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Abstract
We discuss the ideal glass transition for two types of potential model of attractive
colloidal systems, i.e. the square-well system and the Yukawa hard-sphere fluid.
We use the framework of the ideal mode-coupling theory and we mostly focus
our attention on the nature of the singularities predicted by the theory. We also
study the phenomena that arise by varying the range of the attraction, since this
parameter has been identified as one of the key parameters in colloidal systems.

1. Introduction

One of the oldest and best studied problems in statistical mechanics involves the study of the
phase diagram of simple spherical molecules with a hard-core repulsion, and a short-ranged
attraction. Some of the earliest theories, such as that of van der Waals, already incorporated
sufficient of the essential features of competition between attractive forces and entropy to
exhibit a liquid–gas transition. Though the details are not correct, there has not been cause to
significantly revise the basic picture of the phenomena in modern times. On the other hand,
such theories did not well represent the contribution of the hard core, and it was much later
that crystallization and imperfectly packed solids or glasses were incorporated into the story.
A great importance in this area has been, recently, occupied by the study of colloidal systems.
Indeed, these systems present some ideal properties that make them excellent candidates for
the studies of aggregation and vitrification. In particular, once a potential model is taken
into consideration, the theoretical tools of statistical mechanics, for molecular liquids, can be
de facto exported in this arena. From an experimental point of view, the larger dimensions of
colloidal particles, with respect to simple molecules, allow us to study them more easily.

The study of the glass transition in colloidal systems has been one of the most striking
cases of verification of the current theories of super-cooled liquids. The systems used
experimentally [1, 2], colloidal particles in solution, are very closely represented by hard
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spheres, where only excluded volume effects are important at high concentration. Moreover,
in contrast to molecular liquids, it is much easier to avoid the crystalline phase and produce
a colloidal glass. From the theoretical point of view hard spheres are the simplest systems
where analytical theories can be relatively easily exploited. We refer in particular to the mode-
coupling theory (MCT) of super-cooled liquids [3], which in recent years has been more and
more widely used in diverse systems to interpret experimental data rather successfully [4].
The agreement between MCT and experiments is quite satisfactory and the details of the
time correlation functions are well reproduced. In particular, on approaching the liquid–glass
threshold in concentration, hard-sphere systems show a non-ergodic transition. It is widely
believed that in super-cooled molecular liquids a real non-ergodicity transition is avoided by the
onset of different dynamical mechanisms, such as hopping, which apparently do not manifest
in colloids. Small discrepancies appear in the comparison between experiments and theory,
the most important of which is the value of the volume fraction at the transition. In general the
description of the phenomena related to the glass transition is quantitatively correct to within
a few per cent.

Experiments on more complex colloidal systems show a pattern similar to the one we
describe, but in some cases differences become important and cannot be easily explained in
terms of the MCT applied to repulsive potentials. For example in some case the value of the
non-ergodicity factor, i.e. the asymptotic value of the concentration time correlation functions
in the glassy regime, attains values that are much higher than the ones predicted using only
repulsive interactions [6]. Another unusual result that appears in colloids is the presence
of an amorphous phase at low volume fractions [5–7], a phenomenon often called colloidal
gelation. A line of thermodynamic states corresponding to structural arrest, observed through
dynamic light scattering, was observed in systems tailored to have an attractive interaction.
This locus in some cases intersects the binodal line and is referred to as transient gelation when
observed in the spinodal region. More recently concentration time correlation functions have
been observed in a polymeric system with a decay time much longer than the usual stretched
exponential, i.e. a logarithmic time relaxation [8]. All these facts point in the direction of the
necessity of going beyond the simple hard-sphere system and adding an attractive component
in addition to the repulsive interaction.

From the theoretical point of view, interesting advances were made once attractive systems
were studied within MCT. We have started the study of the influence of attractive forces in a
simple model, the Baxter limit, which is the appropriate limit of an infinitely deep square well
of zero width [9]. Due to the unsatisfying behaviour of this model [10,11,30], the attention has
been moved to more realistic types of potential, such as the attractive Yukawa [12] and the
square-well potential [13]. In both these approximations some new behaviour appears which
shows a pronounced resemblance to what is observed in some attractive colloids. We refer in
particular to the high values of the non-ergodicity factors and to the presence of liquid–glass
transition points for low values of the concentration of the dispersed phase. In the case of the
square-well potential instead we observed, for dense colloids, a re-entrant behaviour of the
glass line, accompanied by the appearance of higher-order transition points where a logarith-
mic decay of the correlation functions arises [13]. These phenomena appear when the width
of the square well is very short compared with the radius of the colloidal particles. Thus, the
presence of attractions produces a whole new range of interesting phenomena, particularly for
very narrow wells.

