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Confirmation of anomalous dynamical arrest in attractive colloids: A molecular dynamics study
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Previous theoretical simulation and experimental studies have indicated that particles with a short-ranged
attraction exhibit a range of dynamical arrest phenomena. These include very pronounced reentrance in the
dynamical arrest curve, a logarithmic singularity in the density correlation functions, and the existence of
‘‘attractive’’ and ‘‘repulsive’’ glasses. Here we carry out extensive molecular dynamics calculations on dense
systems interacting via a square-well potential. This is one of the simplest systems with the required properties,
and may be regarded as canonical for interpreting the phase diagram, and now also the dynamical arrest. We
confirm the theoretical predictions for reentrance, logarithmic singularity, and give a direct evidence of the
existence, independent of theory, of two distinct glasses. We now regard the previous predictions of these
phenomena as having been established.
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I. INTRODUCTION

Recently, there has emerged a series of remarkable re
involving the dynamical arrest of particles with interactio
potentials that are short compared to the size of the repul
core @1–9#. The most important predictions are as follow
@10#. The curve at which the fluid phase is arrested is re
trant in the regime where attractions and repulsions comp
In the vicinity of this reentrance, and in the arrested regim
there exist two distinct arrested states that may, under s
conditions, coexist. These two states differ in their long-te
dynamics. This coexistence terminates smoothly, the dyn
ics of the two arrested states becoming identical at a part
lar point at which distinctive dynamics is expected. It is im
portant to note that all these phenomena are predicte
occur irrespective of the shape of the potential~explicit re-
sults exist for square-well or hard-core Yukawa interact
models@4–7,11#, as well as for the Baxter model@12# de-
spite its singular behavior at the hard-core value@2,3#!. The
essential feature is only that the range of the attraction
comparison to the hard core must be extremely small.

The results described above were first deduced from
mode-coupling theory~MCT! @13,14#, and we may note tha
the conclusions do not depend on the details of the appr
mation for the input static structure, Percus-Yevick, me
spherical, and self-consistent Ornstein-Zernike approxim
tion, all leading to essentially the same picture. Within MC
the merging of the two arrested states is predicted to b
higher order dynamical singularity, and density correlatio
in its vicinity are expected to obey a highly distinctive log
rithmic relaxation @4,15#, in contrast to the conventiona
ergodic-nonergodic transition, where a two-step proc
takes place@14,16#.

More recently, this decay has been observed also in
eral experimental systems@17–19,9,20#, thus giving the first
evidence that these singularities do exist in nature.

Two recent numerical works@8,21# have focused on the
new dynamical features characterizing attractive colloi
1063-651X/2002/66~4!/041402~14!/$20.00 66 0414
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systems. In Ref.@8#, colloidal interactions were modele
with a potential chosen in such a way to avoid undesi
effects such as liquid-gas separation at low densities. P
dispersity was included to prevent crystallization at hi
densities. In Ref.@21# molecular dynamics simulations of
square-well~SW! system with a very narrow range of attra
tion have been performed. In both cases, the results h
been shown to be in excellent agreement with MCT pred
tions. The focus on the simple square-well potential ma
direct contact both with the available theoretical results a
with experimental systems, the interactions being comple
controllable and independent of external parameters. For
SW model, a theoretical solution is also available. Inde
the equilibrium properties of the square-well potential ha
been studied for many years, and in many ways it is regar
as the simplest physical model that exhibits all the essen
features of short-ranged systems@22–27#. Besides this, it is
the model for which the theory of the dynamical arrest tra
sition described above has been developed@4,5# and for
which, therefore, detailed comparison may be made betw
theory and simulation. It may therefore be regarded as
nonical in this arena of study.

In Ref. @21#, we examined a one-component square-w
system. We found that, irrespective of the sharp interven
of crystallization, which effectively prevented the system
approach very closely the glass transition, it was possible
have a clear picture of the reentrant shape of the glass c
in the temperature-density plane. This was achieved by p
ting isodiffusivity curves and examining their trends wh
approaching the limitD→0. The shape of the liquid-glas
line was found to be in good agreement with the previo
MCT predictions@4#.

In this paper, we report an extensive numerical study o
two-component binary mixture with interactions modeled
a very narrow SW potential. This mixture appears to be
logical extension of the one-component system@21# for
which crystallization is effectively avoided, by means of t
geometrical rearrangements allowed by the asymmetry in
©2002 The American Physical Society02-1
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ameters between particles of different species. The choic
a two-component system makes it possible to extend
range of isodiffusivity curves to almost 3 decades@28#, as
well as the range of studied packing fractions from'0.57
for one-component to 0.62 for binary systems. Thus, the
entrance is so pronounced that an equivalent hard-sphere
tem at this highest packing fraction value, i.e., 0.62, wo
be sufficiently dense to approach the random-close-pac
limit, though the definition of that concept has its own lim
tations@29#.

The extension to a binary system does not only m
more evident the reentrant behavior of the glass transi
curve, but also allows a deeper study of the dynamics of
system. Indeed, as one can approach much more closel
ideal glass line, intended as theD→0 locus of the (f,T)
plane, the influence of higher order MCT singularities on
dynamics becomes much more evident. We know from t
oretical work that the 3% case of the square-well model p
sesses indeed anA3 singularity @4,5#, corresponding to the
end point of the repulsive-attractive glass-glass transit
Though, of course, this singularity lies inside the glassy
gion, its presence is signalled by the characteristic logar
mic decay of density correlators mentioned above, alread
the liquid region, when going sufficiently close to the neig
boring glass boundary.

We report in this paper a characteristic behavior of
density correlators, near the ideal glass transition, wh
combines features of the typicalA2 singularity, i.e., simply
ergodic to nonergodic transition with a two-step power-l
relaxation, and of higher order singularities associated w
logarithmic decay. This produces, in a certain region of
(f,T) plane, a behavior that is originated by a competiti
between the two types of MCT solutions. The same kind
interesting result is found in the mean-square displacem
~MSD!. However, this subtle interplay between different s
gularities is present also in theory@4,15#, and its manifesta-
tion in simulation should be regarded as support for
theory, rather than an inconvenience. This will allow us
identify and localize quite clearly a genuine MCT high
order singularity in a realistic model.

