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Confirmation of anomalous dynamical arrest in attractive colloids: A molecular dynamics study
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Previous theoretical simulation and experimental studies have indicated that particles with a short-ranged
attraction exhibit a range of dynamical arrest phenomena. These include very pronounced reentrance in the
dynamical arrest curve, a logarithmic singularity in the density correlation functions, and the existence of
“attractive” and “repulsive” glasses. Here we carry out extensive molecular dynamics calculations on dense
systems interacting via a square-well potential. This is one of the simplest systems with the required properties,
and may be regarded as canonical for interpreting the phase diagram, and now also the dynamical arrest. We
confirm the theoretical predictions for reentrance, logarithmic singularity, and give a direct evidence of the
existence, independent of theory, of two distinct glasses. We now regard the previous predictions of these
phenomena as having been established.
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[. INTRODUCTION systems. In Ref[8], colloidal interactions were modeled
with a potential chosen in such a way to avoid undesired
Recently, there has emerged a series of remarkable resuktéfects such as liquid-gas separation at low densities. Poly-
involving the dynamical arrest of particles with interaction dispersity was included to prevent crystallization at high
potentials that are short compared to the size of the repulsivéensities. In Ref[21] molecular dynamics simulations of a
core [1-9]. The most important predictions are as follows square-wel(SW) system with a very narrow range of attrac-
[10]. The curve at which the fluid phase is arrested is reention have been performed. In both cases, the results have
trant in the regime where attractions and repulsions competd®een shown to be in excellent agreement with MCT predic-
In the vicinity of this reentrance, and in the arrested regimetions. The focus on the simple square-well potential makes
there exist two distinct arrested states that may, under sonmrect contact both with the available theoretical results and
conditions, coexist. These two states differ in their long-termwith experimental systems, the interactions being completely
dynamics. This coexistence terminates smoothly, the dynancontrollable and independent of external parameters. For the
ics of the two arrested states becoming identical at a particlW model, a theoretical solution is also available. Indeed,
lar point at which distinctive dynamics is expected. It is im- the equilibrium properties of the square-well potential have
portant to note that all these phenomena are predicted toeen studied for many years, and in many ways it is regarded
occur irrespective of the shape of the potent&tplicit re-  as the simplest physical model that exhibits all the essential
sults exist for square-well or hard-core Yukawa interactionfeatures of short-ranged systefi22—27. Besides this, it is
models[4-7,11], as well as for the Baxter modgl2] de- the model for which the theory of the dynamical arrest tran-
spite its singular behavior at the hard-core vdl2g]). The sition described above has been developéd] and for
essential feature is only that the range of the attraction inwhich, therefore, detailed comparison may be made between

comparison to the hard core must be extremely small. theory and simulation. It may therefore be regarded as ca-
The results described above were first deduced from theonical in this arena of study.
mode-coupling theoryMCT) [13,14], and we may note that In Ref.[21], we examined a one-component square-well

the conclusions do not depend on the details of the approxsystem. We found that, irrespective of the sharp intervening
mation for the input static structure, Percus-Yevick, mearpof crystallization, which effectively prevented the system to
spherical, and self-consistent Ornstein-Zernike approximaapproach very closely the glass transition, it was possible to
tion, all leading to essentially the same picture. Within MCT have a clear picture of the reentrant shape of the glass curve
the merging of the two arrested states is predicted to be @ the temperature-density plane. This was achieved by plot-
higher order dynamical singularity, and density correlationding isodiffusivity curves and examining their trends when
in its vicinity are expected to obey a highly distinctive loga- approaching the limiD—0. The shape of the liquid-glass
rithmic relaxation[4,15], in contrast to the conventional line was found to be in good agreement with the previous
ergodic-nonergodic transition, where a two-step procesMCT predictions[4].
takes placé14,16. In this paper, we report an extensive numerical study of a
More recently, this decay has been observed also in sewwo-component binary mixture with interactions modeled by
eral experimental systenj$7-19,9,20, thus giving the first a very narrow SW potential. This mixture appears to be a
evidence that these singularities do exist in nature. logical extension of the one-component syst¢Pi] for
Two recent numerical workE8,21] have focused on the which crystallization is effectively avoided, by means of the
new dynamical features characterizing attractive colloidalgeometrical rearrangements allowed by the asymmetry in di-
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ameters between particles of different species. The choice of Vij(N)=—ug o;;<r;<oj+A4;,

a two-component system makes it possible to extend the

range of isodiffusivity curves to almost 3 decad@s], as Vij(1)=0 r;>0;+A;, (1)
well as the range of studied packing fractions fren®.57

for one-component to 0.62 for binary systems. Thus, the rewith €;=A;;/(oj;+4;;)=0.03,i,j=A,B and we use the

entrance is so pronounced that an equivalent hard-sphere sysnventional notation for which, for examples,= o5 and
tem at this highest packing fraction value, i.e., 0.62, wouldoag=(oa+ og)/2. Temperaturel is measured in units of
be sufficiently dense to approach the random-close-packeghergy, i.e.kg=1 and thus, for exampld,=1 corresponds
limit, though the definition of that concept has its own limi- to average thermal energy per particle being equal to 3/2 of
tations[29]. the well depth, while the packing fraction is defined @s
The extension to a binary system does not only make=(p, o3+ pgos)(7/6), wherep;=N; /L3, L being the box
more evident the reentrant behavior of the glass transitiojze andN; the number of particles for each species.
curve, but also allows a deeper study of the dynamics of the |njtial configurations for each density were chosen at ran-
system. Indeed, as one can approach much more closely td@m. Particles were separated in successive steps—with
ideal glass line, intended as ti2—0 locus of the (¢,T)  more particular care, the higher the density of interest—to
plane, the influence of higher order MCT singularities on theimplement the hard-core repulsion. When separation was en-
dynamics becomes much more evident. We know from thesyred, the attractive well was added. To reach the tempera-
oretical work that the 3% case of the square-well model posture of the study, the configuration so prepared was then left
sesses indeed aiy; singularity [4,5], corresponding to the to evolve with a thermostat of constant thermal coefficient
end point of the repulsive-attractive glass-glass transitionfor a period of time sufficient to equilibrate at that tempera-
Though, of course, this singularity lies inside the glassy reture. We estimate the equilibration time as the time at which
gion, its presence is signalled by the characteristic logariththe density correlation function of the slowest collective
mic decay of density correlators mentioned above, already imode(i.e., at the structure factor peakas decayed to zero.
the liquid region, when going sufficiently close to the neigh-After this equilibration, the configuration was left to run at
boring glass boundary. constant energy for a time dependent on the slowness of the
We report in this paper a characteristic behavior of thedynamics, for a time covering at least ten equilibration times.
density correlators, near the ideal glass transition, which Simulation time is measured in units @f(m/ug) > The
combines features of the typical, singularity, i.e., simply  standard molecular dynamics algorithm has been imple-
ergodic to nonergodic transition with a two-step power-lawmented for particles interacting with SW potentigd4]. Be-
relaxation, and of higher order singularities associated withween collisions, particles move along straight lines with
logarithmic decay. This produces, in a certain region of theconstant velocities. When the distance between the particles
(¢,T) plane, a behavior that is originated by a competitionbecomes equal to the distance for whi¢tr) has a discon-
between the two types of MCT solutions. The same kind ofinuity, the velocities of the interacting particles instanta-
interesting result is found in the mean-square displacemerieously change. The algorithm calculates the shortest colli-
(MSD). However, this subtle interplay between different sin-sjon time in the system and propagates the trajectory from
gularities is present also in theof,15], and its manifesta- one collision to the next one. Calculations of the next colli-
tion in simulation should be regarded as support for thesion time are optimized by dividing the system in small sub-
theory, rather than an inconvenience. This will allow us tosystems, so that collision times are computed only between
identify and localize quite clearly a genuine MCT higher particles in the neighboring subsystems.
order singularity in a realistic model. We studied eight isothermal cuts of the phase diagrams,
with the temperature varying between 2.0 and 0.3 in the large
packing fraction region, i.e¢>0.5. In addition, we exam-
IIl. SIMULATION AND THEORY ined the hard-sphere case, where no attractive interactions

