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We study thermodynamic and dynamic properties of a rigid model of the fragile glass-forming liquid
orthoterphenyl. This model, introduced by Lewis and Wahmstio 1993, collapses each phenyl ring to a
single interaction site; the intermolecular site-site interactions are described by the Lennard-Jones potential
whose parameters have been selected to reproduce some bulk properties of the orthoterphenyl molecule. A
system ofN= 343 molecules is considered in a wide range of densities and temperatures, reaching simulation
times up to 1 us. Such long trajectories allow us to equilibrate the system at temperatures below the mode
coupling temperatur@, at which the diffusion constant reaches values of order*fd@n?/s and thereby to
sample in a significant way the potential energy landscape in the entire temperature range. Working within the
inherent structures thermodynamic formalism, we present results for the temperature and density dependence
of the number, depth and shape of the basins of the potential energy surface. We evaluate the total entropy of
the system by thermodynamic integration from the ideal—noninteracting—gas state and the vibrational en-
tropy approximating the basin free energy with the free energyNof 8 harmonic oscillators. We evaluate the
configurational part of the entropy as a difference between these two contributions. We study the connection
between thermodynamical and dynamical properties of the system. We confirm that the temperature depen-
dence of the configurational entropy and of the diffusion constant, as well as the inverse of the characteristic
structural relaxation time, are strongly connected in supercooled states; we demonstrate that this connection is
well represented by the Adam-Gibbs relation, stating a linear relation betweBralog) the quantity T/S. .

This relation is found to hold both above and below the critical temperdigreas previously found in the
case of silica—supporting the hypothesis that a connection exists between the number of basins and the
connectivity properties of the potential energy surface.
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I. INTRODUCTION questions:(i) which are the basins relevant for the thermo-
dynamics of the system, i.e., which are the basins populated
Understanding the dynamic and thermodynamic properwith largest probability? andii) which are the topological
ties of supercooled liquids is one of the more challengingproperties of the regions of the PES actually explored by the
tasks of condensed matter physider recent reviews see system during its dynamics? From this point of view, the
Refs.[1-4] and references thergimA significant amount of PES approach has somehow unified, at least on a phenom-
experimental[5—9], numerical [10] and theoretical work enological level, the thermodynamic and dynamic ap-
[11-15 is being currently devoted to the understanding ofproaches to the glass transition.
the physics of the glass transition and to the associated slow- Numerical analysis of the PES has shown that trajectories
ing down of the dynamics. Among the theoretical ap-in configuration space can be separated into intrabasin and
proaches, an important role has been played by the modaterbasin component5,26. The time scales of the two
coupling theory(MCT) [11,12, which, interpreting the glass components become increasingly separated on cooling. The
transition as a purely dynamical phenomenon, has constintrabasin motion has been associated with the high-
tuted a significant tool for the interpretation of both experi-frequency vibrational dynamics, while the structural relax-
mental [5,9,16—19 and numerical simulation resulf20—  ation (« relaxation) has been related to the process of explo-
22] in weakly supercooled states. ration of different basins. It has also been shown that on
In recent years the study of the topological structure of thdowering T, the system populates basins of lower and lower
potential energyhypery surface(PES [23,24] and the con- energy[27,28. TheT dependence of the depth of the typical
nection between the properties of the PES and the dynamicabmpled basins follows aT.law [29-3] for fragile liquids,
behavior of glass-forming liquids has become an active fielcand, for strong liquids, it appears to approach a constant
of research. Building on the inherent structt®) thermo-  value on coolind32]. The number of basinQ as a function
dynamic formalism proposed a long time ago by Stillingerof the basin deptle,s has also been recently evaluated for a
and Webef 23], the PES can be uniquely partitioned in local few models[29,30,32—3% opening the possibility of calcu-
basins and properties of the basins explored in supercoolddting the so-called configurational entrofy and itsT de-
states(average basin depth and basin volynmave been pendenceS;, defined as the logarithm of the number of
guantified. Studies have mainly focused on two fundamentahccessible basinS.=kglog(), has been successfully com-
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pared with theoretical predictiori43,36. At the same time, of a system of LW molecules in the noninteracting “ideal
the approaches and the techniques developed for the analygias” limit.

of the PES of structural glasses have spread to the field of

disordered spin systems, yvhere similar.calculations have Il INHERENT STRUCTURE THERMODYNAMICS

been performed37] and similar conclusions have been FORMALISM

reached. The evaluation &; for models of glass-forming

liquids allows us to numerically check, in a very consistent In this section we briefly review the IS formalism in the
way, the relation betweeS, and the systems characteristic NV T ensemblg 23,46, the extension to th&lPT ensemble
time 7, proposed by Adam and Gibp38], and recently “de- POS€s no particular pro.blenﬁ§3]. This formalism has be-.
rived” in a novel way[14]. Numerical support for a relation COmMe an _|mpo_rt§\nt tool in the nume_ncal analysis of_classmal
between thel dependence o8, and theT dependence of, modgls since it is pumencally possible to calculate in a very
although limited to very few models, is providing new physi- precise way the inherent structurédefined as the, local
cal insight on the connection between thermodynamics an inima of.the PEBand hence compare the th(_aoret|cal pre-
long time dynamical properties. The ideas developed withir} ictions with the numerical results. Given an instantaneous

the inherent structure formalism have also been generalizet nfiguration of the system, a steepest descent path along the
9 S?)tential energy hypersurface defines the closest IS.