Indeed, it seems clear that one of the main parameters responsible for the physical
behaviour of attractive colloidal suspensions is the range of the attraction. For example,
computer simulations and experiments have shown that when the range of the potential is below
a certain value, the typical fluid–fluid phase transition becomes metastable with respect to a
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fluid–solid transition. Moreover, the presence of a real thermodynamic solid–solid coexistence
line has been detected [14,15]. It is therefore not surprising that the range of the potential also
plays a key role in non-equilibrium phenomena such as glassification studied within MCT.

In this paper we review results for the SW system and present results obtained by solving
an attractive Yukawa potential treated with a self-consistent approximation that has already
proven to be rather accurate in describing the static correlations in a liquid. In particular
the aim of the paper is to check whether the phenomena, already observed for SWS solved
both within Percus–Yevick approximation (PYA) and mean spherical approximation [13], are
robust enough to not crucially depend on the choice of the potential model, as well as on the
approximation considered to calculate the thermodynamics of the system.

The paper is organized as follows: in section 2 we discuss both the Percus–Yevick solution
for HSS and the self-consistent approach to the Yukawa fluid. In section 3 a brief review of the
main feature of MCT will be proposed. Finally in section 4 the results for SWS and Yukawa
will be presented and analysed.

2. Calculation of the structure factors

Since the equilibrium static structure factor is the main input of MCT in this section we shall
discuss its definition and its properties. In particular we shall focus on the two fluid models
we solved in order to obtain this quantity, i.e. square-well and Yukawa model.

The structure factor Sq is defined as the equal time correlation function of the density
variable in wavevector space,

Sq = 〈ρ−q(t)ρq(t)〉 = 〈ρ−q(0)ρq(0)〉 (1)

where the average 〈· · ·〉 is performed at equilibrium and ρq are the density variables, i.e.
ρq = ∑

i eiq·ri . This quantity gives information about the structure of the system and can
be measured in light scattering experiments. A fundamental relation is the Ornstein–Zernike
(OZ) equation, which relates the total correlation function, h(r) = g(r) − 1, to the direct
correlation function c(r),

h(r) = c(r) + ρ

∫
dr ′c(|r − r′|)h(r ′). (2)

The Fourier transform of the direct correlation function cq is, thus, related to the static structure
factor Sq by

Sq = 1

1 − ρcq
. (3)

In the following subsections we shall describe the procedures adopted to solve the OZ equation
for the SW model and for the HYF.

2.1. Percus–Yevick SW

The SW model is defined by the potential,

v(r) =




∞ 0 � r � d

−u0 d � r � d + �

0 r > d + �

(4)

where d is the diameter of the colloidal particles. In this paper the quantity u0 has been set to
unity. We also define the well width parameter ε = �/(d + �). The system is then specified
once we have specified the temperature T (we shall work in units of kB), the packing fraction
φ = πd3ρ/6 and the well-width parameter ε. In order to obtain the static structure factor
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for the SW model we have used the so-called Weiner–Hopf factorization of the OZ equation
introduced by Baxter [22]. Considering the auxiliary function Q(r) which satisfies the set of
equations

rc(r) = −Q′(r) + 2πρ
∫ R′

r

dtQ′(t)Q(t − r) 0 < r < R′

rh(r) = −Q′(r) + 2πρ
∫ R′

0
dt (r − t)h(|r − t |)Q(t) r > 0

(5)

where Q′(r) is the derivative of Q(r), it is possible to show that equation (5) is another
formulation of the OZ relation (2) and that for the static structure factor we have [19]

S(q)−1 = Q̃(q)Q̃(−q) (6)

where the Fourier transform of Q(r) is given by

Q̃(k) = 1 − 2πρ
∫ R′

0
dreikrQ(r). (7)

This factorization scheme has been proven to work for models where c(r) = 0 beyond a certain
distance r > R′. It is clear that, as for the OZ relations (2), (5) are not closed. In order to close
them we have adopted the PYA for the c(r), which is expressed by the relation

c(r) = g(r)[1 − exp(V (r)/kBT )]. (8)