We study binary mixtures of SW spheres. In particular, we2"® present. For each considered configuration, we first stud-
focus on samples of a 50%-50% mixturedé 700 sphere,s ied the thermal history to check that, effectively, it maintains
in a cubic box. with the diameter ratio between the two Spej’[self at the required temperature within fluctuations and that
cies equal to 1.2. Thus, the smaller particl&&type) diam-  the total energy remains constant.

eter isog=1, and bothA and B particles have unit mass. Of each studi_ed configqration, we considc_ared the time-
dependent density correlation functions for differgntec-

Both species interact with a square-well potential with the ke a di . i the behavi dicted
ratio between the potential range and particle diameter equ grs to make a direct comparison with the behavior predicte

to 3%. This corresponds to one of the cases studied theoreffy MCT. The correlators for each species of particles, i.e.,
cally within MCT, which clearly possesses all the main phe-' 71, are defined as

nomena[4,5,30. The 3% ratio has been chosen also for in- -

teractions between particles of different species, i.e., we bi(q,)= Si(a.b _ el q,t)pj(q,0)>7 @)
consider ! Sij(a)  {pi(—0,0)pj(d,0))

wherep(q,t)==,exdiq-r,(t)] are the density variables for
each species arfg);(q) are the partial static structure factors
Vij(r)=eo rj<ojj, of the system. The;;(q,t) are the fundamental quantities of
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interest in the mode-coupling theory, which consists of writ-with = the characteristic time of the relaxation. The expo-
ing a set of generalized Langevin equations, which can baentsa andb are related to each other with a transcendental
closed within certain approximation$3,14,32,33 relation, and are independent of the particujarector con-
We note here that colloidal systems exhibit a Browniansidered,h{" and h{?) are referred to, respectively, as the
short-time dynamics, while our simulations obey a standardritical amplitude and correction amplitudi4].
Newtonian dynamics. This will result in the presence of a On the other hand, the-relaxation process can be also
ballistic short-time regime for the mean-squared displacewell described by a stretched exponential, i.e.,
ment. However, a crucial result of MCT is that the structural
relaxation dynamics, i.e., the dynamics outside the transient, ¢q(t)=Aqexp{—(t/Tq)ﬁq], 5)
is independent of the short-time dynamj&gl].
The correlatorsp;;(q,t) have been calculated by averag- where the amplitudé, determines the plateau value, and the
ing over several independent configurations and over up teéxponents, is always less than 1.
100 different wave vectors with the same modulus, to obtain We can thus fit the correlators, for eaghvalue consid-
a good statistical sample. Interesting behavior of these otered, both in terms of the MCT prediction and of the
servables arises when the dynamics of the system gegiretched exponential, and find an estimate of the nonergod-
slower, i.e., where the dynamical behavior is of the “super-icity factor f, as a function ofy. The shape of this quantity
cooled” type, even though for the present system we do notan be indicative of the formation of different types of
know the exact location in the control parameter space of thglasses, either attractive or repulsive domindte@,4,5.
melting point. What follows is what is commonly observed However, what we have described so far is typicalAgr
for the density correlators and diffusivity behavior of a su-singularities. These correspond to the simplest nontrivial so-
percooled fluid, which is approaching the dynamical arrestlutions for the nonergodicity parameter MCT equations, and,
Indeed, in this particular regime, one finds the typical two-for example, in the hard-sphere model only this type of sin-
step relaxation shape for the density correlators, which is agularity can arise. This is due to the fact that the only control
indication of the emergence of two distinct timescales in thegparameter of the model is the packing fraction. When the
structural relaxation of the system. A first relaxation processpumber of control parameters increases, higher order singu-
the so-calleg3 relaxation, occurs at short times, and it is duelarities may occur. For a square-well model it was shown that
to particles exploring the cages formed by their nearessingularities of type#\; andA, are present within the theory
neighbors. On the other hand, a second processy ttadax-  [4] when the width of the well becomes much smaller than
ation, occurs at larger and larger time scales, the slower thiae hard-core radius. In the proximity of such singularities,
dynamics, originating the formation of a longer and longerthe asymptotic behavior for the density correlators is differ-
plateau region. This accounts for the restoration of the ergodent from the one we have seen so[#15]. In particular, we
icity in the system, where particles have been able to escagtave for the leading contribution a logarithmic behavior,
from their cages and explore larger portions of phase space.
At the ideal glass transition, the time of tlerelaxation is bq(t) —fg~—Cqln(t/ 7). (6)
predicted to diverge, and the correlators do not relax any-
more, thus reaching a finite plateau value. This is defined aigher order corrections to this behavior can be calculated
the nonergodicity parametd; (q) =lim,_...¢;;(q,t), which through_ an asymptotic expansion of the MCT equations close
jumps discontinuously from zero to a finiteritical) value  to the singularities and they are found to be crucial for some
fS(q) at the transition, signalling the occurrence of an er-Predictions, as discussed in RELS5).
godic (fluid) to nonergodidglas$ transition. This picture of 2Another main focus of our study was to evaluate the MSD
the dynamical correlators is found to be in excellent agreet!“(t)) of particles with respect to their initial positions.
ment with experimental and simulation results, though in reallYPically, the behavior of the MSD at short times follows the
systems thev-relaxation time does not diverge, but only be- SImple law(r*(t))~t*, which accounts for the ballistic mo-
comes increasingly larger. This is due to the intervening ofion of the particles, i.e., particles move freely without colli-
other processes, commonly termed as “hopping” processe$ions. At later times, partlcles start to feel the presence of
which restore ergodicity, and are not included in the MCT&ach 2ther and there is a crossover to the diffusive regime,
treatment for the ideal glass transition described above. I-€-, (r“(t))~t. The proportionality constant of this relation
The two-step relaxation is well described by MCT, dgflnes the @ffuswnyD of the system, via the celebrated
through an asymptotic study of the correlators near the idedfinstein relatior{35]
glass solutions. The approach to the plateau is described by a
power law, regulated by the exponemti.e.,