to out-of-equilibrium conditions where the slow aging dy- In the IS formalism, the partition function of a system is

namics has been interpreted as the process of searching {Rfitten as a sum over all the PES basins. Basins of given IS

basins of increasingly deep ener3p—42. __energy contribute non-negligibly to the total sum if their IS
In this paper we study the properties of the PES for a rigidanergy is very low, if their volume is very large, and/or if

model [Lewis and Wahnstim (LW)] of the fragile glass they are highly degenerate, i.e., several basins are character-

former orthoterphenylOTP), first introduced by Lewis and jzed by this IS energy. This corresponds to partitioning the

Wahnstran [43] and recently revisited by Rinaléit al.[44].  phase space in the local energy minima of the PES and their

We have studied the properties of the PES in a temperatuigasins of attraction. Such a partition is motivated by the fact

range in which the diffusion coefficient varies by more thanthat in supercooled states, the typical time scales of the in-

four orders of magnitudes for five different density values.trabasin and interbasin dynamics differ by several orders of

This work attempts to build a bridge between models ofmagnitude and hence the separation of intrabasin and inter-

more direct theoretical interest, like Lennard-Jofiey and  basin variables becomes meaningful.

soft spheres, and models which appear to reproduce, even if In the 6N-dimensional configuration space, the partition

in a crude way, properties of complex materials. In this refunction Z for a system ol rigid molecules can be written

spect, orthoterphenyl is the best candidate, being one of th&s

most studied glass-forming liquid47]. The LW model is a

three-sites model, with intermolecular site-site interactions (AxAyAz)N N N

described by the LJ potential. This model is among the sim- Z= #J dg exd —V(q")/ksT], (1)

plest models for a nonlinear molecule. The limitation consti- A

tuted by the fact that it does not take into account the internal

molecular degrees of freedo(see[45] for a more realistic whereg" denotes the positions and orientations of the mol-

mode), is overruled by the observation that its simplicity—it ecules,V(q") is the potential energyl,,, where u=x,y,z

can be considered as an atomic LJ with constraints—allow&re the principal moments of inertia of the molecule,

one to reach simulation times of the order @$. Hence a AME(ZTrI,LkBT)”z/h, and A=h(27mkgT) 2 is the

significant sampling of the PES in a large temperature ande Broglie wavelength.

density range is possible. Moreover, this model constitutes Let )(E;s) denote the number of minima with energy

an ideal bridge between simple atomic models and moleculdr s, andf(T,Es) the average free energy of a basin with

models, being possible to treat it under several approximabasin depttE,s. f(T,E,s), which takes into account both the

tions[44]. kinetic energy of the system and the local structure of the
The paper is structured as follows: In Sec. Il we briefly basin with energyg, s, is defined by

recall the main results of the IS formalism. In Sec. Il we

show the calculation of the configurational entropy as a dif-

ference between the total entropy and the vibrational entropy.  {(T E g)=—kgTIn

In Sec. IV we give some numerical details. We present our

results in Sec. V, which is divided into subsections detailing

the calculation of the total entropy by thermodynamical in- 5 f

tegration from the ideal gas state, the study of the vibrational basins J R

properties of the PES, and the calculation of the configura-

tional entropy. In the end we study the link between configu- )

rational entropy and the diffusion constant, investigating the

validity of the Adam-Gibbs equation. In Sec. VI we finally whereRy i, is the configuration volume associated with the

discuss our results and we draw some conclusions. In Apperspecific basin. The partition function can then be rewritten as

dix A we report the analytical calculation of the total entropy a sum over all basins in configurational space, i.e.,

(AXAyAZ)N 1
ASN Q(Es)

dgVexd — (V—Es)/kgT]|,

basin
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Eis*+f(T,Eis) 3\ kgT
z=2 Q(E,S)exp(—? E(M=|6-F| % Tes(M+UadT), €)
Es B
=S exd - L MEDTESHITES) o S(T)=8,(T) + Su(T) = Snarel T) + Sartl T) + So(T),
e KT : (10
where the configurational entrofS(E,s) has been defined and
as 6N-3
:(6——)—i > In fonT) (1)
Se(Erg)=keln[Q(E;9)]. (4) Snam=| 67N/ TN 2 M TheT )
In the thermodynamic limit, the free energy of the liquid where the frequencies, are the square root of the eigenval-
can be calculated using ues of the Hessian matrix calculated in the inherent struc-
tures.
Fles(M]=es(T)+f[T.es(T)]-TS[es(T)]. (5 Thus, the total entropy is the sum of two contributions:

S:(T) which accounts for the multiplicity of basins of depth
wheree 5(T), the average value of the IS energy at tempera—eIS(T)’ andS,(T) which accounts for the “volume” of the

tureT, is the solution of the saddle point equation basins. The last equations give us, in a very transparent way,
the physical meaning of the partition of the PES; moreover,