II. SIMULATION AND THEORY

We study binary mixtures of SW spheres. In particular,
focus on samples of a 50%-50% mixture ofN5700 spheres
in a cubic box, with the diameter ratio between the two s
cies equal to 1.2. Thus, the smaller particles’ (B-type! diam-
eter issB51, and bothA and B particles have unit mass
Both species interact with a square-well potential with
ratio between the potential range and particle diameter e
to 3%. This corresponds to one of the cases studied theo
cally within MCT, which clearly possesses all the main ph
nomena@4,5,30#. The 3% ratio has been chosen also for
teractions between particles of different species, i.e.,
consider

Vi j ~r !5` r i j ,s i j ,
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Vi j ~r !52u0 s i j ,r i j ,s i j 1D i j ,

Vi j ~r !50 r i j .s i j 1D i j , ~1!

with e i j 5D i j /(s i j 1D i j )50.03, i , j 5A,B and we use the
conventional notation for which, for example,sAA5sA and
sAB5(sA1sB)/2. TemperatureT is measured in units o
energy, i.e.,kB51 and thus, for example,T51 corresponds
to average thermal energy per particle being equal to 3/2
the well depth, while the packing fraction is defined asf
5(rAsA

31rBsB
3)(p/6), wherer i5Ni /L3, L being the box

size andNi the number of particles for each species.
Initial configurations for each density were chosen at r

dom. Particles were separated in successive steps—
more particular care, the higher the density of interest—
implement the hard-core repulsion. When separation was
sured, the attractive well was added. To reach the temp
ture of the study, the configuration so prepared was then
to evolve with a thermostat of constant thermal coefficie
for a period of time sufficient to equilibrate at that tempe
ture. We estimate the equilibration time as the time at wh
the density correlation function of the slowest collecti
mode~i.e., at the structure factor peak! has decayed to zero
After this equilibration, the configuration was left to run
constant energy for a time dependent on the slowness o
dynamics, for a time covering at least ten equilibration tim

Simulation time is measured in units ofsB(m/u0)1/2. The
standard molecular dynamics algorithm has been imp
mented for particles interacting with SW potentials@31#. Be-
tween collisions, particles move along straight lines w
constant velocities. When the distance between the parti
becomes equal to the distance for whichV(r ) has a discon-
tinuity, the velocities of the interacting particles instant
neously change. The algorithm calculates the shortest c
sion time in the system and propagates the trajectory fr
one collision to the next one. Calculations of the next co
sion time are optimized by dividing the system in small su
systems, so that collision times are computed only betw
particles in the neighboring subsystems.

We studied eight isothermal cuts of the phase diagra
with the temperature varying between 2.0 and 0.3 in the la
packing fraction region, i.e.,f.0.5. In addition, we exam-
ined the hard-sphere case, where no attractive interact
are present. For each considered configuration, we first s
ied the thermal history to check that, effectively, it maintai
itself at the required temperature within fluctuations and t
the total energy remains constant.

Of each studied configuration, we considered the tim
dependent density correlation functions for differentq vec-
tors to make a direct comparison with the behavior predic
by MCT. The correlators for each species of particles, i
iÞ j , are defined as

f i j ~q,t !5
Si j ~q,t !

Si j ~q!
5

^r i~2q,t !r j~q,0!&

^r i~2q,0!r j~q,0!&
, ~2!

wherer(q,t)5( lexp@iq•r l(t)# are the density variables fo
each species andSi j (q) are the partial static structure facto
of the system. Thef i j (q,t) are the fundamental quantities o
2-2
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interest in the mode-coupling theory, which consists of w
ing a set of generalized Langevin equations, which can
closed within certain approximations@13,14,32,33#.

We note here that colloidal systems exhibit a Brown
short-time dynamics, while our simulations obey a stand
Newtonian dynamics. This will result in the presence o
ballistic short-time regime for the mean-squared displa
ment. However, a crucial result of MCT is that the structu
relaxation dynamics, i.e., the dynamics outside the transi
is independent of the short-time dynamics@34#.

The correlatorsf i j (q,t) have been calculated by avera
ing over several independent configurations and over u
100 different wave vectors with the same modulus, to obt
a good statistical sample. Interesting behavior of these
servables arises when the dynamics of the system
slower, i.e., where the dynamical behavior is of the ‘‘sup
cooled’’ type, even though for the present system we do
know the exact location in the control parameter space of
melting point. What follows is what is commonly observe
for the density correlators and diffusivity behavior of a s
percooled fluid, which is approaching the dynamical arre
Indeed, in this particular regime, one finds the typical tw
step relaxation shape for the density correlators, which is
indication of the emergence of two distinct timescales in
structural relaxation of the system. A first relaxation proce
the so-calledb relaxation, occurs at short times, and it is d
to particles exploring the cages formed by their near
neighbors. On the other hand, a second process, thea relax-
ation, occurs at larger and larger time scales, the slower
dynamics, originating the formation of a longer and long
plateau region. This accounts for the restoration of the erg
icity in the system, where particles have been able to esc
from their cages and explore larger portions of phase sp
At the ideal glass transition, the time of thea relaxation is
predicted to diverge, and the correlators do not relax a
more, thus reaching a finite plateau value. This is defined
the nonergodicity parameterf i j (q)5 limt→`f i j (q,t), which
jumps discontinuously from zero to a finite~critical! value
f i j

c (q) at the transition, signalling the occurrence of an
godic ~fluid! to nonergodic~glass! transition. This picture of
the dynamical correlators is found to be in excellent agr
ment with experimental and simulation results, though in r
systems thea-relaxation time does not diverge, but only b
comes increasingly larger. This is due to the intervening
other processes, commonly termed as ‘‘hopping’’ proces
which restore ergodicity, and are not included in the MC
treatment for the ideal glass transition described above.