(r’v) _

lim

t—oo

6D. )

ba(t) = e~ (t/tg) 2+ h{P(t/tg) 22 3
Thus, by evaluating the long-time limit of the MSD, we de-
with t, the microscopic time, while the departure from the termine the diffusion coefficier for each state point.
plateau, i.e., the start of the process, is expressed in terms  Though this general behavior is preserved, when the dy-

of another power law, regulated by the exponient namics becomes slower, a crossover region between short
. @) b (2) o and late times emerges. Of course, the duration of this inter-
$q(t) —fg~—hg’(t/7)°+hy”(t/7) (49 mediate region increases, the slower the dynamics. This phe-
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nomenon is the corresponding behavior for the MSD of the By ] A RALY
separation of the two time scales that we have seen in the — One-component] |
correlation functions. It also reflects the formation of cages 0.8 x Binary system ||

in which particles get trapped, so that diffusion becomes
more difficult. The crossover region consists generally in the

development of a plateau also for the MSD. At the ideal (t)(/);_ i
glass transition, thex-relaxation time would diverge, and AT

diffusion from the plateau would not occur even at infinite 041 7
times, in complete analogy with the correlators behavior.

Thus, the height of the plateau is related to the localization 0.2 .

length of particles in the arrested state, i.e., the size of the
cages of the glass. Of course, in simulations, only finite times T R TP R 3
can be explored and the position of the ideal glass transition doi 01 1 10 100
can be only extrapolated by data.
As for the correlators, the presence of higher order singu- FIG. 1. Comparison between the density-density correlation
larities may affect the plateau region of MSD, giving rise tofunction Sxa(q*,t)/Saa(q*) in the binary and the monodisperse
peculiar behavior. case atp=0.57 andT=0.75, corresponding to the most reentrant
MCT predicts a power-law decrease for the diffusivity on point found in the monodisperse case, before crystallization inter-
approaching the ideal glass transition. Along an isotherm, venes. The wave vector chosen corresponds for both casgs to

=27lox.
D~|d— ", (®8) g

wheredg, is the value of the packing fraction at the transition

(“critical” value), i.e., the value where the diffusivity would describe the arrest. Thus, the region of validity of the

drop to zero for the considered temperature. The expopent asymptotic predictions may shrink significantly close to
is completely determined by the theory in terms of the expo; ymp P y 9 y

nentsa and b, defined in Egs(3) and (4), via the simple higher order singularities.
relation[14]

and, from the relation betwednand y, one can see that
would go tooe, thereby rendering Eq8) meaningless to

1 1 Ill. RESULTS: THE OVERALL PICTURE

Y=5x1t5R- C) The considered mixture represents a natural extension of
2a 2b ; .
the monodisperse system studied so [fat]. Indeed, the

Also the so-called exponent parameleis related to these small asymmetry in diameter does not produce a significant

exponents via the relation change in the dynamics of the two cases, and, on the con-
trary, allows to reach much larger packing fractions with no
I'(1+b? TI'(1-a? sign of crystalline order. The first of the two statements can
A= = : (10 : . ;
[(1+2b) TI(1-2a) be explained by looking at Fig. 1. Here, we compare the

behavior of density correlators at a corresponding point on

Thus, only one of the parameters is, in principle, sufficient tothe control parameter space of the system. For the monodis-
determine all the others. However, the parameteis the perse case, we are almost at the most reentrant point before
crucial one in determining the presence of higher order sinerystallization takes place, i.ey=0.57 andT=0.75. We
gularities[4], in particular, it tends to the value=1 at an  can clearly see that dynamics does not appear to be particu-
A; point, while for a simpleA, singularity it is always less larly slowed down. To make the comparison with the binary
than 1[36,14). Thus, for example, an increase)oflong the  case, we are considering the total density correlation function
A, glass line indicates a closer proximity to tAg singular-  for the species 1 at the vector, corresponding approxi-
ity [4]. mately to the first peak of the static structure factor, and the

To summarize, the procedure we use to determine the exguantities have been rescaled in order to compare particles
ponents, and consequently the location of the MCT singulariwith equal diameters. It is evident that the dynamical behav-
ties in the control parameter space, as well as the nonerders are very close; thus in this sense, we can think of carry-
gidicity parameter, is as follows. From fitting the diffusivity ing out an extension of the one-component work.
behavior at constant temperature with E8), one can deter- In the following, we will focus on the properties of par-
mine the exponeny, and from this als@, b, and\. Thus, ticles of typeA. Thus all quantities reported without label,
with the obtained value ob, one can perform a fit of the Wwill refer to them. This choice derives from the fact that we
density correlators, using E¢4), and determine the noner- do not expect substantial differences in the behavior of the
godicity parameter consistently. two species, due to the small amount of asymmetry in their