1+ &_f_-r 9Sc -0 (6) they provide us with a very efficient way to calculate the
JEs JEs configurational entropy as a difference between the total en-
ergy of the system and the vibrational entropy.
The liquid free energy expression E@) has a clear inter- The total entropyS can be evaluated via thermodynamic

pretation. The first term in Eq5) takes into account the integration, starting from a known reference point. Every
average energy of the PES minimum visited, the second terwariation of total entropy can be generally written as the sum
describes the volume of the corresponding basin of attractioof variation along isochores and isotherms in the form
and the kinetic energy, and the third term is a measure of the
multiplicity of the basin. AS=AS,+AS;. (12

It can be rigorously showf31,46,29 that, if the density
of stateQ (E,s) is Gaussian, and if the basins have approxi-Then the change of entropy along an isochore between two
mately the same shape or are, to a good degree, harmoniemperature§ andT is
the important relation holds,

_ (7T’
1 AS~SVI-sv = [ e 9
eis(T) 7 ™ T

and the change along an isotherm between two voluvhes

On lowering T, basins with lowerE,g energies and lower andV is

degeneracy are populated, i.e., bethandS; decrease with

T AS;=S(V,T)-S(V,T)

IIl. EVALUATION OF THE CONFIGURATIONAL 1 — (——
ENTROPY =7 E(V,T)—E(V,T)+deVP(V,T)} (14

The Eq.(5) provides a natural starting point for a numeri-
cal evaluation of the configurational entropy. Indeed, the fre
energyF(T,V) per molecule can be split in the usual way as
a sum of an energy and an entropic contribution. Considerin
Eq. (5) we write

én the present case, to evaluate the total entropy of the liquid
we start from the known expression of the ideal gas of LW
olecules, reviewed in the Appendix. To evaluate the basin
ee energyf (T,e5(T)), we select as a reference point the
free energy of (6/—3) independent harmonic oscillators
F(T)=E(T)-TS(T) _(whose d_istribution of frequencigs can b_e calculated _evaluat-
ing the eigenvalues of the Hessian matrix evaluated in the IS
=—TS(T)+es(T)+E,(T)=TS,(T), (8) structure and add corrections to take into account the basin
anharmonicities.The harmonic contribution to the entropy is
where the index indicates the vibrational quantitiggitra  given by Eq.(11).
basin componen}sin order to evaluate these quantities we Assuming that the anharmonic contribution is indepen-
calculate the basin free energy as the free energyNof 8  dent from the basin depth, the anharmonic corrections to the
independent harmonic oscillatof84] plus a contribution entropy atT can be calculated integrating the quantity
that takes into account the basin anharmonicities. Then wdU,,,/T, whereU 4., is implicitly defined in Eq.(9), from
can write T=0 to T [see Eq(13)].
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TABLE I. Densities, volumes, and simulation box lengths cal- TABLE IIl. Temperaturegin K) for which calculations are per-

culated. formed.
k pi (g/cnr) Vi (nm?) Ly (nm) P1 P2 P3 P4 Ps
1 1.036 126.647 5.022 170 190 230 280 320
2 1.060 123.883 4.985 185 200 240 300 340
3 1.083 121.120 4,948 190 210 260 320 360
4 1.108 118.356 4.910 195 230 280 340 380
5 1.135 115.593 4.871 210 250 300 360 400
220 280 320 380 420
240 300 340 400 440
IV. NUMERICAL DETAILS 260 320 360 420 460
280 340 380 440 480
The LW OTP molecule[43] is a rigid three-site planar 300 360 410 460 530
isosceles triangle; the length of the two short sides of the 480

6

V(r):46 +)\1+)\2r, (15)

