of attraction of minima @, and the Coordinate

boundanes of these _bE_iSIﬂS are indicated with Open_symbOIIS—lG. 2. Example of profile o¥/ andW along a given direction. The inflec-
In Fig. 2 the local minimum ofV corresponds to an inflec- tion point of v corresponds to a local minimum of with W>0. The
tion point of V. arrows indicate the basins of attraction of the minimansf
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TABLE |. Average number of negative curvaturess( and inflection direc- F T T T T
tions (ng), and their ratiof ) at minima ofW for different temperatures. 4.5 o g o
o L S °
T ns® no® fe 5.0p ® s ° .
o

0.49 1.4 11 0.78 55- ° i
0.53 3.0 2.4 0.80 o L T, o °
0.57 5.6 25 0.45 6.0 * o _
0.61 7.0 3.1 0.44 S 'p° o ®
0.64 7.6 2.8 0.37 -6.5F : « ¢ ° .
0.71 10.3 2.9 0.28 3 | . : o o o o o o
0.81 15.9 36 0.23 -1.0 b8 .
0.97 20.3 3.4 0.17 £ Ll L 1 £
1.13 245 43 0.18 0.0 0.5 1.0 L5
1.28 30.1 3.9 0.13 T
1.44 32.9 3.9 0.12
1.57 36.2 4.4 0.12 FIG. 3. Instantaneous saddlees, and inherent structures energies as a

function of temperature.

@Absolute number of negative curvatures.
bAbsolute number of zero curvaturésxcluding translations

‘Fraction of inflection directiong, /ng. . . "
ors corresponding behavior of the same quantities calculated at

instantaneous configurations and at inherent structures.

very small(about 1% of the tota) so almost all the minima For each temperaturganging fromT~1.6 to T~To),

of W found are inflection points. However, there is anotherVe analyze 20 independent equilibrium configurations. For
interesting characteristic that has to be considered, the nunfach configuration we calculate the associated IS, imple-
ber of inflection directiongnumber of zero eigenvalues of MeNting a steepest descent algorithm which moves in the
Hessian, excluding the translatiorst the minima ofw: if ~ direction of —VV=F, and the associated minimum W,

this number is small one can think of the minimawfas a ~Moving in the direction of-VW=7%-F, where’{ is the
“quasi” saddle point(QSB, as they ardrue saddle points in Hessian r_‘natnx. So, at egch te_mperature, we have three dif-
the subspace orthogonal to the small number of inflectiofl€rent points of the configuration space: the instantaneous
directions. One can conjecture that the properties of a Qsponfigurationr, the inherent structure;s, and the quasi-
are very similar to that of a true saddle point associate to afaddle configurations. _
instantaneous configuration; however, a relationship between [N Fig. 3 the temperature dependence of the energies of
them has still to be proved. In the simulated MLJ system thdhe different points are showe; &, andes. The value of
number of inflection directions, with respect to the number the mode coupling temperatuile =0.475 (obtained by dif-

of negative curvaturesis are reported in Table | for the fusivity data, see Sec. IMs also indicated. The energy of the
different investigated temperatures. The valuespffrom 1 inherent structu.res.shows a constant behavior dowfT to
to 4) indicate that they correspond to few directions in the™~0-8, below which it starts to decrease abrugitipte how-
configuration space; a small value that allows us to speaRVe' the small variation range with respect to that ofefge
about QSP as good candidates to approximate the properti§§|9w this temperature the system starts to visit basins of
of the true saddle points. We note that the fractibn ™Minima of lower and lower energy. The quantéy shows a
=ny/ng is higher for the low temperature datahere the different beha_wor, decreasing gradually with t_emperature
quantityng is smal), evidencing how these points are more @1d approachings close toT.. The fact thates lies well

influenced by inflection directions. However, also in this case?lOW € indicates that the process of minimization of the
it is possible to estimate the error in the calculation of thePSeudopotentialV consists in a downward path in the PES

order(see Fig. 5 in the next sectiprevidencing the robust- @long the majority of the degrees of freedom. The coinci-
ness of the obtained results. dence ofe;g and eg at T, suggests the hypothesis that the
A natural question now arises: what are the relevant feaS@mpled saddles start to be mainly minima at this tempera-