The two-step relaxation is well described by MC
through an asymptotic study of the correlators near the id
glass solutions. The approach to the plateau is described
power law, regulated by the exponenta, i.e.,

fq~ t !2 f q
c;hq

(1)~ t/t0!2a1hq
(2)~ t/t0!22a ~3!

with t0 the microscopic time, while the departure from t
plateau, i.e., the start of thea process, is expressed in term
of another power law, regulated by the exponentb,

fq~ t !2 f q
c;2hq

(1)~ t/t!b1hq
(2)~ t/t!2b ~4!
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with t the characteristic time of the relaxation. The exp
nentsa andb are related to each other with a transcenden
relation, and are independent of the particularq vector con-
sidered,hq

(1) and hq
(2) are referred to, respectively, as th

critical amplitude and correction amplitude@14#.
On the other hand, thea-relaxation process can be als

well described by a stretched exponential, i.e.,

fq~ t !5Aqexp@2~ t/tq!bq#, ~5!

where the amplitudeAq determines the plateau value, and t
exponentbq is always less than 1.

We can thus fit the correlators, for eachq value consid-
ered, both in terms of the MCT prediction and of th
stretched exponential, and find an estimate of the nonerg
icity factor f q as a function ofq. The shape of this quantity
can be indicative of the formation of different types
glasses, either attractive or repulsive dominated@1,2,4,5#.

However, what we have described so far is typical forA2
singularities. These correspond to the simplest nontrivial
lutions for the nonergodicity parameter MCT equations, a
for example, in the hard-sphere model only this type of s
gularity can arise. This is due to the fact that the only cont
parameter of the model is the packing fraction. When
number of control parameters increases, higher order sin
larities may occur. For a square-well model it was shown t
singularities of typesA3 andA4 are present within the theor
@4# when the width of the well becomes much smaller th
the hard-core radius. In the proximity of such singularitie
the asymptotic behavior for the density correlators is diff
ent from the one we have seen so far@4,15#. In particular, we
have for the leading contribution a logarithmic behavior,

fq~ t !2 f q
c;2Cqln~ t/t!. ~6!

Higher order corrections to this behavior can be calcula
through an asymptotic expansion of the MCT equations cl
to the singularities and they are found to be crucial for so
predictions, as discussed in Ref.@15#.

Another main focus of our study was to evaluate the MS
^r 2(t)& of particles with respect to their initial positions
Typically, the behavior of the MSD at short times follows th
simple law^r 2(t)&;t2, which accounts for the ballistic mo
tion of the particles, i.e., particles move freely without col
sions. At later times, particles start to feel the presence
each other and there is a crossover to the diffusive regi
i.e., ^r 2(t)&;t. The proportionality constant of this relatio
defines the diffusivityD of the system, via the celebrate
Einstein relation@35#

lim
t→`

^r 2~ t !&
t

.6D. ~7!

Thus, by evaluating the long-time limit of the MSD, we d
termine the diffusion coefficientD for each state point.

Though this general behavior is preserved, when the
namics becomes slower, a crossover region between s
and late times emerges. Of course, the duration of this in
mediate region increases, the slower the dynamics. This
2-3
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nomenon is the corresponding behavior for the MSD of
separation of the two time scales that we have seen in
correlation functions. It also reflects the formation of cag
in which particles get trapped, so that diffusion becom
more difficult. The crossover region consists generally in
development of a plateau also for the MSD. At the ide
glass transition, thea-relaxation time would diverge, an
diffusion from the plateau would not occur even at infin
times, in complete analogy with the correlators behav
Thus, the height of the plateau is related to the localizat
length of particles in the arrested state, i.e., the size of
cages of the glass. Of course, in simulations, only finite tim
can be explored and the position of the ideal glass transi
can be only extrapolated by data.

As for the correlators, the presence of higher order sin
larities may affect the plateau region of MSD, giving rise
peculiar behavior.

MCT predicts a power-law decrease for the diffusivity
approaching the ideal glass transition. Along an isotherm

D;uf2fcug, ~8!

wherefc is the value of the packing fraction at the transiti
~‘‘critical’’ value !, i.e., the value where the diffusivity woul
drop to zero for the considered temperature. The exponeg
is completely determined by the theory in terms of the ex
nentsa and b, defined in Eqs.~3! and ~4!, via the simple
relation @14#

g5
1

2a
1

1

2b
. ~9!

Also the so-called exponent parameterl is related to these
exponents via the relation

l5
G~11b2!

G~112b!
5

G~12a2!

G~122a!
. ~10!

Thus, only one of the parameters is, in principle, sufficien
determine all the others. However, the parameterl is the
crucial one in determining the presence of higher order
gularities@4#, in particular, it tends to the valuel51 at an
A3 point, while for a simpleA2 singularity it is always less
than 1@36,14#. Thus, for example, an increase ofl along the
A2 glass line indicates a closer proximity to theA3 singular-
ity @4#.

To summarize, the procedure we use to determine the
ponents, and consequently the location of the MCT singul
ties in the control parameter space, as well as the non
gidicity parameter, is as follows. From fitting the diffusivit
behavior at constant temperature with Eq.~8!, one can deter-
mine the exponentg, and from this alsoa, b, andl. Thus,
with the obtained value ofb, one can perform a fit of the
density correlators, using Eq.~4!, and determine the none
godicity parameter consistently.

However, close to higher order singularities, we do n
expect that this behavior is generally preserved, as the lo
rithmic behavior in the correlators and the transient region
the MSD intervene. Indeed, in these conditions, the expon
b tends to zero~thus originating the logarithmic behavio!
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and, from the relation betweenb andg, one can see thatg
would go to `, thereby rendering Eq.~8! meaningless to
describe the arrest. Thus, the region of validity of t
asymptotic predictions may shrink significantly close
higher order singularities.