triangle iso=0.483 nm and the angle between thenWis
=57/12 (75°). Each site represents an entire phenyl ring of
massm=6mc=78 amu, whgremc IS the mass of th? €ar \which the diffusion constant changes from ~$0 to
bon atom. For each pair of interacting molecules, nine Site315-10 ¢1?/s. ie. over four orders of magnitude
sitg interactio'ns are evaluated according to the site-site inter- After the’tﬁe.r'malization run, the production. run takes
action potential place. The length of each run is always several times longer
than the estimated relaxation time. This allows us to collect,
a\? (o for each thermodynamic point, a set of configurations which
T are to a good extent uncorrelated from one an other.
Two additional simulations are performed to connect the
, o , range of densities and temperature studied with the ideal gas
where r is the site-site distance¢=5.276 kJ/mol, ¢ teference point. The system at density is simulated for
=0.483 nmA, =0.461 kJ/mol and.,=—0.313 kdmolnm). temperatures ranging from 280 to 5000 K to evaluateTthe
The parameters of the potential are selected to repmdu%pendence of the potential energy. A second set of simula-
some bulk properties of the OTP moleci#8] such as the tions at constant (T=5000 K) in the volume range 20
temperature dependence of the diffusion coefficient and the 15 18 is performed to calculate thexcesspressure
structure. The vglues afl'and.)\z are gelepted in such a way (i.e., the pressure beyond the ideal gas contribiition
that the potential and its first derivative are zerorgt g cajculate the inherent structures visited in equilibrium
=1.2616 nm. Such a potential is characterized by a miniye perform conjugate gradient minimizations to locate the
mum atr =0.542 nm of depth-4.985 kJ/mol. The integra- |osest local minima on the PES. We use a tolerance of
tion time step is 0.01 ps. The shake a_Igorlthm is implementeq 5-15 | 3/mol in the total energy for the minimization. For
to account for the molecular constraints. each thermodynamical point we minimize at least 100 con-
We study a W, V,E) system composed b)=343 mol-  fig,rations and we diagonalize the Hessian matrix of at least
ecules(1029 LJ interaction sit¢sat five different densities 50 configurations to calculate the density of states. The Hes-
(see Table)ifor several temperatures at each dengfigble  gjan is calculated choosing for each molecule the center of
I). The overall total simulation time, comprising thermaliza- ;355 and the angles associated with rotations around the
tion and production runs at all the thermodynamic pointsy, ee principal inertia axis as coordinates.
investigated, exceeds 1fls. We carefully check the ther- Error bars have been calculated for all the simulation re-
malization of the system at the lowest temperatures. Theits points presented in the papé7]. Due to the length of
lengths of the thermalization runs cover a time interval durhe production runs, several times longer than the relaxation
ing which each molecule has movédn averagea few  imes, only configurations sufficiently uncorrelated have
times o This time is calculated by monitoring the mean peen ysed to calculate the different observables. The error
square displacement. We study also the time dependenggs have then been calculated using the standard relation for
of the intermediate scattering functionF(Qu.t)  calculating errors. We show the error bars only when the
=(pq,(1)rg,,(0)); hereQy is the value of momentur®  amplitude of the error is larger than the size of the symbol
locating the first maximum of the static structure factorused for the data point.
S(Q). We confirm that this correlation function has decayed
to zero during the equilibration time. Moreover, we ensure V. RESULTS
that no drift in the one-time quantities is observed during the
production run. The lengths of the equilibration runs range
from a few nanoseconds at the highest temperatures to sev- To estimate the total entropy for the model we proceed in
eral hundred nanoseconds at the lowest temperatures. Weree steps as shown in Fig. 1. The thermodynamic path has
have been able to equilibrate the system i eange over been chosen to avoid the liquid-gas first order line.

A. Dependence of the total entropy onl and p
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4 T

10 T 3
10 O MD results
(1) —— Fit polynomial of degree 3
C,=(T,,V,) [J-————————- (Tyyo0) 10° Lk ——— Virial
< _ 10
= &
g 3 (2 ) E 100
£10° = .
b . 510
£ C,(T,V,) =
S 10
vV, V,V,V,V, 107
10° : ) : : 107 10° 10’ 10° 10°
100 110 120 130 140 150 Vinm®]
Volume [ nms]
FIG. 1. Thermodynamic integration paths used to calculate the
total entropy at the thermodynamical points of interest starting from 5
the ideal—noninteracting—gas state. Details are given in the text.
z 0
£
(1) Integration along the isotherniy=5000 K from E =5
(To, V=) (perfect gasto (Ty, V,=118.356 nm), corre- >
sponding to poinCy in Fig. 1. The ideal gas contribution to = -10
the total entropy is discussed in the Appendix. The entropy at s
Cy can be calculated as - (b) T=5000[K]
-20 2 |3 |4 5
U(To,Va) v,dV 10 10 . 10 10
S(T01V4)_Sid(T01V4):T—O+ T—Opex(V,To), Vinm']
(16 FIG. 2. (a) Excess pressure @t=5000 K as a function of vol-

ume. The open circles are the MD results. The dashed line is the the
where P, is the pressure that exceeds the pressure of thfirst term of the virial expansion to the excess pressure; the solid
ideal gas, i.e., the contribution to the pressure due to théne is a third order polynomial fit to the entire set of dath)
interaction potential andJ is the system potential energy. Potential energy af =5000 K as a function of volume.
The values of the pressuRe,(T=T,,V,N=2343) as a func-
tion of V are reported in Fig. @). Po(T=Tg,V,N=2343)
has been fit using the virial expansion U(Cy)

To

=0.64 J(mol K). (22)
4

Pod T=To,V.N=343 = >, a, v~ k+1), (17)

k=1 (2) Integration along the isochoi¢=V, from T, to T*

) ) - =380 K, corresponding to poir€, in Fig. 1. To evaluate
The a, values are reported in Table IIl, from which we esti- the entropy along this isochore we use

mate the first virial coefficient af

Ba(To)=a1/(kgToN?)=0.596 nni. (18 S(T*,V,4) =S(To,Va) + 3Rlog(T*/Ty)
In Fig. 2(b) we plot the potential energy as a function of +J’T*d_T dU(Vy4,T) (22
volume along thel =T, isotherm. T, T aT -

The total entropy at the reference poi@ is S(Cy)