However, close to higher order singularities, we do notsizes.
expect that this behavior is generally preserved, as the loga- We start by comparing th& and ¢ dependences of the
rithmic behavior in the correlators and the transient region irfliffusion coefficient. The diffusion coefficients can be nor-
the MSD intervene. Indeed, in these conditions, the exponentalized with respect to the factdd,=o\T/m, which
b tends to zerdthus originating the logarithmic behavjor takes into account th€ dependence of the microscopic time.
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lower than the energy scale of the square well, attractions
become dominant and, thus, diffusion becomes slower again
because particles tend to remain within each other’s shell of
attraction.
] We know from theoretical calculations within the MCT
4 that this phenomenon is typical of very narrow attractive
3 potentials, both for square-well interactiddd and for hard-
] core Yukawd 6]. Indeed, the 3% choice for the range of the
3 attractive well in our simulation is chosen to ensure that the
] competition between attraction and repulsion is particularly
sharp. This can be explained in terms of cages, i.e., when the
. . . attractive range is not small enough, which means few per-
0.52 0.54 0.56 ) 0.58 0.6 0.62 cents of the diameter; there is not much difference between
cages formed by neighboring particles at high or low tem-
FIG. 2. Normalized diffusion constanD/D,, with D, Peratures. On the other hand, a very localized attraction can
=¢+/T/m as a function of packing fractios, along each studied €ffectively change the shape of the cages, by sticking par-
isotherm betweerlf=0.3 and T=2.0. The normalization factor ticles within the well distance\. This produces the larger
takes into account the difference due to different initial velocities,diffusions observed at intermediate temperatures, when the
and ensures the common low density lisee Ref[21]). two mechanisms almost balance each other. Similarly, ex-
tremely short-ranged attractions produce a solid-solid isos-
This ensures that the difference in the average velocities duguctural transition between an attractive-dominated and a
to the temperature is eliminated, and the diffusion can beepulsive-dominated crystdB8]. This has been correlated
considered to be comparable between different temperaturesith the glass-glass transition predicted by MCT in a recent
A plot of D/Dy as a function of packing fraction, along work [6]. Of course, it would be interesting to extend the
the considered isotherms, is shown in Fig. 2. In the presergimulations to different values of the range of the potential to
work, we focus our attention mainly on the high density confirm the width dependence of the anomalous behavior.
regime, i.e.,¢>0.5. The behavior of the diffusivities pre- Observing more carefully Fig. 2, the two mechanisms of
sents many similarities with the case of a monodisperséliffusion produce two different trends of behavior for the
sample of SW spherd®1]. However, striking features ap- plotted curves. Indeed, far> 0.6 the curves present a quite
pear due to the fact that, for the chosen binary system, it islramatic decrease of diffusivity, while for smaller tempera-
possible to reach diffusivities three orders of magnitudetures the same decrease of about four orders of magnitude
smaller than in the monodisperse case, as well as muabccurs on a much wider range of packing fractidfes ex-
larger packing fractions with no sign of crystallization. ample, comparingT=2.0 and T=0.4, the range almost
We present results of normalized diffusivities varying doubles.
roughly between 10?7 and 10 ¢, while the monodisperse ~ We also note that if we plot the bare diffusion coefficients,
system could only reach values of the order 1{28], due to  as evaluated from the fit of the MSD, without normalizing by
the intervening of crystallizatiofi21]. We remark that here D, the reentrant behavior is preserved. This can be an ad-
the lowest diffusivity values were imposed by computationalvantage, from an experimental point of view, because it
times, and not by crystallization, as in the monodispersavould allow us to observe, at the same packing fraction for
case. Also, the attractive binary system is able to occupyarious temperatures, the diffusivity first increasing then de-
effectively a larger amount of available volume, thus reachcreasing again, without having to include the thermal factor.
ing liquid states up to a packing of about 0.62. On the otheiVe plot in Fig. 3 the unnormalized diffusivities at fixed
hand, the hard-sphere case reaches comparable values of gificking fractions, varying the temperature. The appearance
fusivities at a packing fraction of aboyi=0.585(see Fig. of a maximum, sharper with increasing density, is indeed
4), a value close to that experimentally established for theanother manifestation of the reentrance. Extracting the val-
one-component hard-sphere c3@]. ues of maximum diffusivity, it is possible to draw a “maxi-
Examining the figure, it is evident that the behavior of themum diffusivity” line on the (¢,T) plane. Note that a dif-
diffusivity is driven by two competing mechanisms. Upon ferent type of diffusivity anomaly occurs in some complex
decreasing temperature, starting from the highest value, theystems such as water, in which diffusivity has a maximum
presence of the repulsive core, initially dominant, enters irwith respect to density at constaht This anomaly plays an
competition with the attractive interactions. This is mani-important role in the understanding of the metastable part of
fested in the diffusion getting larger, at the correspondinghe water phase diagraf39].
packing fraction, when the temperature gets lower. In other To make contact with the theoretical results for the ideal
words, the system reaches the same diffusivity at larger andlass transition, we have extrapolated curves of normalized
larger packing fractions. This is due mainly to the geometri-isodiffusivities, as for the monodisperse c42&], and rep-
cal rearrangement of particles, i.e., the particles tend to geesented them in Fig. 4. Of course, the lidit-0 would
closer due to the lower temperature, thus producing moreorrespond to the ideal glass line, as calculated by MCT. We
available space for the diffusion of the system. Howeverreport the curves for normalized values varying between 5
when the temperature becomes small enough, i.e., effectively 102 and 5<10 ¢, and in the inset we present for com-
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FIG. 3. As in Fig. 2 but, in this case, the diffusion constant has
not been normalized, and it is plotted against temperature alon

isochores betwee@h=0.56 andg=0.60. The maximum in the bare
diffusivity becomes more evideri@lmost two orders of magnitugle
as one moves in the more reentrant part of theT() plane.
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tions, is then confirmed by simulation. It is clear that, since
MCT overestimates the effect of packing, we should not ex-
pect a perfect quantitative agreement between theory and nu-
merical results. Indeed, for example, for the simple hard-
sphere case, the MCT critical glass transition packing
fraction is¢p=0.516[13,40, whereas in experiments this has
been shown to bes=0.58[37]. On the other hand, the same
experiments have shown that more accurate predictions can
be expected for the behavior of dynamical quantities such as
the density-density correlation functions and the MSD.

IV. RESULTS: DYNAMICS ALONG ISOTHERMS

We start by examining the results for the isotheiim
=2.0. Here particles have sufficient thermal energy to es-
cape the attractions, and the resulting dynamics appears to be
auite similar to that expected for ordinary hard spheres.
However, the effect of the attraction, though not changing
the general behavior, is to enlarge the liquid part of the phase
diagram toward packing fractions already quite larger than

parison the ideal glass line as predicted by MCT for a swihe typical(one-componenthard-sphere value, i.e., 0.58. At

one-component system.

It is interesting to comment on the behavior of the isod-

iffusivity curves. Depending on which diffusivity value i
chosen, the most reentrant point, i.e., tig ) point char-
acterized by the largest packing fraction with that diffusivity,

S

changes. In the considered range of diffusivities, its tempera-

this temperature, indeed, the system behaves as a fluid at
least up to a packing fractioi=0.595, where the time limit

of our simulation is reached. Close to this limit value, the
diffusivity decreases by almost two orders of magnitude for a
variation of 1% in the packing fraction.

In Fig. 5(a) we report the time-dependent density-density

ture varies from 0.75, which also corresponds to the mosgorrelators for different packing fractions, up to the closest to
reentrant point for thé monodisperse case, to 0.5. Howevelhe ideal glass transition. The dramatic decrease in diffusivity

the data of Fig. 2 allow to say that, in the linix— 0, such

a point will be found at a finite temperature between 0.4 and

0.5, since the attained packing fractions are so large that
would not be possible, within the trend, to go much beyond

The reentrant behavior, present in mode-coupling calculal

2T

1.5

+—+ MCT-PY

0.52 o 0.54

0.5

A-aD/D=5x10")
o-0 D/D=5x10"
o= D/D=5x10"

0.5 .
s D/D=5x10"]

A
0.52

051
¢

FIG. 4. Curves of iso-normalized-diffusivii9/D in the (¢,T)
plane. We indicate with a vertical arrow the location for the hard-
sphere case of the packing fractio0.582) for the lowest iso-

is reflected in the behavior of the correlators by the forma-
ion of the typical two-step relaxation process near the arrest,
escribed above. Similar behavior can be also observed in
the behavior of the MSD displayed in Fig(lh. We note,
however, that the height of the plateau~6f.0% of the par-
ticles’ diameter is consistent with Lindemann’s melting cri-
terion[41,13. We note here that the density correlators, both
for this temperature and for the ones we will discuss later, do
not show strong oscillations at short times, differently from
what is commonly obtained from simulations of Lennard-
Jones systen|€2]. This could depend on the presence of the
hard core in the potential, which acts as a strong damping
term in the short-time dynamid43].