III. RESULTS: THE OVERALL PICTURE

The considered mixture represents a natural extensio
the monodisperse system studied so far@21#. Indeed, the
small asymmetry in diameter does not produce a signific
change in the dynamics of the two cases, and, on the c
trary, allows to reach much larger packing fractions with
sign of crystalline order. The first of the two statements c
be explained by looking at Fig. 1. Here, we compare
behavior of density correlators at a corresponding point
the control parameter space of the system. For the mono
perse case, we are almost at the most reentrant point be
crystallization takes place, i.e.,f50.57 andT50.75. We
can clearly see that dynamics does not appear to be par
larly slowed down. To make the comparison with the bina
case, we are considering the total density correlation func
for the species 1 at theq vector, corresponding approxi
mately to the first peak of the static structure factor, and
quantities have been rescaled in order to compare part
with equal diameters. It is evident that the dynamical beh
iors are very close; thus in this sense, we can think of ca
ing out an extension of the one-component work.

In the following, we will focus on the properties of pa
ticles of typeA. Thus all quantities reported without labe
will refer to them. This choice derives from the fact that w
do not expect substantial differences in the behavior of
two species, due to the small amount of asymmetry in th
sizes.

We start by comparing theT and f dependences of the
diffusion coefficient. The diffusion coefficients can be no
malized with respect to the factorD05sAAT/m, which
takes into account theT dependence of the microscopic tim

FIG. 1. Comparison between the density-density correlat
function SAA(q* ,t)/SAA(q* ) in the binary and the monodispers
case atf50.57 andT50.75, corresponding to the most reentra
point found in the monodisperse case, before crystallization in
venes. The wave vector chosen corresponds for both cases tq*
52p/sA .
2-4
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This ensures that the difference in the average velocities
to the temperature is eliminated, and the diffusion can
considered to be comparable between different temperatu

A plot of D/D0 as a function of packing fraction, alon
the considered isotherms, is shown in Fig. 2. In the pres
work, we focus our attention mainly on the high dens
regime, i.e.,f.0.5. The behavior of the diffusivities pre
sents many similarities with the case of a monodispe
sample of SW spheres@21#. However, striking features ap
pear due to the fact that, for the chosen binary system,
possible to reach diffusivities three orders of magnitu
smaller than in the monodisperse case, as well as m
larger packing fractions with no sign of crystallization.

We present results of normalized diffusivities varyin
roughly between 1022 and 1026, while the monodisperse
system could only reach values of the order 1023 @28#, due to
the intervening of crystallization@21#. We remark that here
the lowest diffusivity values were imposed by computatio
times, and not by crystallization, as in the monodispe
case. Also, the attractive binary system is able to occ
effectively a larger amount of available volume, thus rea
ing liquid states up to a packing of about 0.62. On the ot
hand, the hard-sphere case reaches comparable values o
fusivities at a packing fraction of aboutf50.585 ~see Fig.
4!, a value close to that experimentally established for
one-component hard-sphere case@37#.

Examining the figure, it is evident that the behavior of t
diffusivity is driven by two competing mechanisms. Upo
decreasing temperature, starting from the highest value,
presence of the repulsive core, initially dominant, enters
competition with the attractive interactions. This is ma
fested in the diffusion getting larger, at the correspond
packing fraction, when the temperature gets lower. In ot
words, the system reaches the same diffusivity at larger
larger packing fractions. This is due mainly to the geome
cal rearrangement of particles, i.e., the particles tend to
closer due to the lower temperature, thus producing m
available space for the diffusion of the system. Howev
when the temperature becomes small enough, i.e., effecti

FIG. 2. Normalized diffusion constantD/D0, with D0

5sAT/m as a function of packing fractionf, along each studied
isotherm betweenT50.3 and T52.0. The normalization facto
takes into account the difference due to different initial velociti
and ensures the common low density limit~see Ref.@21#!.
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lower than the energy scale of the square well, attracti
become dominant and, thus, diffusion becomes slower a
because particles tend to remain within each other’s she
attraction.

We know from theoretical calculations within the MC
that this phenomenon is typical of very narrow attracti
potentials, both for square-well interactions@4# and for hard-
core Yukawa@6#. Indeed, the 3% choice for the range of th
attractive well in our simulation is chosen to ensure that
competition between attraction and repulsion is particula
sharp. This can be explained in terms of cages, i.e., when
attractive range is not small enough, which means few p
cents of the diameter; there is not much difference betw
cages formed by neighboring particles at high or low te
peratures. On the other hand, a very localized attraction
effectively change the shape of the cages, by sticking p
ticles within the well distanceD. This produces the large
diffusions observed at intermediate temperatures, when
two mechanisms almost balance each other. Similarly,
tremely short-ranged attractions produce a solid-solid is
tructural transition between an attractive-dominated an
repulsive-dominated crystal@38#. This has been correlate
with the glass-glass transition predicted by MCT in a rec
work @6#. Of course, it would be interesting to extend th
simulations to different values of the range of the potentia
confirm the width dependence of the anomalous behavio

Observing more carefully Fig. 2, the two mechanisms
diffusion produce two different trends of behavior for th
plotted curves. Indeed, forT.0.6 the curves present a quit
dramatic decrease of diffusivity, while for smaller temper
tures the same decrease of about four orders of magni
occurs on a much wider range of packing fractions~for ex-
ample, comparingT52.0 and T50.4, the range almos
doubles!.

We also note that if we plot the bare diffusion coefficien
as evaluated from the fit of the MSD, without normalizing b
D0, the reentrant behavior is preserved. This can be an
vantage, from an experimental point of view, because
would allow us to observe, at the same packing fraction
various temperatures, the diffusivity first increasing then
creasing again, without having to include the thermal fac
We plot in Fig. 3 the unnormalized diffusivities at fixe
packing fractions, varying the temperature. The appeara
of a maximum, sharper with increasing density, is inde
another manifestation of the reentrance. Extracting the
ues of maximum diffusivity, it is possible to draw a ‘‘max
mum diffusivity’’ line on the (f,T) plane. Note that a dif-
ferent type of diffusivity anomaly occurs in some compl
systems such as water, in which diffusivity has a maxim
with respect to density at constantT. This anomaly plays an
important role in the understanding of the metastable par
the water phase diagram@39#.