Once we insert (8) into the first of equations (5) we obtain

e−u0/kBT G(r) = ar + b − 2πρ
∫ d+�

r

ds Q′(s)Q(s − r) + 2πρ
∫ r−d

0
ds G(r − s)Q(s) (9)

where the terms a and b are obtained from the solution for the hard-sphere system (HSS)
and G(r) = rg(r). Equation (9) has been solved numerically on an equally spaced grid of
points rn with n = 1, 2, . . . , 1000. Both G(r) and Q(r) have been evaluated by numerical
iteration. The function Q(r) was integrated numerically from Q′(r) with a five-point formula.
The results were accepted once the absolute differences in the solution, for two successive
iterations, had reached the value 10−12. The method here discussed seems to work properly
for values of the well-width parameter up to 0.1, after which the algorithm becomes unstable.

2.2. Scoza

In this section we shall describe the self-consistent Ornstein–Zernike approximation
(SCOZA) [16,17] that we have used to calculate the structure factors of the hard-core Yukawa
fluid. The interaction potential is expressed by

v(r) =



∞ 0 � r � d

−ε
e−b(r−d)

r/d
r � d

(10)

where, again, d is the diameter of the particles. The parameter b, known as the screening
parameter, modulates the range of the potential, i.e. the larger b the shorter the range of the
potential. This potential can be chosen as a proper representation of the interaction potential
of many colloidal systems, and, for values of b between 2 and 9, it corresponds roughly to a
Lennard-Jones potential, which represents a more realistic choice for atomic and molecular
systems. However, for many colloidal [6] and protein [18] systems interacting with a short-
range potential, the Yukawa potential with a large value of b can represent an interesting
choice. The idea behind SCOZA is to provide a closure relation for c(r), in terms of βv(r),
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that depends on one or more state-dependent parameters that can be adjusted in order to get
the thermodynamics of the system correctly. It is well known, indeed, that one of the main
problems in the classical integral equations is the lack of consistency between different routes
to calculate the various thermodynamical properties [19]. Self-consistent theories overcome
such a problem by building the consistency within the theory itself. The SCOZA approach we
adopted is based on only one parameter K , i.e.

c(r) = −Kβv(r) + Be−λ(r−σ)/r. (11)

The Yukawa term in equation (11) is added to take into account the hard-sphere contribution
outside the core, whereas inside it we have, for obvious reasons, g(r) = 0. The parameters B
and λ are evaluated by setting V (r) = 0 in equation (11) and requiring that compressibility and
the virial equation of state give the same answer, which is chosen to be the Carnahan–Sterling
(CS) solution for hard spheres [19, 20]. Thermodynamical consistency is then imposed by
requiring that the compressibility and the energy state equations yield the same results. It can
be shown that this is equivalent to the thermodynamical condition [16]:

∂

∂β

(
1

χred

)
= ρ

∂2u

∂ρ2
(12)

where χred is the reduced compressibility, obtained by the compressibility sum rule of Sq
for q = 0, while u is the energy obtained by the integral of the attractive tail over the
radial distribution function g(r). If we substitute (11) into (12) a PDE is obtained for the
function K(ρ, β). In the case of the Yukawa interaction there is an analytical relation for the
compressibility that allows us to obtain a solution for u [17, 21] and consequently to easily
determine K(ρ, β).

The two main benefits in using SCOZA are respectively the thermodynamical consistency
built into the theory itself, which makes it a more favourable choice than the standard integral
equations (PY, MSA, HNC etc [19]), as well as the good agreement between SCOZA results
and numerical simulations. In particular for b up to 9 the results for spinodal and binodal lines
seem to agree quite well with results of SCOZA [16].

To conclude this section, that does not pretend by any means to be exhaustive, we stress
that once the direct correlation is obtained by equation (11) it is possible to Fourier transform
it easily in order to get the static structure factor Sq , which is the input we used to solve the
MCT equations.