The diffusivity data can be fitted with the MCT power-
law behavior[Eg. (8)]. This holds sufficiently close to the
ideal glass transition, thus we considered relevant for the fit
only those points for which a clear-relaxation process was
evident. Doing so, we foungt=3.2+ 0.4, and an indication
of the quality of the fit is shown in the inset of Figlh (see
figure caption for details We note that, getting close to the
transition packing fraction, it seems that there are no strong
corrections to the power-law behavior, at least in our window
of observation. This seems to suggest, as expected, that in
colloidal systems with a hard-core potential, hopping effects

D/Dg curve, i.e.,D/Dy=5x10"°. Along each curve, the corre- &re 1ess relevant than in atomic systems.

sponding most reentrant point is represented with a filed squared | he obtained value foy is already much larger than the
symbol, to help the reader follow the description in the text. Thetypical one-component hard-sphere value predicted by MCT,
inset shows the MCT prediction, calculated in REf], with the  i.€., ¥"5=2.58[40]. In the case of our particular binary mix-
structure factor obtained using the Percus-Yevick approximation atlre, in the hard-sphere case, whose diffusivity behavior is
input. also reported in Fig. 2, we found a valuewf 2.9+0.2. The
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10° 102 1wt 10 t 0 100 100 10t 10
102 e FIG. 6. Same as in Fig.(8) for T=0.75. The reported densities
S 3 in this case have been chosen to evidence the analogy with the
10! MCT pr_edictions of Fig. 11 in Ref4], reproduced in the inset for
comparison.
0
2 0 curve D/Dy=5%10"5, to give an idea of the behavior of
<1 >/C . . . . .
10" quantities of interest along the |dea_l glass tran_smon line.
We do not show here the behavior of density correlators
B and MSD for the cas@=1.5, because its results are com-
10 pletely analogous td =2.0. We note, however, that the fit of
3 the diffusivity with Eq.(8) gives in this case the exponents
10 v=3.6£0.4, b=0.35-0.05, and\=0.87+0.04. The in-
na crease in the value of is expected since we are getting
1010- closer to the reentrant region, and consequently to the singu-

larity. The same trend is observed for=1.0 with y still
increasing up to about 3#90.3, and\ reaching the value of
0.89+0.02.

At T=0.75 an interesting behavior appears. Indeed, in the
displayed in this picture, and in all the following ones if not differ- denSIty_cor_reIators, a Iogarlthm!c dec_ay starts to emerge. As
ently specified, is slightly larger then that for the first peak of theShOWn in Fig. 6, some state_pomts cﬁsplay a logarithmic de-
static structure factor, and it corresponds to the vala@5 in units ~ CaY (see curve for¢=0.58 in the figure for almost the
of half the box size ¢/L). The horizontal line represents the cor- Whole relaxation process, i.e., after the microscopic relax-
responding nonergodicity parameter, as extrapolated from the f@tion up to complete decay. The shape of this logarithmic

(see text (b) Mean-square displacement along the isothefm behavior appears quite different from that found in R8{.
=2.0 for the same densities as@. In the inset we plot D vs ~ On the other hand, it resembles quite closely the shape of
In(¢— o) to show the power-law behavior described in E).for MCT correlators near thé; singularity for the 3% square-
our data. With such a fit we can evaluate the MCT exponents, awell potential reported in Fig. 11 of Re€#], which for com-
explained in the text. Note thgi,=0.60 isalso a parameter of the parison is reported in the inset in Fig. 6. Upon increasing
fit. density, and so getting closer to the glass transition, the re-
laxation changes to the usual two-step form, clearly indicat-
uncertainty on the exponent is due to the variation it getdng a similar situation of our isothermal path to that indicated
when considering only the points closest to the transition. Wén the inset of Fig. 11 cited above. Thus, the higher order
note that in Ref[8], the case reported brings a valuepf singularity dominates the dynamics at smaller packing frac-
=3.03. Thus, we are, at this value of temperature, already itions, but when one gets sufficiently close to the glass tran-
a situation much closer to a higher order singularity, corresition, a conventional, singularity is met, and this causes
sponding to other MCT exponents, obtained by means ofhe restoration of the typicak relaxation. By considering
Egs. (10) and (9), respectivelyb=0.41+0.07 and\=0.84  only those packing fractions, when at least the beginning of
+0.04. It is perhaps important to stress at this point that théhe « relaxation can be observede., ¢>0.6), we can fit
value of y obtained with this procedure can be slightly the diffusivity again with Eq.(4), obtaining the extremely
wrong due to the difficulty of getting close enough to thehigh, but very rough, valuey~5.1, corresponding to the
ideal glass transition with numerical simulation#]. We  value of b~0.25 and\=0.937, thus considerably getting
will use the so-calculated value ofin the following to fit  closer to the value 1 corresponding to the point. We can-
the behavior of density correlators along the isodiffusivity not estimate here the error due to the small number of points

FIG. 5. (a) Normalized density-density correlators along the iso-
therm T=2.0 for different packing fractions in function of time.
Time units, as specified in the text, arg(m/ug)*?. Theq vector
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available (only five for three parameters for the)fitHow- 1 y

ever, even if not so precise, it clearly gives a strong indica- 3 N — ¢=0.58

. . . . . « e $=0.61
tion that we are approaching a higher order singularity. We gl "’\, ..... 4=0.6125| 1
recall here that the topology of the transition, as predicted by i Moy . ln_(t)'

the theory(see inset of Fig. ¥ is such that the higher order 06 R |
singularity of typeA; lies inside the glass region, so that by o ‘ SN

studying the diffusivity going to zero one can at most reach q | N

the boundary of the glassy region, i.e., the most reentrant 04
point in the phase diagram. Thus, the study of the behavior W
of the exponents approaching the glass line gives a strong -, i
indication of the presence and location of the higher order =
singularity in the present system, although one needs further
evidence as, for example, from analyzing the nonergocity
factors, as we shall do later, to claim the presence of two
distinct types of glasses, and thus to establish undoubtedly
the existence of a transition point between them, that is, the
A5 singularity in the theoretical treatment. Thus, for ex-
ample, by looking at the shape of the nonergodicity factor
below, we can anticipate that at this temperature we are
meeting theA, line along its repulsive branch, again as in the
inset of Fig. 11 of Ref[4], but probably at a slightly higher
temperature.

From these considerations, it emerges that this scenario
can be considered the typical one as predicted by MCT, for
the interplay between am\,-repulsive singularity and a
higher order one, i.eAs. It is indeed closely connected to
the asymptotic calculations performed in REE5] for the
two-component schematic model whose results are reported
there in Fig. 9.