To make contact with the theoretical results for the id
glass transition, we have extrapolated curves of normali
isodiffusivities, as for the monodisperse case@21#, and rep-
resented them in Fig. 4. Of course, the limitD→0 would
correspond to the ideal glass line, as calculated by MCT.
report the curves for normalized values varying between
31023 and 531026, and in the inset we present for com

,
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parison the ideal glass line as predicted by MCT for a S
one-component system.

It is interesting to comment on the behavior of the iso
iffusivity curves. Depending on which diffusivity value i
chosen, the most reentrant point, i.e., the (f,T) point char-
acterized by the largest packing fraction with that diffusivi
changes. In the considered range of diffusivities, its temp
ture varies from 0.75, which also corresponds to the m
reentrant point for the monodisperse case, to 0.5. Howe
the data of Fig. 2 allow to say that, in the limitD→0, such
a point will be found at a finite temperature between 0.4 a
0.5, since the attained packing fractions are so large th
would not be possible, within the trend, to go much beyo

The reentrant behavior, present in mode-coupling calc

FIG. 3. As in Fig. 2 but, in this case, the diffusion constant h
not been normalized, and it is plotted against temperature a
isochores betweenf50.56 andf50.60. The maximum in the bar
diffusivity becomes more evident~almost two orders of magnitude!
as one moves in the more reentrant part of the (f,T) plane.

FIG. 4. Curves of iso-normalized-diffusivityD/D0 in the (f,T)
plane. We indicate with a vertical arrow the location for the ha
sphere case of the packing fraction (f;0.582) for the lowest iso-
D/D0 curve, i.e.,D/D05531026. Along each curve, the corre
sponding most reentrant point is represented with a filled squ
symbol, to help the reader follow the description in the text. T
inset shows the MCT prediction, calculated in Ref.@4#, with the
structure factor obtained using the Percus-Yevick approximatio
input.
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tions, is then confirmed by simulation. It is clear that, sin
MCT overestimates the effect of packing, we should not
pect a perfect quantitative agreement between theory and
merical results. Indeed, for example, for the simple ha
sphere case, the MCT critical glass transition pack
fraction isf.0.516@13,40#, whereas in experiments this ha
been shown to bef.0.58@37#. On the other hand, the sam
experiments have shown that more accurate predictions
be expected for the behavior of dynamical quantities such
the density-density correlation functions and the MSD.

IV. RESULTS: DYNAMICS ALONG ISOTHERMS

We start by examining the results for the isothermT
52.0. Here particles have sufficient thermal energy to
cape the attractions, and the resulting dynamics appears
quite similar to that expected for ordinary hard spher
However, the effect of the attraction, though not chang
the general behavior, is to enlarge the liquid part of the ph
diagram toward packing fractions already quite larger th
the typical~one-component! hard-sphere value, i.e., 0.58. A
this temperature, indeed, the system behaves as a flu
least up to a packing fractionf50.595, where the time limit
of our simulation is reached. Close to this limit value, t
diffusivity decreases by almost two orders of magnitude fo
variation of 1% in the packing fraction.

In Fig. 5~a! we report the time-dependent density-dens
correlators for different packing fractions, up to the closes
the ideal glass transition. The dramatic decrease in diffusi
is reflected in the behavior of the correlators by the form
tion of the typical two-step relaxation process near the arr
described above. Similar behavior can be also observe
the behavior of the MSD displayed in Fig. 5~b!. We note,
however, that the height of the plateau of'10% of the par-
ticles’ diameter is consistent with Lindemann’s melting c
terion @41,13#. We note here that the density correlators, bo
for this temperature and for the ones we will discuss later,
not show strong oscillations at short times, differently fro
what is commonly obtained from simulations of Lennar
Jones systems@42#. This could depend on the presence of t
hard core in the potential, which acts as a strong damp
term in the short-time dynamics@43#.

The diffusivity data can be fitted with the MCT powe
law behavior@Eq. ~8!#. This holds sufficiently close to the
ideal glass transition, thus we considered relevant for the
only those points for which a cleara-relaxation process wa
evident. Doing so, we foundg.3.260.4, and an indication
of the quality of the fit is shown in the inset of Fig. 5~b! ~see
figure caption for details!. We note that, getting close to th
transition packing fraction, it seems that there are no str
corrections to the power-law behavior, at least in our wind
of observation. This seems to suggest, as expected, th
colloidal systems with a hard-core potential, hopping effe
are less relevant than in atomic systems.

The obtained value forg is already much larger than th
typical one-component hard-sphere value predicted by M
i.e.,gHS52.58@40#. In the case of our particular binary mix
ture, in the hard-sphere case, whose diffusivity behavio
also reported in Fig. 2, we found a value ofg52.960.2. The
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CONFIRMATION OF ANOMALOUS DYNAMICAL ARREST . . . PHYSICAL REVIEW E 66, 041402 ~2002!
uncertainty on the exponent is due to the variation it g
when considering only the points closest to the transition.
note that in Ref.@8#, the case reported brings a value ofg
53.03. Thus, we are, at this value of temperature, alread
a situation much closer to a higher order singularity, cor
sponding to other MCT exponents, obtained by means
Eqs. ~10! and ~9!, respectively,b50.4160.07 andl50.84
60.04. It is perhaps important to stress at this point that
value of g obtained with this procedure can be slight
wrong due to the difficulty of getting close enough to t
ideal glass transition with numerical simulations@44#. We
will use the so-calculated value ofb in the following to fit
the behavior of density correlators along the isodiffusiv

FIG. 5. ~a! Normalized density-density correlators along the is
therm T52.0 for different packing fractions in function of time
Time units, as specified in the text, aresB(m/u0)1/2. The q vector
displayed in this picture, and in all the following ones if not diffe
ently specified, is slightly larger then that for the first peak of t
static structure factor, and it corresponds to the valueq525 in units
of half the box size (p/L). The horizontal line represents the co
responding nonergodicity parameter, as extrapolated from th
~see text!. ~b! Mean-square displacement along the isothermT
52.0 for the same densities as in~a!. In the inset we plot lnD vs
ln(f2fc) to show the power-law behavior described in Eq.~8! for
our data. With such a fit we can evaluate the MCT exponents
explained in the text. Note thatfc50.60 isalso a parameter of the
fit.
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curve D/D05531026, to give an idea of the behavior o
quantities of interest along the ideal glass transition line.