tures of the found minima iV that are useful to describe the tUre. The answer to this question is in the behavior of the
long time dynamics of the supercooled liquids analyzed? Wumber of negat!ve curvaturgs as a function of temperature.
the spirit of our early simple conjecture that the relevant!n Fig. 4 the fraction of negative curvaturggimber of nega-
quantity is related to the number of negative curvatures afiVe curvatures over the total degrees of freedoh) 3s
saddle points, we speculate that the relevant information is i§hoWn for the analyzed configurationg) andrs (ns) (ob-

the negative curvatures and not in the few inflection direcviously this number is zero for the inherent structurgg.
tions. So, no matter if they ateue or quassaddle points, we 1ne first thing to observe is that the quantity lies well

are going to check if their properties are able to describe anB€10W the instantaneous ordey indicating that the process

to give a microscopic interpretation of the dynamic processe8f minimization of W leads to a point well below in the PES,
in the supercooled regime. with a number of negative curvatures less than that at the

equilibrium starting point. We have then found a direct

method to reject many negative eigenvalgesrresponding

to not diffusive directions of the Hessian at the instanta-
We first analyze the temperature behavior of some quanreous configurations. If the remaining negative curvature di-

tities related to quasisaddle points, and compare them to thections are those useful to describe the slow dynamics of the

IIl. DYNAMIC TRANSITION
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FIG. 6. Distribution of saddle ordem (the absolute number of negative

curvature for four different temperatures. The line are the Poisson distri-
butions(see the tejt

FIG. 4. Instantaneous order and saddle ordar as a function of tempera-
tureT.

system, will be soon clear. A first good indication of the dynamics crossover, evidencing a possible structural PES in-
relevance of the quantitys for the description of the dynam- terpretation of this change in the dynamics.
ics is the fact that its well defined temperature behavior ex-  We conclude this section showing the distributions of the
trapolates to zero very close to tfig value. In Fig. 5 the quasi saddle order for different temperatures. In Fig. 6 the
temperature behavior afg(T) is shown in a larger scale. It distributionP,, of saddle orden (now we indicate witm the
is shown theng calculated in a direct wayas the fraction absolute saddle order, i.e., the total number of negative cur-
number of negative curvatures at the minimaVéf and an  vatures, not the fractigris shown for four different tempera-
upper and lower estimation of the “true” saddle order, con-tures. A simple conjecture allow us to obtain a prediction for
sidering all the inflection directions as if they contributed tothese distributions. Assuming the independence of the rel-
the saddle ordeupper pointsand as if they did not contrib- evant slow degrees of freedom and a simple one-dimensional
ute to it (lower pointg. Fitting the three different data with a profile of the independent coordinafeith only a minimum
power law (T—Tg)”, we obtain very similar value oT,  and a maximumwe have that the distribution of the saddle
~T., indicating the robustness of the analysis. ordern of N degrees of freedom is simply the binomial dis-
The sampled minima dfV are then QSP with a number tribution Pnz(r’}‘)p“(l— p)N"" wherep is the probability
of negative curvatures that decreases lowering the temperégrat the single degree of freedom is closditside the basin
ture, and approaches zero at the temperature of the dynami¢ attraction of the maximum. In the larg&l and smallp
mode coupling transition. AT, and below it, T<T., the limit we obtain a Poisson distribution
sampled saddles are in average minimaVvofi.e., saddles
- | e ("
with order zero. The emergent scenario for the dynamicsis  p ~_* 2 __g=(m )
then the following: F(n+1)
For T>T, the system lies with high probability close to written in term of thel function (['(n+1)=n!) and of the
borders of basins of attraction of inherent structures. mean value of the saddle ordém)=pN (the temperature
For T<T, the system spends most of the time trapped ingependence is in the parameter—smalp means low tem-
the basins of inherent structures. peraturg. Lines in Fig. 6 are the distributions obtained from
These findings confirm the conjecture thiat marks a  Eq. (1), with the (n) value fixed by the data. They well de-
scribe the measured distributions, suggesting the correctness
of the simple viewpoint of independent degrees of freedom