=294.8 J/(molK), resulting from the sum of three contri- TABLE Ill. Fitting coefficients for the excess pressure as a func-

butions tion of 1V at T=5000 K and aff=380 K.
S,4(Co) =339.03 Jmol K), (19 i a; (MPa nnfi+1) p* (MPa nn#(+1)
VadV 1 4835.9627% 10° 15943.2
= f N PV, To)=—44.9 J(mol K), (20) 2 1000.5376% 10° —256.591
© 10 3 9654.69476& 10° 1.1745
4 3873.8700% 10'° —0.00111551

and
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TABLE IV. Total entropy at five densities for the reference tem-
o peratureT*.
— *
E 20 k S(T*) [I(mol K)]
5 1 192.80
S a0 2 188.21
= 3 183.54
=)
6 4 177.95
80 L 5 172.12
260 310 360 410 460 510
-80 : : : L :
0 1000 2000 3000 4000 5000
TIK]
—— — S(T*,V) =S(T*,V4) =Sia(T*,V) = Sia(T*,Vy)
il () T=T B () T=T 1
/
/D/ +T_*[U(T*1V)_U(T*1V4)]
ER / 0'g
5 H = vdV’
= /! 5 +f — Py (T*, V). (27
= 75t A = Va T*
|;{/
/ , Figures 3b) and 3c) show, respectively, the potential energy
7.0 115 120 125 110 115 130 125 130" and the excess pressure as a function of volume=at*.
3 For convenience we fiR., with a third order polynomial
Volume [ nm™ ]
FIG. 3. (a) Integration step 2. Potential ener{ypen circley at 4
the densityp, in the entire temperature range considered; the solid P (T*, V)= 2 p: vk-1 (28
k=1

line is the fit of the data to Eq23). The inset shows the lowest
temperature region in order to stress the accuracy of th@fiand
(c) Integration step 3. Potential ener@y and pressuréc). where the values of the coefficiergg are given in Table Il1.
The resulting total entropy a&* for all studied densities is
reported in Table IV. These values are used as reference
Figure 3(a) shows the potential energy for the=V, isoch-  entropies for thel dependence o For each of the studied
ore. To calculate the integral in E(2), we fit the potential  jsochores, we calculate tiedependence of the total entropy
energy using the functional form which best interpolates thexccording to Eq(22). In this low T range, the potential en-
calculated points ergy is very well represented by the Rosenfeld-Tarazona law
[48]

U(V4,T)=U0+ U1T3/5+ L|2T, (23) U(V,T)=U0(V)+a(V)T3/5 (29)

obtaining the valuesuy=—94.405u,=0.533u,=0.00183
(energy in kJ/mal

The total entropy at the reference poi@ is S(C,)
=191.8 J/(molK), resulting from the sum of three contri-

consistent with what was found for LJ systems. In Fig. 4 we
show the temperature dependence of the potential energy at
all densities. The best-fiuy(V) and «(V) values are re-
ported in Table V. The calculated total entropies at each con-

butions: sidered density are plotted in Fig. 5.
S(Co)=308.6 JmolK), (24) TABLE V. The first two columns are the coefficients for the
potential energy (T,V)=Uq(V)+ a(V)T*5 the second two col-
3R1og(T/5000 = —64.3 J(molK), (259 umns are the coefficients for the inherent structuegs(V,T)
=A(V)+B(V)/T.
and
o Ug (kImo)  a (kIK ¥ mol) A (kd/mo) B (kJ T/mol
fT*d_T WVaD e Imol K), 26) 1  —86.30 0.4385 ~79.11 —285
o T dT 2 —88.94 0.4716 ~80.14 —436
3 -9207 0.5231 —81.88 ~676
(3) Integration along the isotherm* from V, to a “ge- 4 —95.23 0.5762 —81.36 —965
neric” V. To determine the total entropy difference for all 5 —96.06 0.5731 -81.89 ~1100

studied densities we calculate
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-y | | | | ] el | -*"‘\r.\...\.
_ 81t ]
s -73 £
g E g
= E
= -75 = -8 mp,
z E Ap,
= T ¥ *p,
= =77 2 Op,
-85 ¢ Yo,
v
-79 - : ' : -86 ' ' : :
20 25 30 35 40 15 2.5 35 45 55
TS/J[KS/S] 103/T[K—1]

FIG. 4. Potential energies at the different densities as a function FIG. 6. Energies of the inherent structures at the different den-
of T35, The straight solid lines show the validity of the Rosenfeld- sities as a function of T, The straight lines confirm the validity of
Tarazona law, Eq(29). Eq. (30) in the entire temperature range considered.

B. Dependence of the inherent structure energies onand p As shown in Fig. 7, the anharmonic contribution is rather
In Fig. 6 we show the temperature dependence of themall, in agreement with previous findings for the LJ model.
energy of the calculated inherent structures together with a ffgr this reason, the low signal to noise level does not allow

[according to Eq(7)] in the form a well-defined characterization of tleg and cs values. To
decrease the number of free parameters, we consjderbe

B(V) volume independent, and we fit simultaneously, according to
es(V,T)=A(V)+ T (30 Eq. (31), c, and theV dependence af;. As we will show in

the following, the anharmonic contribution to the entropy is

- - much smaller than the harmonic one and hence the choice of
The values of the fitting coefficienté(V) and B(V) are ¢, andc; does not affect significantly the resulting configu-
reported in Table V. On lowering temperature the systen)iional entropy estimate

populates minima of lower and lower energy. It is worth
noting that, in contrast to the case of the actual potential _ o _
energy, the slope of these curves varies strongly with densi- C. Density of states and vibrational harmonic entropy

ties. In this section we study the shape of the basins by inves-
From theT andV dependence a5 the anharmonic po- tigating the properties of the density of states and we calcu-

tential energy can be calculated according to 3. Figure  |ate the vibrational harmonic entropy. In FiggaBand §b)