Now we turn to the cas€=0.6. The correlators, reported
in Fig. 7(a), show an even closer behavior to that predicted
by MCT in Ref.[4] (again Fig. 11 in Ref[4], i.e., inset of

FIG. 7. (a) Same as in Fig. ®) for T=0.6. The dashed lines

? . _represent fits with logarithmic laws, which are displayed to show
Fig. 6 here. However, at this temperature, the two compet the presence of a logarithmic decay and the mechanism of its dis-

Ny Smgmam'es must be so Close. to. each other that a algar appearance in the proximity of &y singularity(see text for further
rellaxatllon does not .take' place V\,”th'n thg reach of our SIMUetaily. They are reported as a guideline to the eye, and not to
lation, i.e., the Ioganthm.lc behawor. remains alwgy; Very IM-eytrapolate any fit parameter®) As in Fig. 5b) for T=0.6.
portant, and even at higher packing fractions it is clearly
observable before the process takes over. The interesting. . . ) )
feature emerging is that, in all the cases considered, the log#s iS significantly slow. What can be observed is a slight
rithmic behavior never extends for much more than 3.5 dedeviation from the flat region at higher temperatures, which
cades in time. This arises because, in the present topology ¥fill become more and more evident at lower temperatures.
the phase diagram, one is either too close toAhesingu-  NO clear localization length can be found. Attraction at this
larities to observe a pure logarithm, or too far from the glasgemperature has become quite relevant. It is again a sign of
transition, and thus the relaxation time is generally not toovery strong competition between different singularities, be-
large. Indeed, this behavior is strongly supported again byween attractive and repulsive cages.
the theoretical calculations in Re#]. Upon further decreasing temperature, we enter the most
It should be noted that at this temperature we are not abldelicate region of the phase diagram. Inde€@i-a0.5, as for
to convincingly fit the power-law density dependence of theT=0.6, it is not possible to find any MCT exponents, and the
diffusivity. Indeed, if one forces the fit on the points, one interpretation of the behavior of the correlators is not
finds exponents strongly dependent on the selegtednge. straightforward. These are plotted in Fig@B Indeed, at
A possible explanation for this data sensitivity docan be  higher densities there is evidence of some logarithmic behav-
found in the competition betweek,- andAz-dominated dy- ior, but no clear development of a plateau ever takes place.
namics. In such a condition, only a comparison with a full This might be due to the fact that, since we are approaching
MCT solution (as opposed to an asymptotic predicjiomay  more closely the attractive branch of the glass transition by
help in rationalizing the density dependence of diffusivity. Inexamining a lower temperature, the plateau should be higher
agreement with the previous observations, also the MSDand the interplay of the two types of singularities would be
represented in Fig.(B), starts to show deviations from the different than what was observed previously. Thus, we can
usual A,-type behavior for a discontinuous transition. In- interpret this behavior as one dominated byAgrattractive
deed, a clear flat region does not appear, though the dynamnd anA; singularity, similar again to what was shown in the
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FIG. 9. (a) Exponentg, as a function ofg (always in units of
half the box sizer/L) obtained from the fit of the density-density
correlation function with the stretched exponential in Eg). for
QemperaturesT=0.6,0.5,0.3. The values found are always very
small, indicating a very slow relaxatiotb) As in (a) for the relax-

FIG. 8. (a) As in Fig. 5a) for T=0.5. The dashed line is a fit of
one of the correlators with a stretched exponential, whose extrap
lated parameterdsee Eq.(5)] are Bq=0.5,74=2.2X 10°, Aq
=0.73, the last one giving an estimate for the nonergodicity paramztion time parameter, of Eq. (5). Interestingly, a peak correspond-

eterfq, and itis shown to display the quality of the fit. Parametersing 1o the q value of the first peak of the static structure factor
of the stretched exponential fits as a function of the wave vector arBmergeqi.e., q~20), as one lowers the temperature.

reported in Fig. 9(b) As in Fig. 5b) for T=0.5.

We estimated via a fik=0.44. A similar behavior has been
analytical calculations of Ref15], there presented in Fig. 5 found in the MCT study of polymeric systerfé5], for dis-
(curves labeled as’' =2,3). placements varying from the typical localization length of

We note, however, that the long-time decay of densityhard-sphere-like cages to end-to-end distance. The analogy
correlators can be represented by a stretched exponential, buith the polymeric systems, where permanent bonds are
with very low exponents3,, as shown in Fig. 9. In the present(in a sense close to the attractive cages at this very
MSD, reported in Fig. &), the phenomenon present at the low temperaturg can be a guide to a deeper understanding
previous temperature becomes more accentuated. Even théthis region.
slowest studied state point is far from being asymptotic, and The strong effects that we find at this value of temperature
the MSD presents a clear transient region. seem to suggest that along this isotherm the system ap-

The case where the anomalous dynamics and the interplgyoaches the closest point to the singularity, even if we do
between different singularities is fully displayed is offered by not know yet on which sidéattractive or repulsiveof the
the T=0.4 isotherm. The correlation functions, shown in Fig.glass line it will be located. To understand the nature of the
10(a), are rather peculiar. Even the long-time limit is far dynamics which takes place here, further investigations are
from being rationalized in terms of stretched exponential deheeded, as well as a more complete analysis of the correla-
cay. The MSD behavior, shown in Fig. @) is also quite tors, and a comparison with full solutions of the MCT equa-
intriguing. The MSD transient behavior is now evidently of a tions.
subdiffusive type. Indeed, for about 4 decades in time, it Finally we analyze the last isotherm, corresponding to
shows a dependence which can be quite accurately described0.3. This being a very low value for the system to equili-
by a power-law behavior, i.e., brate, data are not so clean as for the other cases, also be-
cause here one needs to study slower points with respect to
the other temperatures in terms of bare diffusivities, to reach

(r3y~tx. (1)
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10° 10° 1011; 10° 10 10 FIG. 11. (a) As in Fig. 5a) for T=0.3. In the inset data and
stretched exponential fits are shown for differgnvalues at the
FIG. 10. (&) As in Fig. 5a) for T=0.4. (b) As in Fig. §b) for  same packing fractiogp=0.58. In particular, starting from the up-
T=0.4. In the inset the fit of the subdiffusive and diffusive regimes per correlator, they correspond, respectively, ta
with a power law are showfsee text for details =25,55,95,155,205 in units af/L. This is done in order to make
the same values of normalized ones. However. despite the more evider_lt the presence of a plateau in the _rela>_<ation, which is
. e . ) ’ P €30 drawn in the figure for the cage=55. (b) As in Fig. 5b) for
technical difficulties, we find more transparent results int_q 3|1 the inset a fit as in Fig. 1) is shown. There is no
tgrms of conventional MCT interpretations, i.e., we can ideN—yident subdiffusive regime.
tify the development of a two-step process typical offgn
singularity, both for the correlators and for the MSD than in - _ -
the previous case. even if this should be inspected at lower densities also.
Indeed, observing the correlators in Fig(d1it is clear Figure 11b) represents the evolution of MSD at this tem-
that, close enough to the transition, they present the deveperature. Here, a signature of a localization length, much
opment of a plateau, and thus, anrelaxation process, as smaller than that found in the high temperature cases, starts
shown in the inset of the figure for variogsectors. Despite  to develop. Indeed, an indication of a plateau is observable
this clear behavior, even at this temperature, it is not possiblground (r?)=0.0006-*>. The corresponding localization
to evaluate unambiguous power-law exponents from the diflength is of the order oA\, supporting the interpretation that
fusivity, but stretched exponential fits give reasonable reat this temperature the relevant localization length has be-
sults. Thus, the value of the plateau is found to be extremelgome the attractive well. In this respect, one can interpret the
high. We remind the reader that one of the key experimentagubdiffusive behavior of the MSD discussedTat 0.4 as a
observations in the slow dynamics of colloidal systems wasrossover effect between the different localization lengths,
the unusual very high value of the platga]. This is also  i.e., the hard-spher@epulsive typical distance and the at-
what has been found within MCT as a quantitative distinc-tractive well. In theoretical terms, this is due to the two dis-
tion between attractive and repulsive glasses, leading, fdinct A, singularities, corresponding to repulsive and attrac-
example, to very different mechanical properties for the twative glass transitions, while in the polymeric c44®] there
glassed5]. This allows us to say that we here have a clears only oneA, singularity. We might argue that there the
indication that, at this low temperature, we are approachindgponding of the polymers is taking the place of the attractive
the glass transition from the attractive glass side. It is also ofransition in our system, originating the same effect of slower
deep interest to note the analogy of this behavior with théntermediate diffusivity when both these two competing
one that has been found in the study of “strong” gpis], mechanisms are strongly present.
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10t 10