3. Mode-coupling theory and the glass transition

MCT provides a set of equations that allow us to calculate the dynamical density–density
correlation function from the only static inputs of static structure factor, Sq , and number
density, ρ = N/V . Here we shall focus only on the static limit of the theory, which allows us
to determine the location of the ideal liquid–glass transition. In what follows we shall follow
the original derivation [3] but, recently, a new approach based on a stochastic idea has been
proposed leading to the same results [23]. The normalized correlators are defined as

*q(t) = 〈ρ∗
�q (t)ρ�q〉

〈|ρ�q |2〉 = Sq(t)

Sq
. (13)

These quantities, and their Fourier transform in time, can be tested versus experiments using
dynamic light scattering (DLS) or neutron scattering. We now define the long-time limit of (13),
fq = φq(t → ∞). fq is the so-called non-ergodicity parameter or Debye–Waller factor. If
the system is in a fluid state, a density fluctuation created at time t = 0 will have disappeared
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for t → ∞, i.e. the system loses the memory of its initial conditions. In this situation the
system is in an ergodic state, characterized by fq = 0 for every q. In contrast, a glassy state is
characterized by a spontaneous arrest of the density fluctuations. In such a case the system is
non-ergodic, i.e. the timescale to lose memory of the initial states diverges and the system never
reaches equilibrium. Thus fq = 0 and the system is frozen in a glassy state. The transition
between the two states is the ideal liquid–glass transition. When it is reached the Debye–Waller
factor discontinuously becomes non-negative and equal to the critical value f c

q > 0 [3].
The Debye–Waller factor obeys the algebraic set of equations [24],

fq

1 − fq
= Fq(f ) (14)

which is obtained as the long-time limit of the equation for *q(t). The functional Fq(f ) is
the mode-coupling functional that contains the coupling between the different modes in the
system, and it is given, in its discretized form, by

Fq(f ) =
∑
kp

Vq,kpfkfp (15)

where the sum runs over a grid of M equally spaced points and the MCT vertex functions V�q,�k
are determined by the structure factor Sq , the direct correlation function cq and the density ρ:

V�q,�k ≡ SqSkS|�q−�k|ρ
[�q · �k ck + �q · (�q − �k) c|�q−�k|

]2
/q4. (16)

The glass transition emerges as a bifurcation of the solutions of the equations for the non-
ergodicity parameter (14). In particular, it is clear that fq = 0 is always a solution of
equation (14). When more than a solution emerges, it is possible to show that the non-ergodicity
parameter is the largest of all the solutions of the equation. This result is known as the theorem
of the maximum [3]. In what follows equation (14) has been solved numerically applying the
iterative scheme f (n+1)

q = Fq[f (n)]/(1 + Fq[f (n)]), starting from the initial guess f (0)
q = Sq .

To locate more precisely the glass transition points, it is possible to characterize them by
calculating the eigenvalues of the stability matrix of equation (14). We shall now discuss this
issue, since it is directly correlated to the nature of the singularities of the system. The stability
matrix is defined as the M × M matrix

Cqk = ∂Fq(f )

∂fk
(1 − fk)

2. (17)

The maximum eigenvalue E of matrix C possesses the important property of being equal
to unity at the glass transition. In other words, following the evolution of the largest of the
eigenvalues of the matrix defined in (19), it is possible to define with great accuracy the glass
transition as the locus of the parameter space where E = Ec = 1. Another key quantity in the
calculation is the so-called exponent parameter λ defined as

λ =
∑
qkp

êcqC
c
q,kpe

c
ke

c
p (18)

where the matrix Cc
q,kp

Cq,kp = 1

2

∂2Fq(f )

∂fk∂fp
(1 − fk)

2(1 − fp)
2 (19)

and ê and e are the right and left eigenvalues of the matrix C, uniquely determined by the
conditions êq � 0, eq � 0,

∑
q êqeq = 1,

∑
q êq(1 − fq)e

2
q = 1. The parameter λ is

important for two main reasons. Firstly, it allows us to define the exponents of the power laws
that regulate the asymptotic behaviour of the correlators φq(t) in the time domain. Secondly, it
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varies in the range 0 < λ � 1 and, when it reaches the unitary value, it defines a higher-order
singular point.

Indeed, a correct classification of the singularities of equation (14) can be very helpful,
because it has been shown that in the proximity of such singularities the asymptotic dynamics is
totally defined. Singularities have all been classified and their mathematical characteristics are
well known [25]. In particular equation (14) can present the simplest family of singularities,
i.e. Al, l = 2, 3, . . . . They are topologically equivalent to the bifurcation singularities of the
real roots of real polynomials of degree l. The liquid–glass transition is, for example, an A2

singularity, also known as a fold singularity. Higher-order singularities are theA3 singularities,
classified as cusp bifurcations. In both the SWS and the Yukawa fluid, the state of the system
is determined by three parameters, i.e. density, temperature and range of the potential. The
space of the parameters is then a tridimensional space where the A2 folds will be a surface
separating fluid and glass regions (and also as we shall see regions between two glasses) and
they are characterized by 0 < λ < 1. Similarly theA3 folds will be lines that will be generated
by the intersection of two folds and their exponent parameter will be equal to unity. The most
complicated generic singularity in a three-parameter system is the meeting of two A3 lines in
an A4 point in the three-dimensional parameter space.