We do not show here the behavior of density correlat
and MSD for the caseT51.5, because its results are com
pletely analogous toT52.0. We note, however, that the fit o
the diffusivity with Eq. ~8! gives in this case the exponen
g53.660.4, b50.3560.05, andl50.8760.04. The in-
crease in the value ofl is expected since we are gettin
closer to the reentrant region, and consequently to the sin
larity. The same trend is observed forT51.0 with g still
increasing up to about 3.960.3, andl reaching the value of
0.8960.02.

At T50.75 an interesting behavior appears. Indeed, in
density correlators, a logarithmic decay starts to emerge
shown in Fig. 6, some state points display a logarithmic
cay ~see curve forf50.58 in the figure! for almost the
whole relaxation process, i.e., after the microscopic rel
ation up to complete decay. The shape of this logarithm
behavior appears quite different from that found in Ref.@8#.
On the other hand, it resembles quite closely the shap
MCT correlators near theA3 singularity for the 3% square
well potential reported in Fig. 11 of Ref.@4#, which for com-
parison is reported in the inset in Fig. 6. Upon increas
density, and so getting closer to the glass transition, the
laxation changes to the usual two-step form, clearly indic
ing a similar situation of our isothermal path to that indicat
in the inset of Fig. 11 cited above. Thus, the higher ord
singularity dominates the dynamics at smaller packing fr
tions, but when one gets sufficiently close to the glass tr
sition, a conventionalA2 singularity is met, and this cause
the restoration of the typicala relaxation. By considering
only those packing fractions, when at least the beginning
the a relaxation can be observed~i.e., f.0.6), we can fit
the diffusivity again with Eq.~4!, obtaining the extremely
high, but very rough, valueg;5.1, corresponding to the
value of b;0.25 andl50.937, thus considerably gettin
closer to the value 1 corresponding to theA3 point. We can-
not estimate here the error due to the small number of po

-

fit

as

FIG. 6. Same as in Fig. 5~a! for T50.75. The reported densitie
in this case have been chosen to evidence the analogy with
MCT predictions of Fig. 11 in Ref.@4#, reproduced in the inset fo
comparison.
2-7
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available~only five for three parameters for the fit!. How-
ever, even if not so precise, it clearly gives a strong indi
tion that we are approaching a higher order singularity.
recall here that the topology of the transition, as predicted
the theory~see inset of Fig. 4!, is such that the higher orde
singularity of typeA3 lies inside the glass region, so that b
studying the diffusivity going to zero one can at most rea
the boundary of the glassy region, i.e., the most reent
point in the phase diagram. Thus, the study of the beha
of the exponents approaching the glass line gives a str
indication of the presence and location of the higher or
singularity in the present system, although one needs fur
evidence as, for example, from analyzing the nonergo
factors, as we shall do later, to claim the presence of
distinct types of glasses, and thus to establish undoubt
the existence of a transition point between them, that is,
A3 singularity in the theoretical treatment. Thus, for e
ample, by looking at the shape of the nonergodicity fac
below, we can anticipate that at this temperature we
meeting theA2 line along its repulsive branch, again as in t
inset of Fig. 11 of Ref.@4#, but probably at a slightly highe
temperature.

From these considerations, it emerges that this scen
can be considered the typical one as predicted by MCT,
the interplay between anA2-repulsive singularity and a
higher order one, i.e.,A3. It is indeed closely connected t
the asymptotic calculations performed in Ref.@15# for the
two-component schematic model whose results are repo
there in Fig. 9.

Now we turn to the caseT50.6. The correlators, reporte
in Fig. 7~a!, show an even closer behavior to that predic
by MCT in Ref. @4# ~again Fig. 11 in Ref.@4#, i.e., inset of
Fig. 6 here!. However, at this temperature, the two comp
ing singularities must be so close to each other that a clea
relaxation does not take place within the reach of our sim
lation, i.e., the logarithmic behavior remains always very i
portant, and even at higher packing fractions it is clea
observable before thea process takes over. The interestin
feature emerging is that, in all the cases considered, the l
rithmic behavior never extends for much more than 3.5
cades in time. This arises because, in the present topolog
the phase diagram, one is either too close to theA2 singu-
larities to observe a pure logarithm, or too far from the gla
transition, and thus the relaxation time is generally not
large. Indeed, this behavior is strongly supported again
the theoretical calculations in Ref.@4#.

It should be noted that at this temperature we are not a
to convincingly fit the power-law density dependence of
diffusivity. Indeed, if one forces the fit on the points, on
finds exponents strongly dependent on the selectedf range.
A possible explanation for this data sensitivity tof can be
found in the competition betweenA2- andA3-dominated dy-
namics. In such a condition, only a comparison with a f
MCT solution~as opposed to an asymptotic prediction! may
help in rationalizing the density dependence of diffusivity.
agreement with the previous observations, also the M
represented in Fig. 7~b!, starts to show deviations from th
usual A2-type behavior for a discontinuous transition. I
deed, a clear flat region does not appear, though the dyn
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ics is significantly slow. What can be observed is a slig
deviation from the flat region at higher temperatures, wh
will become more and more evident at lower temperatur
No clear localization length can be found. Attraction at th
temperature has become quite relevant. It is again a sig
very strong competition between different singularities, b
tween attractive and repulsive cages.