FIG. 12. Density-density correlation function along the iso- FIG. 13. Mean-square displacement along theD$® line,
D/Dg line, D=5x10". The wave vector chosen corresponds for D=5x 1076, The line forT=0.3 crosses lines for high@rdue to
all cases ta=25 in units of half the box size. large statistical errors in determinirig) at such low temperature.

V. RESULTS: ALONG THE ISO- D/D, CURVE regime. Indeed, increasing the attraction, this tends to bend
downwards until a sort of “saturation” between the two
We now focus on studying the behavior of correlators anccompeting mechanismgttraction and packingakes place,
MSD, and other quantities along the iGmrmalized-  corresponding to the subdiffusive behaviorTof 0.4. After
diffusivity, i.e., the isobP/D,, curve; D/Dy=5x10"°  this point, attractions become dominant, and the curve starts
shown in Fig. 4, which represents our closest available repto bend upwards. This might suggest that, going to even
resentation of the ideal glass transition line. The aim of thidower diffusivities, the MSD would display a similar plateau
study is to give clear evidence of the existence of two dis-as for high temperatures at rougth2)~0.OOOZr2 (48],
tinct glassy states, attractive and repulsive. Also, it aims tavhich means roughly a localization length of 2.6% of the
connect even more closely this simulation to the MCT cal-particle diameter, i.e., comparable with the width of the at-
culations, which also were performed in a similar fashion,tractive well of the model, confirming our conjectures on the
along the ideal glass lines, in R¢g]. formation of attractive cages, or, to use another expression,
We start by representing the behavior of density correlabonds. However, to gain further evidence on how these
tors along the is®/Dy line in Fig. 12. The curves here mechanisms really happen and evolve in the system, a spe-
represented, having equal diffusivity, also have the same nogific study of configurations in terms of average distance,
malized relaxation time. Thus, we can clearly see the changgzes of clusters, and heterogeneities, in general, should be
in the decay that takes place, upon decreasing temperaturgerformed, and this is beyond the scope of the present work.
from a markeda relaxation at higher temperature to the We note that a similar figure, showing the behavior of MSD
extremely slow decay of =0.4, passing through the inter- with attraction, has appeared[i8], but not all of these con-
mediate regimes betweehi=0.75 andT=0.5. Here, the siderations could be made there, due to the distance from the
only evident logarithmic behavior can be observed Tor transition.
=0.6 andT=0.5, because these must be the only cases for We now turn to evaluate the nonergodicity factgralong
which the proximity to theA, transition strongly competes the isoD/D, curve. To do this, we have fitted the density
with the closeA; singularity, as discussed above. correlators at varioug vectors, and extracted the relevant
Next, we report the MSD behavior along the line in Fig. parameters. Where possible, i.e., where the power-law be-
13. Despite the larger statistical errort 0.3, we display havior for the diffusivity in Eq(8) was found to be valid, we
this case also as an important part of the whole picture. Thugised the power-law described in terms of thexponent for
here, we can clearly observe the change in the diffusion prathe a relaxation of Eq.(4). Thus, forT=2.0, we imple-
cess. The first evident thing to note is the big gap, of aboumented the fit withbo=0.41, while forT=1.5,1.0, and 0.75
~1.5 orders of magnitude, in the plateau values correspondve usedo=0.35,0.31, and 0.25, respectively. These values
ing to high and low temperatures. This implies a factor ofhave been found very good for the fits, always finding®a
about 7 in the ratio of the localization lengths of the par-of the order of 104 or less. For lower temperatures, it was
ticles, which, as discussed above, characterizes the size pbt possible to use this strategy and, consequently, we used
cages around particles. Clearly this result can be used asthe approach of the stretched exponential in . and use
justification to speak of “attractive” cages, opposed to nor-its amplitude as an estimate fég. The parameters of the
mal cages, intended as a simple occupation of the availablis, i.e., the exponent of the stretchipg and the relaxation
space. In the attractive cages, the average distance betwetme 7, for the considered temperaturés-0.6,0.5,0.3 are
particles is much smaller, the lower the temperature. This is geported in Fig. 9 to display theiy behavior. Even though
clear signal of a different structure in the glass formation. the stretched exponential law is not analytically justified, it is
Also, we can examine more carefully the modification of quite well established in the literature to use as a fitting law
the plateau present at higher temperatures in the transiefdr extracting the nonergodicity paramefdd]. In the case
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o . FIG. 15. Nonergodicity parametéy and partial static structure
FIG. 14. Nonergodicity parametefi, as a function ofqm/L  factor S, at T=2.0 andT=0.3. The different shape df, reflects

along the isdd/Dy line, D=5x10"°, as obtained by fitting the the difference between attractive and repulsive glase text for
correlation functiongsee text for details It is evident how all the  detailg.

data collapse onto each other for all temperatures less than 0.6,
giving a clear indication of a repulsive glass, while for lower tem-
peraturesf, increase quite dramatically towards typical attractive
glass behaviof5].

a signal of the smaller cages already described above. Thus,
this contributes to establish not only the existence of the two

glasses, but also, and most importantly, the two distinct

mechanisms which drive the glassification in the two cases,

of T=0.4 also this strategy did not work, as already dis-i.e., simply packing and localized attraction.

cussed 49].