With this we have concluded our description of the MCT ideal glass transition and we have
exposed the classification of the singularities that we shall encounter in the following section,
where the theory will be solved for the two models described in the sections 2.1 and 2.2.

4. Results

We shall describe now the structure of the phase diagram for the two models in the (φ, T )

plane for different values of the potential range. It is important to stress, at this point, that the
terminology ‘phase diagram’ it is not completely exact. Indeed as we have seen in the previous
section, the glassy phase is not an equilibrium state. Nevertheless the analogy between an
equilibrium phase diagram and a glass transition can be helpful. In this sense in the rest
of the paper, we shall use the terminology phase diagram to refer to the glass lines in the
thermodynamic parameter space. The glass lines were obtained from the numerical solution
of MCT. In particular two routes were followed. Where the precision required was not crucial
for the description of the main phenomena, we simply bracketed, at constant temperature, the
critical value f c

q narrowing the interval between a liquid and a glass solution. On the other
hand, whenever a better accuracy was required (i.e. close to a higher-order singularity), we
computed the largest eigenvalue looking for the condition E = 1.

We begin by analysing the phase diagram for SWS for different values of the well-width
parameter ε. In figure 1 we present the glass lines for values of ε between 0.03 and 0.09 in the
region of high densities in order to study the bifurcation of the system. For the largest of the
width parameters, i.e. ε = 0.09 the only singularity that is found is the continuous glass line,
which, as we said, is an A2 singularity. The transition line goes smoothly from low density to
high temperature dividing the phase space into a glass and a liquid region. More interesting
is the case of the smallest well width ε = 0.03. Two main features emerge in this case, i.e. a
re-entrant behaviour and a glass–glass singularity. The re-entrant behaviour of the glass line
implies that it is possible to find a liquid for a packing fraction value larger than the predicted
hard-sphere value, i.e. for φ > 0.516. This phenomenon is due to the competition between
the two glass driving forces, i.e. repulsion and attraction. The solution of the MCT equations,
then, seems to suggest that, for certain ranges of the packing fraction, it is possible to pass from
a glass to a liquid state and then again to a glass only decreasing the temperature. It is also
possible to separate the glass line into two distinct branches, characterized by the transition
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Figure 1. Phase diagram for the SWS for different values of the well-width parameter in the
high-density region. For ε < 0.06, open and full symbols represent the repulsive and the attractive
glass transition respectively.

from a liquid state to an attractive and repulsive glass respectively. The two branches join at
φ > 0.516 with non-null angle.

The second important phenomenon is the presence, in the region of high density, of an
A2 transition line, which does not separate an ergodic from a non-ergodic state, but rather two
arrested states. This has been interpreted as a transition line between two types of glass, and the
higher-temperature state has been denominated repulsive glass, whereas the other one has been
called attractive glass. In the former the arrest is due to repulsion and in particular to the ‘cage
effect’, i.e. each particle is blocked into a cage formed by its nearest neighbours. In the latter,
however, the attraction originates bonds between particles that are responsible for the arrest.
In [26] the differences between these two states have been discussed studying, in particular, the
rheological properties. The evolution of exponent parameter λ along the glass–glass transition
curve has been also studied. We have found a cusp singularity, A3, that represents the endpoint
of the glass–glass transition, after which the two glasses become indistinguishable and it is
possible to continuously pass from a repulsive to an attractive behaviour. In figure 1 glass
lines are represented also for values of 0.03 < ε < 0.09 in order to follow the evolution of
the glass–glass line as a function of the well-width parameter. It can be seen that the A3 point
moves toward the liquid–glass line and consequently the transition between the two glasses
tends to shrink. We have evaluated for which value of ε the A3 touches the A2 line, originating
an A4 singularity. This higher singularity has been located for ε � 0.0411. To our knowledge,
this is the only model that shows this kind of full MCT singularity to date.