0.06 ; T ' ; T (a simple model with this ingredient will be study in detail in
g the last section
§ o |
g o
0.04- i ° - IV. DIFFUSION
g L § - ] As demonstrated in the preceding section, some features
8 “ of the saddles probed during the dynamic evolution of the
002 T . . system are able to capture the dynamic crossovdr atin
1 e | order to corroborate this finding we now go to analyze the
:ggdu diffusion properties in the supercooled regime and to evi-
0.00 5 0!5 : 1‘0 . 1'5 dence a possible relationship with the saddle order
) ' ' ' For different temperature above, we have calculated
T the mean square displacement
FIG. 5. Saddle orden, as a function of temperature. The open squares are 1
the upper and lower estimations considering the “false” directi@e® text Rz(t) = N 2 <| Fi(t) — Fi(0)|2>, 2
for details. i
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FIG. 7. Diffusion coefficienD as a function of temperature. The line is a FIG. 8. Diffusivity over temperaturB/T and saddle order, (multiplied by

power law fit with parameters reported in the text. a constant factow) as a function of temperature. The line is the power law
fit of diffusivity. In the inset the two quantities one against the other in a
double log scale. The line has slope equal to 1.

and, from its long time behavior, the diffusion coefficiént . . -
nating the temperature and plotting the two quantities one

RA(1) against the other in a double log scéileset of Fig. 8 we see
6t - ) that the Eq(5) is well suited, except the last low temperature
point, which is however the most influenced by a possible
In Fig. 7 the diffusion coefficienD is shown as a function of not good equi"bration procedure_ This kind of ana|ysi5 de-
temperature. The mode coupling theory predicts a power lawerves further investigations, for example, analyzing in a

divergence of the inverse diffusivity close 1, so the be-  more direct way the paths during the molecular dynamics
havior of the diffusion coefficient is a method to estimateeyolution and their relation with the negative curvature di-

D=Iim

t—oo

T . Fitting the data with power lawline in Fig. 7) rections at saddle points. However one result emerges in a
D(T)x(T—Ty)?, (4) strong way: t_he guantitpg seems t(_) be very gseful to repro-
) duce dynamic processes and to give a possible PES interpre-
we obtain the valug .=0.475. tation of them.

The fact that also the saddle ordeyextrapolates to zero
at T, suggests the possibility of a relationship between \/ | ANDSCAPE FEATURES
and the diffusivityD. A direct prediction of a relation be- ) ] )
tween the two quantities arises from a simple interpretation | "€ previous analysis of the PES allows us to infer some

of the dynamic processes. Supposing that the slow degrees tgpological characteristics of th_e landscape itself. The_ first
freedom responsible of the diffusion processes are in somigature of the PES we analyze is the energy organization of

way related to the number of negative curvatures of thdhe saddles, i.e., a possible relation between energy and order

probed saddle points at a given temperature, one can try {¢f Saddle points. Plottinfsee Fig. )] the saddle energgs
predict a relationship between the saddle omdgrand the

diffusion coefficient. Assuming that the number of diffusive 6.2 —————— — =
directions at a given temperature are proportional to the L Pl
saddle order at the same temperature, we can think of the 6.4 a > a 4
diffusive process as a random walk process in a space of : /,/"’ .
dimension equalor proportional to the saddle ordemng. In & -6.6- /_/" =
this case one expects that the diffusion coefficient is propor- - e .
tional to the temperature times the saddle order, 68 ¥ -
- e B
D(T)xTng(T). (5) 7 R
We note that this hypothesis does not mean that in general all el
the negative curvatures at a generic saddle point are related 061~ b /0/ 7
to a slow diffusive process, as there are saddles related to | ’/"
small local rearrangements of atoms. It means only that the T 04 o 7
process of minimization oV, starting from an equilibrated o T /.f’/
configuration, leads in average to a pofsaddles or quasi- 0.2 el ]
saddle does not matjewith negative curvature directions in - ’,r'
some way related to the true diffusive directions. In Fig. 8 0.05™ 0.'01 : 0'62 : 0.63 . 0.64 - 0"05
the diffusivity over the temperature calculated through mo- n
lecular dynamics simulations and the saddle omdgrare $

shown as a function of temperature: it seems that the Si_mF_)lﬁG. 9. Saddle energg; (a) and saddle energy elevation from underlying
random walk model on a reduced space works well. Elimi-minimaes—e s (b) as a function of saddle order, .
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as a function of the saddle ordaeg (using all the saddles 06— —
found at different temperaturgsas done in Ref. 23, i.e.,