7 showsU ,,(T) for two densitiessymbols. We also show e show the temperature and density dependence of the den-

a cubic extrapolatiortsolid lineg in the form of sity of state, namely the histogram of the square root of the
eigenvalues of the Hessian calculated for the inherent struc-
Uad T)=CoT2+¢5T3. (31)  tures. The distribution is characterized by only one peak, not
showing any clear separation between translational and rota-
—
— 190 | v 0.0 T T T
Y
g 170 ! ; _ -01 | 1
g I =
= 150 | : g 02} . 1
S [ =
2 a0l —ap, | Z 03} - .
= a—=Ap, ! -
E ~——*p, ! t 04 | E
= ! e T o
2 110 o—>op, ! i u"p, o 4o
= . =) °
—p, LT 05 L °Ps o i
90 : : L
100 200 300 400 500 06 , ‘ , ,
Temperature [ K ] ) 100 200 300 400 500

Temperature [ K ]
FIG. 5. Temperature dependence of the total entropy as calcu-

lated by thermodynamic integration from the ideal gas reference FIG. 7. Anharmonic contributions to the energies, at the two
state. Only points in the temperature range where MD measurendicated densities, together with the appropriate cubic fit,(&g).
ments have been performed are shown. The reference temperaturhis contribution is integrated to directly calculate the anharmonic
T*=380 K is also showr{dashed ling contribution to the vibrational entropy.
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FIG. 8. (a) Density of states at fixed densify, at the three FIG. 9 T ture d d fth basi
indicated temperatures. This quantity is the histogram of the square N;l-z(?N_Slmpera/ urg ;]e_pen ence Obt € average afS|In curva-
root of the eigenvalues of the Hessian calculated for the inherent{’Jres k=1 109 /wo); this quantity, being a sum of loga-

. o L ")

structures.(b) Density dependence of the density of state at fixed“thms’ Is very sensitive t(.) the spectrum taily=1 cm set.s the

temperatureT=320 K. The dashed line indicates the isosbesticfrequency scale(b) Relation between the energy of the inherent

frequencyw* ~44 cm ! at which all the curves intersect. The rel- structures and the average basin curvatures. The straight lines con-

evance of this feature is discussed in the text ' firm the correlation between shape and depth of the inherent struc-
' tures accessed by the system.

tional dynamics; the width of the distribution increases onincreases with temperature along isochores and increases
increasing temperature. The position of the maximum iswith density along isotherms.
found to be to a good extent independent of temperature; at As noted previously for the L{b1,29 and for the simple-
variance it increases with density as the width does. Thespoint charge extendedSPC/B model for water[30], the
features show that the LW PES basins have shapes that adependence ol *={N | log(wy/wg) from eg can be well
function of the energy depth and of the density. approximated by a linear dependence, i.e.,

It is worth noticing one particular feature of Fig(8; all 6N—3
the curves cross at a value of the frequeacy~44 cm 1. E z In
The presence of this isosbestic frequerity analogy with N &1
the well-know isosbestic frequency observed in the Raman
spectrum of watef49]) supports the possibility that a two- TABLE VI. Coefficients of the fit to the form
state modef50] may provide a reasonable description of theN ™ "={Y; *log(wy/wp)=a(V)+b(V)e(T).

change of the density of states with temperature and, corré=

=a(V)+b(V)es(T), (32

fiwn(T)
kgTo

spondingly, of the change of the density of states with the Pk a(V) b(V)
basin depth. (molkJ
In Figs. 9@ and 9b) we plot the quantity 1 471 0.342
N3N 3log(w/wo) as a function ofT and of thee s, re- 2 41.2 0.259
spectively. The scale frequenay, is chosen as 1 cnt. 3 36.5 0.192
This quantity is an indicator of the average curvature of the 4 32.1 0.132
basins and, being a sum of logarithms, is very sensitive to the 5 28.9 0.869

spectrum tails. As shown in Fig(&® N~ 2N log(wy/wp)
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FIG. 10. Main panel: Harmonic contribution to the vibrational k. 11. Volume and temperature dependence of the configura-

entropy as calculated from the eigenvalues of the Hessian for thgong| entropys, calculated as the difference between the total and
inherent structures. Inset: Anharmonic contribution to the vibra-ihe yiprational entropy. Solid lines are interpolations of the calcu-

tional entropy as calculated by integration of the anharmonic contateq points to Eq(34).
tribution to the potential energy, as discussed in the text.

h fi h | . h | f th lowering density, in agreement with the evidence that a glass
whereT, defines theT scale To=1 K). The values of the =, jion may be induced along an isothermal path by pro-
coefﬂmentsa(_\/) _and b(V) are reported in Table VI. Th|s ressively increasing the pressure. Considering Et@),
dependence indicates that deeper and deeper basins ha%ﬁ), (30), (32), and(33), the configurational entropy can be

larger and larger volumegtheir average frequency being yegcribed in the entire density and temperature range consid-
smalley. The fact that basins of different depths have dlffer—ered by means of the functional form

ent volumes introduces an important contribution to &j.