Upon further decreasing temperature, we enter the m
delicate region of the phase diagram. Indeed atT50.5, as for
T50.6, it is not possible to find any MCT exponents, and t
interpretation of the behavior of the correlators is n
straightforward. These are plotted in Fig. 8~a!. Indeed, at
higher densities there is evidence of some logarithmic beh
ior, but no clear development of a plateau ever takes pla
This might be due to the fact that, since we are approach
more closely the attractive branch of the glass transition
examining a lower temperature, the plateau should be hig
and the interplay of the two types of singularities would
different than what was observed previously. Thus, we
interpret this behavior as one dominated by anA2-attractive
and anA3 singularity, similar again to what was shown in th

FIG. 7. ~a! Same as in Fig. 5~a! for T50.6. The dashed lines
represent fits with logarithmic laws, which are displayed to sh
the presence of a logarithmic decay and the mechanism of its
appearance in the proximity of anA2 singularity~see text for further
details!. They are reported as a guideline to the eye, and no
extrapolate any fit parameters.~b! As in Fig. 5~b! for T50.6.
2-8
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CONFIRMATION OF ANOMALOUS DYNAMICAL ARREST . . . PHYSICAL REVIEW E 66, 041402 ~2002!
analytical calculations of Ref.@15#, there presented in Fig.
~curves labeled asn852,3).

We note, however, that the long-time decay of dens
correlators can be represented by a stretched exponentia
with very low exponentsbq , as shown in Fig. 9. In the
MSD, reported in Fig. 8~b!, the phenomenon present at th
previous temperature becomes more accentuated. Eve
slowest studied state point is far from being asymptotic, a
the MSD presents a clear transient region.

The case where the anomalous dynamics and the inter
between different singularities is fully displayed is offered
theT50.4 isotherm. The correlation functions, shown in F
10~a!, are rather peculiar. Even the long-time limit is f
from being rationalized in terms of stretched exponential
cay. The MSD behavior, shown in Fig. 10~b! is also quite
intriguing. The MSD transient behavior is now evidently o
subdiffusive type. Indeed, for about 4 decades in time
shows a dependence which can be quite accurately desc
by a power-law behavior, i.e.,

^r 2&;tx. ~11!

FIG. 8. ~a! As in Fig. 5~a! for T50.5. The dashed line is a fit o
one of the correlators with a stretched exponential, whose extr
lated parameters@see Eq. ~5!# are bq.0.5,tq.2.23103, Aq

.0.73, the last one giving an estimate for the nonergodicity par
eter f q , and it is shown to display the quality of the fit. Paramet
of the stretched exponential fits as a function of the wave vector
reported in Fig. 9.~b! As in Fig. 5~b! for T50.5.
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We estimated via a fitx.0.44. A similar behavior has bee
found in the MCT study of polymeric systems@45#, for dis-
placements varying from the typical localization length
hard-sphere-like cages to end-to-end distance. The ana
with the polymeric systems, where permanent bonds
present~in a sense close to the attractive cages at this v
low temperature!, can be a guide to a deeper understand
of this region.

The strong effects that we find at this value of temperat
seem to suggest that along this isotherm the system
proaches the closest point to the singularity, even if we
not know yet on which side~attractive or repulsive! of the
glass line it will be located. To understand the nature of
dynamics which takes place here, further investigations
needed, as well as a more complete analysis of the corr
tors, and a comparison with full solutions of the MCT equ
tions.

Finally we analyze the last isotherm, corresponding toT
50.3. This being a very low value for the system to equ
brate, data are not so clean as for the other cases, also
cause here one needs to study slower points with respe
the other temperatures in terms of bare diffusivities, to re

o-

-
s
re

FIG. 9. ~a! Exponentbq as a function ofq ~always in units of
half the box sizep/L) obtained from the fit of the density-densit
correlation function with the stretched exponential in Eq.~5! for
temperaturesT50.6,0.5,0.3. The values found are always ve
small, indicating a very slow relaxation.~b! As in ~a! for the relax-
ation time parametertq of Eq. ~5!. Interestingly, a peak correspond
ing to the q value of the first peak of the static structure fact
emerges~i.e., q;20), as one lowers the temperature.
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E. ZACCARELLI et al. PHYSICAL REVIEW E 66, 041402 ~2002!
the same values of normalized ones. However, despite t
technical difficulties, we find more transparent results
terms of conventional MCT interpretations, i.e., we can id
tify the development of a two-step process typical of anA2
singularity, both for the correlators and for the MSD than
the previous case.

Indeed, observing the correlators in Fig. 11~a!, it is clear
that, close enough to the transition, they present the de
opment of a plateau, and thus, ana-relaxation process, a
shown in the inset of the figure for variousq vectors. Despite
this clear behavior, even at this temperature, it is not poss
to evaluate unambiguous power-law exponents from the
fusivity, but stretched exponential fits give reasonable
sults. Thus, the value of the plateau is found to be extrem
high. We remind the reader that one of the key experime
observations in the slow dynamics of colloidal systems w
the unusual very high value of the plateau@46#. This is also
what has been found within MCT as a quantitative distin
tion between attractive and repulsive glasses, leading,
example, to very different mechanical properties for the t
glasses@5#. This allows us to say that we here have a cle
indication that, at this low temperature, we are approach
the glass transition from the attractive glass side. It is also
deep interest to note the analogy of this behavior with
one that has been found in the study of ‘‘strong’’ gels@47#,

FIG. 10. ~a! As in Fig. 5~a! for T50.4. ~b! As in Fig. 5~b! for
T50.4. In the inset the fit of the subdiffusive and diffusive regim
with a power law are shown~see text for details!.
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even if this should be inspected at lower densities also.
Figure 11~b! represents the evolution of MSD at this tem

perature. Here, a signature of a localization length, mu
smaller than that found in the high temperature cases, s
to develop. Indeed, an indication of a plateau is observa
around ^r 2&50.0006s2. The corresponding localization
length is of the order ofD, supporting the interpretation tha
at this temperature the relevant localization length has
come the attractive well. In this respect, one can interpret
subdiffusive behavior of the MSD discussed atT50.4 as a
crossover effect between the different localization lengt
i.e., the hard-sphere~repulsive! typical distance and the at
tractive well. In theoretical terms, this is due to the two d
tinct A2 singularities, corresponding to repulsive and attra
tive glass transitions, while in the polymeric case@45# there
is only oneA2 singularity. We might argue that there th
bonding of the polymers is taking the place of the attract
transition in our system, originating the same effect of slow
intermediate diffusivity when both these two competi
mechanisms are strongly present.