’ 4

ey(ny)<Ae’ng, (6) o P
the data can be reproduced witte’ =13.5. However, data e
at low energy(and ordey deviate from the linear fit. Observ-
ing that these points are those sampled in the temperature 02 P
range where the inherent structures start to decrease in their ' o
energy values, one is attempted to relate the deviation from L f
the linear fit of the energy-order relation to the inherent »*
structure behavior. In Fig.(B) the quantity plotted against 0% 001 002 003 ooa 0.05
the saddle ordenmg is the elevation energgs— e,5 of saddles
with respect to the corresponding local minifmainima vis-
ited at the same temperatuyesbtaining now a remarkable FiG. 10. The mean square distance between adjacent miffime saddle
linear relationship in the full temperature range orderns.

2
dIS
T T
\
[ ]

eg(Ng) —es=Aeng, (7

and increasing the mean square distance between the under-

?ying local minima by a constant amoudg.

The above results seem to indicate that in some aspects
PES exhibits a very simple and organized structure. This
suggests the possible use of simple solvable mathematical
models in order to capture some of the relevant features of

Otgwe PES explored in the supercooled regime.

with Ae=13.3. This suggests that the energy landscap
above a given minimum is organized in families of equally
spaced energy saddle points, with only a single energy bal{_he
rier parameterin average Ae, that represents the energy
gap between a saddle of ordeg and a saddle of orderg
+1. A possible explanation of this result is the following:
saddles of a given order are obtained from a combination
independent saddles of order 1, that lie a fixed amount over

minima. One can think of the excitations as a “gas” of non- Vl. TRIGONOMETRIC MODEL

interacting degrees of freedofin the next section we de- A very simplified model that is able to capture some of

velop this viewpoint in a deeper way, introducing a simpley,e yequiar characteristics of the PES of liquids evidenced
landscape modg Sglmllar results are found in the out-of- 4,46 “is the so-called trigonometric mo@&M), introduced
equilibrium regime?’ suggesting that the PES properties 0b-py Madan and Keyed In this section we calculate for the
tained are not influenced by the kind of dynamics the systemf\y the pehavior of the quantities previously analyzed for the

uses to explore its PES. Lennard-Jones system.
Another interesting topological information about the The TM is a model fomN independent degrees of free-
PES is obtained calculating the distance relations betwee&om with Hamiltonian

adjacent inherent structures. For each saddle point we have
perturbed the system along a randomly chosen negative cur-
vature direction and then started a minimization procedure of

the potentiaV in order to find the underlying minimum. The where{e;} are angular variablesp; € [0,2r). The PES of

same minimization has been performed perturbing the SX{SI_'M reproduce the regularity of the average saddle properties

tem along the previous negative curvature direction but in '
the opposite way. In this way we obtain couples of inherenfmc the Lennard-Jones PES: saddles of omigare 2A over

structures associated to each negative diredtiancall them fllﬂ e?ﬁ 9y agd m n(.aar(.m d'St?nCe saddtlesl of ordg]ns— L i
adjacentinherent structurgsWe then evaluated the Euclid- f et' erm? ytnarnlc;s 'S easlly computable, as the partition
ean distance between adjacent IS, defined as unction IS factorized,

1 Zm(B)=Z5(B), (1)
duzs:NE (IFi(1S) = Fi(1S2)[%), 8  wherep=T"1 (we use the unikKg=1) and

HTM=A2i [1-cog¢))], (10)

2
where 1§ and 1S are two adjacent minima and the average zo(ﬁ):f dep e PAIL—Cod0]=D e AR (BA), (12)
is over different couples of adjacent IS. In Fig. 10 the quan- 0

tity dis is shown as a function of the ordeg of the starting  where |, is the Bessel function of order zero. The energy
saddle. The observed linear relation between the two quantyensitye = — N~1d,log(Zmy) is easily written in terms of

ties I andl [the Bessel function of order 1;(x)=1,(x)],
dfs(ns):dgns (9) o Il(BA)
eTM(ﬂ)—A[l— To(AA) | (13