since the tern@f/de,q is different from zero. The implication ( 3
6_ —

of this nonzero contribution has been discussed recently in Sc(T)=3(T)— N

Refs.[29,51,53.
In Fig. 10 we show the harmonic contribution to the en- 3
tropy as calculated from Eq11). This contribution is obvi- —2C,T— 5C3T" (34)
ously increasing with temperature and along isotherms in-
creases decreasing density. The lines are interpolations of the
data using the fits of Fig. 9. These curves are plotted in Fig. 11 as solid lines. In the range
of temperatures and density studi&l/R per molecule var-
ies from about 4 to 3, a figure not very different from the
estimated configurational entropy of orthoterphenyl, based
Integration of the anharmonic enerbly,,,, obtained from  on an analysis of th& dependence of the measured specific
Eq. (9) according to Eq(13), gives directly the anharmonic heat[53,54. We recall that the LW model represents each
contribution to the entropy. For the LW casdy,, is de-
scribed by the polynomial iff of Eq. (31), and we obtain

s
+a(V)+b(V) A(V)+?

D. Vibrational anharmonic entropy

200

temperatures studied, the leading anharmonic contribution
acts in the direction to decrease the volume of the basin.

0 ___v_c_qy_c__y_z__$_2;_o_q;_c__

3 E M
San T)=2€,T+ 5 ¢5T* (33 L B
= 120 | A—AS
. . . . . E Py Hsharm
The inset of Fig. 10 shows the anharmonic contribution to S sl *—es,
the vibrational entropy as calculated by integrating the an- 5 08
harmonic contribution to the potential energy. This contribu- T 40t
tion is negative showing that, in the range of densities and é oo oo 000000
)
=
g
&

-40 : : : :
250 300 350 400 450 500

E. The configurational entropy Temperature [ K ]

In Fig. 11 we plot the configurational entropy calculated  FiG. 12. Temperature dependence of the different contributions
subtracting the vibrationasum of the harmonic and anhar- to the total entropy(closed trianglesat the fixed selected density
monic term$ from the total entropy for the five studied iso- p,: harmonic (open squarés configurational entropy(closed
chores. As expected the degeneracy of basins increases ¢ircles, and anharmoni¢open diamonds
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FIG. 14. MCT parameters as calculated from the diffusion con-
10° stants. Main panel: Critical temperatufg(V) (open circley to-
gether with the value calculated in R¢#fi4] (closed circlg¢. The
e dashed line is only a guide for the eye. Inset: Power law exponent

(V).

Dlem’/s]
=

The D values calculated are shown in Fig. 13. Figure
13(a) shows the dependence dnwhile Fig. 13b) shows the

10 . )
. dependence on T/ Figure 13a) also shows the best fits to
» Yo the power law
107 15720 25 30 35 40 45 50 55 60
10°/TIK™'] D(T)ec(T—T¢)” (36)

FIG. 13. Diffusion constants together with the corresponding . . .
power law fits(solid lineg predicted by the MCT. The breakdown predicted by the ideal MCT in weakly supercooled states.

of this prediction and the crossover to an activated dynamics id N€ consistency of the MCT prediction for a wide rang&of
evident. See text for a discussion of this poifa.As a function of ~ values confirms the analysis of Rinaleti al. [44] where ex-
temperature(b) As a function of the inverse temperature in order to plicit ideal MCT calculations were presented and success-

stress the exponential dependence at the lowest temperatures. fL!"Y compared with the numerical resglt§ along one isc_)bar.
Figure 13 shows also that clear deviations from the ideal

MCT take place when the diffusion value becomes smaller

phenyl group as one single interaction site and it does ndhan 108 cn/s. The representation & as a function of
account for the the molecule flexibility. The similar estimate 1/T shown in Fig. 180) shows that the ideal MCT region is

of S, seem to suggest that steric effects are dominant ifollowed by aT region where new types of processes become
controlling the configurational entropy. Finally, in Fig. 12 we effective in controlling the molecular dynamics. These pro-
plot the temperature dependence of all the contributions téesses, termed hopping processes, transform the ideal MCT
the entropy ap,. divergence of characteristic times into a crossover. In the
region of D values between I cn?/s and 101° cn?/s,
limited from below by the present numerical resources, data
] . . are consistent with an apparent Arrhenius dependence with
_ In order to investigate the connection between the longyarameters which could well becorifedependent if studied
time dynamics of the system and the underlying PES, wg, 5 larger range ob values[3].