Up to now, we have shown results only for the high-density part of the phase diagram.
Indeed another interesting feature for the systems characterized by a short-range interaction
is the presence of a glassy phase up to very low densities. In figure 2 we present the phase
diagram for ε = 0.03 extended to low densities. The glass line is composed of two lines,
the repulsive line, that runs almost vertically in the parameter space and the attractive line,
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Figure 2. Glass transition line for ε = 0.03 on a larger range of densities than in figure 1. In the
inset the glass–glass transition is shown in detail.

that goes to low densities at almost constant temperature. Again the shape of these two lines
is representative of the forces that originate the arrest in the two glasses. Indeed, when the
repulsion is dominant, there is no energy scale and we expect the temperature to play no role;
in contrast when the attraction dominates the system, we expect the transition to happen more
or less at a constant temperature, equivalent to the energy scale of the attraction. The glassy
phase seems to extend to very low densities. It has been shown with an argument based on the
number of effective bonds, that the very low part of the glass curve is not so reliable [26], but
experimentally colloidal systems have often been found in a low-density gel state [27].

We now turn to examine the case of the Yukawa fluid. We show here results for b = 30, 60
and 100. The phase diagram for these cases is presented in figure 3. For b = 30 the shape of the
glass transition is at first sight similar to the case ε = 0.09 for SWS in the high-density region,
but does in fact show a slight re-entrant behaviour on very close inspection. For T → ∞ the
MCT hard-sphere limit is correctly recovered. Also, the glass line does not seem to extend to
very low density. The narrower cases, i.e. b = 60 and 100, show a more evident analogy with
the case ε = 0.03. In these cases the lines go to low densities and the re-entrant behaviour
starts to be present.

Given that the re-entrant behaviour is present in the Yukawa case the question about the
presence of the glass–glass transition remains open. We here provide a small argument in favour
of the presence of this transition, even for a Yukawa potential, based on preliminary rheological
calculations. It is possible to show that the low-frequency shear modulus G′ = G′(ω → 0)
can be evaluated by [12]

G′(φ, T ) = d3

60π2

∫ ∞

0
dkk4

(
d ln Sk

dk
fk

)2

(20)
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Figure 3. Phase diagram for the Yukawa fluid for screening parameter b = 30, b = 60 and
b = 100. In the inset a magnification of the re-entrant part of the lines is shown.

where G′ is in units of kBT /d
3. It has been shown that when a glass–glass transition is

encountered the value G′ presents a sharp transition, being the response to mechanical shear
different for the two types of glass [26]. For this purpose, we have evaluated this quantity as
a function of the temperature at fixed density for b = 80.0. We expect that, for such values
of the screening parameter, the system shows the transition we are looking for. In figure 4 we
show the behaviour of G′ for φ = 0.537 63 as a function of the temperature. It is possible to
note that the shear modulus present two discontinuities. For T � 0.333 the shear becomes
suddenly zero and this is the indication that a liquid–glass transition has happened. At a lower
temperature, i.e. T � 0.327 the discontinuity is between two states of finite shear modulus.
The latter case is the clear evidence of a transition between two different glasses. Following
this route we have been able to find a few points of the transition and they are represented,
together with the liquid–glass line, in figure 5. Of course these points represent just an estimate
of the glass–glass transition, and a careful study of the eigenvalues in this region must follow
to clearly support this argument. However, it seems likely that, upon further investigation, the
presence of the glass–glass transition will be confirmed. Thus, if one accepts this argument, it
is interesting to note that the situation here is somewhat different from the SWS case. Indeed, in
this case the glass–glass transition line will lie below the liquid region. In other words the liquid
phase will be contained in a repulsive glass area. The low-temperature part of this repulsive
domain will eventually become an attractive glass. A detailed study of the singularities is
currently in progress.

5. Conclusion

In this paper we have discussed the ideal glass transition for two models of attractive colloidal
systems, with particular attention being dedicated to the behaviour of the ‘phase diagram’
upon varying the range of the attractions. We have reviewed some of the results for the square-
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Figure 4. Shear modulus G′ at φ = 0.537 63 as a function of the temperature in the Yukawa fluid
for b = 80.0.

Figure 5. Points of glass–glass transition line estimated from the calculation of the shear modulus.
The arrow indicates the direction where G′ was evaluated in figure 4.

well potential already reported in [13], and we have also presented some new results for a
more realistic and quantitatively accurate model, i.e. Yukawa fluid solved with SCOZA. The
comparison of the two models suggests that the main features of the glass line for narrow
attractive wells are not dependent on the particular choice of the potential model. In particular,
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for a Yukawa system, a re-entrant behaviour of the glass line is found, and some preliminary
evidence, based on the study of the shear modulus, seems also to indicate the presence of a
glass–glass transition.