(with d2=9.6) suggests a simple topological interpretation:
the descent path from a saddle of ordertowards the un- In order to test the reliability of TM in the description of
derlying minima can be viewed as a sequence of independetiuid behavior, we now calculate the diffusion coefficient
random steps, each of them decreasing the saddle order byahd the saddle order as a function of temperature. The diffu-
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FIG. 12. The diffusivityD 1y, as a function of reduced temperatdr\ in a
logarithmic plot(full line). The dashed line is the power law fit of the high
temperature rangeT(/A=0.38,y=1.2). In the inset the low temperature
behavior of diffusivityD 1y, is shown as a function of inverse temperature in
an Arrhenius plo{dashed line indicates slope. 2

FIG. 11. The reduced diffusivitp 1y /D, as a function of reduced tempera-
ture T/A. The symbols are from isopotential simulatitsee the text

sion coefficientDt,, is exactly computable calculating the
mobility in linear respons# with the introduction of Lange-

vin dynamics, obtaining the value§./A=0.38 andy=1.2. BelowT_ the
. diffusion coefficient can be approximated by E#6), a low
yei()=F=ViHm+ n(1), (14 1 Arrhenius behavior with energy barrier valua 2see the
whereF is an external forcey is the friction, 7 is a random ~ inset in Fig. 12.

variable with mean zero ands correlate in time The saddle ordenyy is also computable in an exact
(n(t) n(t"))=(2y/B)5(t—t") (we choosen=1 mass unjt ~ Way. Defining it as the negative curvatures at minima/bf
Following Ref. 32 we obtain =|VH|? (we note that, in the TM, all the minima a¥ are

true saddles ofH and, moreover, the instantaneous order
_ 1 coincides with the saddle ordewe can calculate the equi-
Drv= %3|0?(A,3)' (15 librium mean value oh+, as the probability that the vari-

. . able ¢ is in the rangd 7/2, 3#/2], where theH profile as a

~exp)/yx, for largex] we obtain the Arrhenius behavior

e "
for the diffusivity at low temperature, —— J's 2d<p o AL o]

Dmyxe 22 for low T (16) 2

. . /.

(\{ve note the value & is the er_1ergy .barner value.for the :[ZWIO(EA)]71f3 2d(Pe,8A cose). (19)
single degree of freedomThe dimensionless quantity w

D 1=2(A 17) The temperature behavior ot is shown in Fig. 13. Also in

Do °© (AB), this case it is possible to fit the data with a power law fit

where Dy=(yB) ! is the free Brownian diffusion coeffi-

cient, is shown in Fig. 11 as a function of temperat(liree).

An interesting observation arises from the comparison be- L ' ‘ ' ]
tween this theoretical canonical result and a numerical iso-
potential(dynamics at constant potential energglculation.

The points in Fig. 11 are obtained from a simulationNof 10"
=1000 variables constrained to move at constant potential
energy(the dynamics is a random walk dynamics in which
the forces—V;H are projected to the constant potential en-
ergy surfacg The coincidence between analytical and nu-
merical data evidences how canonical and isopotential calcu- 107
lations lead to the same equilibrium dynamic properties. In

Fig. 12 the diffusion coefficienby, is shown as a function 0.0
of temperature in a semilogarithmic scale. We note that, al- T/A

thoughDy is a smooth function, one can define a change i 15 e saddie orderyy as a function of reduced temperat&.

the behaViO_r _extrapolating a critical temperatlite USINg @  The dashed line is the power law fit in the temperature range 0.5-1.5
power law fit in the low temperature ran¢feom 0.5 to 1.5: (T./A=0.41,y=0.58). In the inset reduced diffusiviiyr, /D, against the

saddle ordenty in a double logarithmic scale. The dashed line has slope
Dmu(T)=(T—Te)?, (18)  equal to 1.