F. Diffusion and the Adam-Gibbs relation

calculate the center-of-mass diffusion coefficiex{fT) from The ideal MCT critical temperatures andvalues, deter-
the mean-square displacemenf(t, T)) via the Einstein re-  mined by the fit of theD values to Eq(36), as a function of
lation density are shown in Fig. 14. The density dependencE,of
1 is almost linear. The exponent seems to increase on in-
D(T)=lim—(r%(t,T)) (35) creasing_d_e_nsity, but the noise does not allow us to r_ule out
- the possibility of a constant value. The filled circle indicates

the value of the critical temperatufie.=265 K determined
To guarantee a proper diffusive regime, at all densities simufrom an isobaric run in Ref44].
lations are performed until the average mean square displace- We finally study the link between configurational entropy
ment is greater than 0.1 rinat the lowest temperatures and and diffusion coefficient, investigating the validity of the
10 nnt at the highest. The inverse of the diffusion coeffi- Adam-Gibbs equation. Figure 15 shows Bg@s a function
cient provides an estimate of the characteristic structural resf 1/(TS.); for all studied isochores, Idg vs 1/(TS.) is well
laxation time of the LW model. described by a linear relation, with coefficients which are
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(S.). To examine such a possibility we compare for five
different isochores th@ dependence ob with the Adam-
Gibbs relation. In the entire range ®fand densities studied
the Adam-Gibbs relation appears to provide a consistent rep-
resentation of the dynamics for the LW model.

It is important to observe that a linear relation between
logD and 1/(TS.) holds both above and below the ideal
MCT critical temperatureT., in agreement with a similar
finding for the silica casé32]. Recent works based on the
instantaneous normal mode technid&&] for several repre-

, , , , , , , , sentative model8—62 provide evidence that abovie the

6 8 10 12 14 16 18 20 22 system is always located in a region of the PES close to the

10°/(TS ) border between different basins. The number of diffusive di-

rections significantly decreases abolg and, if only data
aboveT, are considered, the number of diffusive directions
would appear to vanish 3t,. Hence dynamics abovk, is a
dynamics of “borders” between basins and there is no clear
volume dependent, as previously found for the LJ “quidreason why such dynamics should be well described by the

Adam-Gibbs relation, which focuses on the “number” of
29], for the SPC/E del f tdB4] and for the BKS X ' .. .
Eno]delofror seilica[32]. model for watgg4] and for the basins explored. The observed validity of the AG relation—

We note in passing that deviations from linear behaviorbOth above and ngoWC—repprted in t_his ma}nuscript sup-
are observed at large values of Pgwhere intrabasin and ports the hypo'.[heS|s that a direct rglatlon eX'StS between the
interbasin dynamics time scales are no longer separated. &Hmber of basins anpl their con_necuv[ﬁ(_),GZ. Itis a chal-
high T, it has been propose®5] that entropy—as opposed quge for future studies to confirm or disprove this hypoth-
to configurational entropy—is the relevant thermodynamices's'

guantity controlling dynamics.

FIG. 15. Test of the Adam-Gibbs relation 184T)«(1/TS;) for
five different densities. Note that this linear relation holds both
above and below the estimated critical temperatires
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simple model, which collapses the entire phenyl ring into
one interaction site, allows us to run very long trajectories
and to study in supercooled states the molecular dynamics
to 1 us, allowing the determination of diffusion coefficients
down to 1010 cn/s.

In this appendix we calculate the partition function of a
stem of N LW molecules in the noninteracting—ideal
as—case.

The three moments of inertia for the single molecule are

We have found that, as in the atomic LJ case, by cooling 0
along an isochore, basins of the PES of deeper and deeper |X:_m020052(_> =1.248<10"* kgn?,
energy are explored. The basin volumes are functions of the 3 2

depth in agreement with previous studies. Using the inherent
structure thermodynamic formalism, we have calculated the
number of basins of the PES and their depth, in the region of
depth values probed by our simulations. As a result, we pre-
sented a full characterization of the the temperature and degmnd
sity dependence of the basin depth, degeneracy, and vol-
umes. 0
These results are used to provide a consistent model forl ;= mo? 5)
the intrabasin vibrational entropy. This, together with the nu-
merical_calculat_ion of the to'gal entropy via thermodynamicwe define the following quantities:
integration starting from the ideal gas state, allow us to cal-
culate the configurational entropy—the difference between 6rmke 872k |
the total entropy and the vibrational one. This quantity is of A= 77 R = o ¥elp
primary interest both for comparing with the recent theoret- hz2 hz '
ical calculations[13,36] and to examine some of the pro-
posed relation between dynamics and thermodynamic&here denotesx, y, or z. The translational and rotational
[38,14,56 connecting a purely dynamical quantity like the partition functions for the single molecule are, respectively
diffusion coefficient to a purely thermodynamical quantity [63],

6
Iy=2m025in2(§) =2.204x10 * kgn?,  (Al)

+2 sir? =3.452< 10 * kg n?.

0
2

2
3 cog

(A2)
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Zp(T,V)=V(AT)?, (A3) Fia(T,V,N)=—kgT In[ Zi4(T,V,N)]
1
=N Eln 2+1In V\/AgRXRyRZ
1
Z(T,V)= E\/;\/RXRyR T (A4)
+3InT—InN+1
so the total partition function for an ideal gas of LW OTP _ i 9 _
molecules can be expressed as Sia(T,V,N)= ke o7 Fia(T.V.N) (AB)

1
:NkB[4+ Eln 7—In2

VA 3RXRyRZT3} ]
N

(Zr2p)"

Zg(T,V,N)= NI

(A5)

+ In[ (A7)

We approximateN! ~NNe™N. The free energyF,q and the
entropy S,y of the non-interacting system then become

where the term In2 is due to the two possible degenerate
angular orientations of the moleculé3].
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