In Fig. 14 we show the so-calculatég. Amazingly, from
T=2.0 down toT=0.6, they all collapse onto the same
curves, giving a strong evidence of MCT predictions for the In this paper, using molecular dynamics, we have studied
repulsive glas$5]. Thus, the repulsive glass is independentthe dynamical arrest phenomena of spherical particles inter-
of temperature, and also this shows how the passage to aieting via a square-well potential. The square-well potential
tractive glass intervenes quite sharply. For lower temperahas been studied as one of the simplest canonical models of
tures, the glass becomes attractive, and the nonergodicity psgelids, liquids, and gases for many yef22—-27. Here we
rameter starts to be modified with temperature, becominfpave extended the models’ applicability to the domain of
finite also at much largen vectors[5]. Despite some errors dynamical arrest and glassy phenomena. Previous predic-
generated by the stretched exponential fits at these low tentions for dynamical arrest from the mode-coupling theory for
peratures or the data noiseTat 0.3, a significant change in the square-well potential are availahig5], so direct com-
the shape and width of, is seen betweem=0.5 andT  parisons are feasible.
=0.3. It could be that the case B 0.5 is quite sensitive to By using a well-adjusted binary mixture, we have been
the singularity, and thus it is a somehow intermediate case. Able to extent our previous preliminary investigatid24]
more detailed study, either theoretically or by consideringmuch closer to the arrest transition, accessing diffusion con-
intermediate or even lower temperatures for smaller packingtants that are three orders of magnitudes smaller than in the
fractions, will be helpful for clarifying this issue. On the previous calculations. Nevertheless, results on the lowest
other hand, the establishment of the existence of the twealued isodiffusivity curve available for the single-
glasses along the line appears to be definite by these resultomponent system are very close to those for the binary mix-
To support this statement, we have plotted in Fig. 15 both théure, so we may consider the role of the second component to
(partia) static structure factdBaa(q) (rescaled by a factor of be mainly the prevention of crystallization.

2 for having a better visualization of the figui@nd the non- In that regime where repulsions dominate, we recover an
ergodicity factor, respectively, at the higheft-2.0, and at ideal glass transition with power-law scaling of the diffusion
the lowest, T=0.3, temperatures studied in this work, so asconstant. We also find an attractive branch to the dynamical
to compare the most extreme cases of repulsive and attraefrest where theory has predicted the presence of an attrac-
tive glasses. First, we note how the oscillations of the nontive glass. Where attractions and repulsions compete in
ergodicity factors follow these in the structure factor quitenearly equal terms we find reentrance in the arrest curves
closely in both cases, even though for fhe 0.3 case it is when plotted in units of the microscopic temperature depen-
actually quite difficult to visualize the4&0]. Also, theS(q) dence of the diffusion constant. However, fixed-density dif-
presents the typical features we expected from theoreticdlision constants, plotted without any normalization, exhibit a
calculations within MCT and the integral equations. Indeedmaximum in the diffusion constant as the temperature is in-
the repulsive case shows a marked first peak, which is thereased. This maximum locates the reentrant liquid where
main responsible for the glass transition, while the attractivemobility is anomalously high. We consider the essential fea-
one possesses larger secondary oscillations, which constituteéres of reentrance in this regime for the square-well poten-

VI. CONCLUSIONS

041402-12



CONFIRMATION OF ANOMALOUS DYNAMICAL ARREST . .. PHYSICAL REVIEW E 66, 041402 (2002

tial now to be confirmed, in agreement with the predictionspulsive glass to attractive glass behavior, as indicated by the
of theory[4]. change in the characteristic shapes of the nonergodicity fac-
We have studied also the evolution of the density-densityors. This is a direct evidence of the repulsive glass to attrac-
correlation functiongdynamical structure factorsind, inde-  tive glass transition that has been predicted by the theory,
pendently, the mean-squared distance traveled by particles fgpresenting one of the most remarkable phenomena associ-
the vicinity of the reentrant regime. As expected, where reated with the system. o
pulsive interactions dominate, we find the classical arrest The theory suffers from strong systematic shifts of all the
scenario in which plateaus develop in both functions as arre&@Test curves in relation to the simulated ones, a phenomenon
is approache@16]. These plateaus indicate the development©nd known from the example of the hard sphere. However,
of an observable characteristic cage time, and are quite typfiualitatively, the theoretical predictions of the reentrant re-
cal of prediction by MCT for hard-sphere systems. Whend/Me; with an associated crossover to logarithmic singularity,

attraction begins to compete on equal terms, in the vicinity off"d glass-to-glass transition has been confirmed by detailed

the reentrant regime, the theory has predicted the existendB0lecular dynamics calculations. _
of an A; singularity embedded in the arrested region. It is .From the experimental point of view, there is accumulated
therefore difficult to access this singularity directly by mo- €vidence that all the phenomena described here are robust,

lecular dynamics, but the theory has indicated that there arg€ind relatively independent of the details of the experimen-
distinctive signatures of this singularity in the reentrant fluid@! System used to study thelti7-19,9. The same is true of
phase, on approach to arrest. In particular, density correlatofg€ theoretical studieid,2,4-7 and simulationg8,21]. The
from a suitable fixed-temperature cut of the phase diagramjduare-well potential is one of the simplest examples one can
have an interesting pattern of behavior in which the logarithStUdy, and it is reassuring that it exhibits the phenomena.

mic behaviof15], due to the embedde& point, first begins q IOur c_)riglinal prediction. thhathin the der:jse regim?, a cc>||(|joit;
to dominate, and then crosses over to the conventidpal al particulate system with short-ranged potentials cou'd be

either repulsive or attractive, behavior more commonly 0b_described using ideas from dynamical arrest and glass theory

served for normal MCT arrest. The density correlators in thd'OW iee_rgs tqf_bg strongly supp(I)rte(?. Dense F}far}[ide gelsdare
reentrant regime clearly exhibit this phenomenon, the patterH'€"ePY identified as an example of a type of glass, or dy-

of evolutions being essentially in agreement with the predic_namlcally arrested phase. The implications are broader than

tions of theory. the simple example studied, for it indicates that it may be

We may pause here to comment that we do not regard thigos:sible to interpret many formerly disparate phenomena

complex crossover behavior as a complication, but in fact aSUCh @S coagulation, precipitation, aggregation, and gellation

a rather delicate and unusual signature of the whole reentraifithin the paradigm of dynamical arrest or glass theory. This

phenomenon, and an interplay betwaenandA, singulari- Is a fundamental sort of perception in the field of den§e sqft—

ties. That the simulations would reproduce this is strong su c_:ondensed matter, which may prove to be very fruitful in

port for the detailed picture offered by theory. The behaviors”°MINg years.

of the mean-squared displacements are also quite unusual,

and there is as yet no theoretical prediction for them in this

regime. We thank W. Gtze, M. Fuchs, and W. Kob for interesting
Finally, we are able to extract the nonergodicity factorscomments. This research is supported by the INFM-HOP-

along the arrest curve, for the lowest igmrmalized- 1999, MURST-PRIN-2000, and COST P1. S.V.B. thanks the

diffusivity constant curve. Again, in line with theoretical pre- University of RomeLa Sapienzand NSF, Chemistry Divi-

dictions, we find strong evidence of a transition from a re-sion (Grant No. CHE0096892for support.
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