T
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close toT, (from 0.5 to 1.5, obtaining a value ofT /A minima of W is obtained analyzing the diffusivity. The tem-
=0.41, close to that obtained from diffusivityT{/A perature behavior of the number of negative curvatures is
=0.38). related to that of the diffusion coefficient, indicating a close
Having calculated the temperature behavior of diffusiv-relationship between them. It could be that the main infor-
ity Dtu(B) and saddle ordenty(B), we can now try to mation about the dynamic processes is in the saddle points
study the relationship between them. Due to the fact that and the relevant properties of the local minimaAd&re good
direct analytical expression @y as a function ofny is  approximations of the properties of thetsee saddle points.
not available, we study it numerically eliminating the tem- But there is also the possibility that theie saddles are not
perature parameter. The relationship is shown in the inset afo relevant in the description of the dynamics, at least not
Fig. 13, where the quantit,, /D is plotted againsty, in more relevant than points with inflection directiotiscal
a logarithmic scale(this plot corresponds to that of the minima of W).
Lennard-Jones system—inset of Fig. 8—as the quantity All these findings lead to the following viewpoint about
Du/Dy is proportional toBDy). The investigated range  the supercooled dynamics: the relevant diffusion processes
is close to the critical temperatuii, (as in the liquid sys- happen in a subspace of the total configuration space with
tem) and also in this case we find an approximatively lineardimension proportional to the number of saddle directions at
relationship(the dashed line in the inset of Fig. 13 corre- the sampled minima d#V, and, due to the presence of these
sponds to a power law with exponent 1 “open” directions, the relevant diffusive processes are not
DevocTh (20 activated in energy. Below . things are different, as the
LR number of negative directions at sampled minimaVfis
In conclusion, the very simple TM is able to reproduce someyanishingly small, indicating that the system is with high
of the properties emerged in the analysis of the Lennardprobability in a basin of an inherent structui@inimum of
Jones liquid system, indicating that the use of simplified anay). In order to change basin and diffuse, now the system has
lytical model of the PES is a promising field of research. to find the “good” directions leading to other minim@n
entropic process, considering the wholeN3dimensional
VII. CONCLUSIONS space of the degrees of freedom, that could correspond to an
genergy activatedprocess in a suitablen dimensional

The analysis of the PES has been very useful in th
Ve very uset | subspace—witm<<3N).

investigation of supercooled dynamics of simple model lig- . .
uids. Besides the two main approaches in the investigation of Another important regult obtained refer; to the structural
the PES, the instantaneous normal mode and inherent Strug[gamzau.on of th? PES, ie, t.he relationship among the rel-
ture approaches, we have discussed an additional samplir‘?%"’lnt pc?lnts of it. A very smple structure of the PES
of the PES explored during the dynamic evolution of the€Terges: saddles of.ordlerkl lie gbove ;addles of order

th a constant quantithAe and adjacent inherent structures

system in configuration space: it consists in the analysis o I di i i The ab b
the minima of the square gradient of the potential energyf”lre equally spaced Ih configuration space. The above ob-

W=|VV|2. The characteristics of these sampled points seerﬁer\”EOI regularities_ suggest the possible use of simp!ifi_ed
to have a very close relationship with the transport propertie odels of the PES in order to capture relevant characteristics

of the system. The main result we obtained is the characte of thder;supe_rc?rt])letd_ dynamm;s_ of Ilqduuljs_. ;I'hg mogeﬂ W'\j z;na-
ization of the dynamic transition temperaturg as the tem- yzed here IS the trgonometric model, introduced by viadan

perature at which the behavior of quantities related to th nd Keyes,' a model of independent sinusoidal degrees of

minima of W changes on character: more specifically the reedom. The behavior of the calculated diffusivity and

number of negative eigenvalues of the Hessian at thes%addle order seems to indicate that the model, despite the

points extrapolates to zero & . The minima ofW sampled absence qf c{ooperativ'ity, 's able to reproduce important as-
at different temperatures appear to contain the relevant infoR€CtS of liquid dyngmlcs close 1. The' study .Of more

mation about the diffusive directions and the process ofomplex and realistic PE_S mpdels, W'th Interactions among
minimization of W eliminates the nondiffusive negative di- the degrees of freedom, is a interesting development of this

rections usually present at instantaneous configurations. Rglnd of analysis.
cently, an interesting technique to evaluate the nondiffusive
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introduce a differentwith respect to the quasi-saddle pointsethod to
find reaction coordinates, suggesting its better ability to reproduce diffu-
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