Indeed efforts have been also spent in extending the present approach. In particular a
new direction has been followed recently in order to overcome some problems of MCT at
a more fundamental level. Indeed MCT is an idealized theory and it provides good results
only approaching the glass transition since it neglects hopping and aging phenomena. Indeed
hopping can be safely ignored in colloidal systems but aging seems to be quite important. In
this direction extension of the MCT in order to include aging has been the subject of some
recent work [28, 29] but it is too early for quantitative results.

A question to be addressed in the future will be the behaviour of the equilibrium phase
diagram of the system with respect to the glass transition. Indeed, one of the advantages of using
the SCOZA approach is that it gives a good and consistent account of the thermodynamics.
It will be then interesting to study the interplay of critical fluctuation and kinetic arrest. This
question has recently started to be addressed [30].

Acknowledgments

We thank D Pini and Professor G Stell for useful discussion on the SCOZA theory. The work
in Rome is supported by PRIN-2000-MURST and PRA-HOP-INFM, and the work both in
Rome and in Dublin is supported by COST P1.

References

[1] Pusey P N 1991 Liquids, Freezing and Glass Transition ed J-P Hansen, D Levesque and J Zinn-Justin
(Amsterdam: North-Holland) p 763

[2] van Megen W and Underwood S M 1993 Phys. Rev. Lett. 70 2766
van Megen W and Underwood S M 1994 Phys. Rev. E 49 4206

[3] Götze W 1991 Liquids, Freezing and Glass Transition ed J-P Hansen, D Levesque and J Zinn-Justin
(Amsterdam: North-Holland) p 287

[4] Götze W 1999 J. Phys.: Condens. Matter 11 A1
[5] Grant M C and Russel W B 1993 Phys. Rev. E 47 2606
[6] Verduin H and Dhont J K G 1995 J. Colloid Interface Sci. 172 425
[7] Meller A, Gisler T, Weitz D A and Stavans J 1999 Langmuir 15 1918
[8] Mallamace F, Gambadauro P, Micali N, Tartaglia P, Liao C and Chen S H 2000 Phys. Rev. Lett. 84 5431
[9] Fabbian L, Goetze W, Sciortino F, Tartaglia P and Thiery F 1999 Phys. Rev. E 59 R1347

[10] Stell G 1991 J. Stat. Phys. 63 1203
[11] Foffi G, Zaccarelli E, Sciortino F, Tartaglia P and Dawson K A 2000 J. Stat. Phys 100 363
[12] Bergenholtz J and Fuchs M 1999 Phys. Rev. E 59 5706
[13] Dawson K, Foffi G, Fuchs M, Götze W, Sciortino F, Sperl M, Tartaglia P, Voigtmann Th and Zaccarelli E 2000

Phys. Rev. E 63 1140
[14] Bolhuis P, Hagen M and Frenkel D 1994 Phys. Rev. E 50 4880
[15] Dijkstra M, Brader J M and Evans R 1999 J. Phys.: Condens. Matter 11 10 079
[16] Caccamo C, Pellicane G, Costa D, Pini D and Stell G 1999 Phys. Rev. E 60 5533
[17] Pini D, Stell G and Wilding N B 2001 J. Chem. Phys 115 2702
[18] Piazza R 2000 Curr. Opin. Colloid Interface Sci. 5 38
[19] Hansen J P and McDonald I R 1986 Theory of Simple Liquids (London: Academic)
[20] Carnahan N F and Sterling K E 1969 J. Chem. Phys. 51 635
[21] Pini D, Stell G and Wilding N B 1998 Mol. Phys. 95 483
[22] Baxter R J 1968 Aust. J. Phys. 21 563

Baxter R J 1968 J. Chem. Phys. 49 2770
[23] Zaccarelli E, Foffi G, Sciortino F, Tartaglia P and Dawson K A 2001 Europhys. Lett. 55 139



Ideal glass in attractive systems with different potentials 2235

Zaccarelli E, Foffi G, De Gregorio P, Sciortino F, Tartaglia P and Dawson K A J. Phys.: Condens. Matter
submitted

[24] Bengtzelius U, Götze W and Sjölander A 1984 J. Physique C 17 5915
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