FIG. 11. ~a! As in Fig. 5~a! for T50.3. In the inset data and
stretched exponential fits are shown for differentq values at the
same packing fractionf50.58. In particular, starting from the up
per correlator, they correspond, respectively, toq
525,55,95,155,205 in units ofp/L. This is done in order to make
more evident the presence of a plateau in the relaxation, whic
also drawn in the figure for the caseq555. ~b! As in Fig. 5~b! for
T50.3. In the inset a fit as in Fig. 10~b! is shown. There is no
evident subdiffusive regime.
2-10
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V. RESULTS: ALONG THE ISO- DÕDo CURVE

We now focus on studying the behavior of correlators a
MSD, and other quantities along the iso-~normalized!-
diffusivity, i.e., the iso-D/Do , curve; D/D05531026,
shown in Fig. 4, which represents our closest available r
resentation of the ideal glass transition line. The aim of t
study is to give clear evidence of the existence of two d
tinct glassy states, attractive and repulsive. Also, it aims
connect even more closely this simulation to the MCT c
culations, which also were performed in a similar fashio
along the ideal glass lines, in Ref.@5#.

We start by representing the behavior of density corre
tors along the iso-D/D0 line in Fig. 12. The curves her
represented, having equal diffusivity, also have the same
malized relaxation time. Thus, we can clearly see the cha
in the decay that takes place, upon decreasing tempera
from a markeda relaxation at higher temperature to th
extremely slow decay ofT50.4, passing through the inte
mediate regimes betweenT50.75 andT50.5. Here, the
only evident logarithmic behavior can be observed forT
50.6 andT50.5, because these must be the only cases
which the proximity to theA2 transition strongly compete
with the closeA3 singularity, as discussed above.

Next, we report the MSD behavior along the line in F
13. Despite the larger statistical error atT50.3, we display
this case also as an important part of the whole picture. T
here, we can clearly observe the change in the diffusion p
cess. The first evident thing to note is the big gap, of ab
'1.5 orders of magnitude, in the plateau values correspo
ing to high and low temperatures. This implies a factor
about 7 in the ratio of the localization lengths of the p
ticles, which, as discussed above, characterizes the siz
cages around particles. Clearly this result can be used
justification to speak of ‘‘attractive’’ cages, opposed to n
mal cages, intended as a simple occupation of the avail
space. In the attractive cages, the average distance bet
particles is much smaller, the lower the temperature. This
clear signal of a different structure in the glass formation

Also, we can examine more carefully the modification
the plateau present at higher temperatures in the tran

FIG. 12. Density-density correlation function along the is
D/D0 line, D5531026. The wave vector chosen corresponds
all cases toq525 in units of half the box size.
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regime. Indeed, increasing the attraction, this tends to b
downwards until a sort of ‘‘saturation’’ between the tw
competing mechanisms~attraction and packing! takes place,
corresponding to the subdiffusive behavior ofT50.4. After
this point, attractions become dominant, and the curve st
to bend upwards. This might suggest that, going to e
lower diffusivities, the MSD would display a similar platea
as for high temperatures at roughly^r 2&;0.0007s2 @48#,
which means roughly a localization length of 2.6% of t
particle diameter, i.e., comparable with the width of the
tractive well of the model, confirming our conjectures on t
formation of attractive cages, or, to use another express
bonds. However, to gain further evidence on how the
mechanisms really happen and evolve in the system, a
cific study of configurations in terms of average distan
sizes of clusters, and heterogeneities, in general, shoul
performed, and this is beyond the scope of the present w
We note that a similar figure, showing the behavior of MS
with attraction, has appeared in@9#, but not all of these con-
siderations could be made there, due to the distance from
transition.

We now turn to evaluate the nonergodicity factorf q along
the iso-D/D0 curve. To do this, we have fitted the densi
correlators at variousq vectors, and extracted the releva
parameters. Where possible, i.e., where the power-law
havior for the diffusivity in Eq.~8! was found to be valid, we
used the power-law described in terms of theb exponent for
the a relaxation of Eq.~4!. Thus, for T52.0, we imple-
mented the fit withb50.41, while forT51.5,1.0, and 0.75
we usedb50.35,0.31, and 0.25, respectively. These valu
have been found very good for the fits, always finding ax2

of the order of 1024 or less. For lower temperatures, it wa
not possible to use this strategy and, consequently, we u
the approach of the stretched exponential in Eq.~5!, and use
its amplitude as an estimate forf q . The parameters of the
fits, i.e., the exponent of the stretchingbq and the relaxation
time tq , for the considered temperaturesT50.6,0.5,0.3 are
reported in Fig. 9 to display theirq behavior. Even though
the stretched exponential law is not analytically justified, it
quite well established in the literature to use as a fitting l
for extracting the nonergodicity parameter@44#. In the case

FIG. 13. Mean-square displacement along the iso-D/D0 line,
D5531026. The line forT50.3 crosses lines for higherT due to
large statistical errors in determiningD at such low temperature.
2-11
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of T50.4 also this strategy did not work, as already d
cussed@49#.

In Fig. 14 we show the so-calculatedf q . Amazingly, from
T52.0 down to T50.6, they all collapse onto the sam
curves, giving a strong evidence of MCT predictions for t
repulsive glass@5#. Thus, the repulsive glass is independe
of temperature, and also this shows how the passage t
tractive glass intervenes quite sharply. For lower tempe
tures, the glass becomes attractive, and the nonergodicity
rameter starts to be modified with temperature, becom
finite also at much largerq vectors@5#. Despite some errors
generated by the stretched exponential fits at these low
peratures or the data noise atT50.3, a significant change in
the shape and width off q is seen betweenT50.5 andT
50.3. It could be that the case atT50.5 is quite sensitive to
the singularity, and thus it is a somehow intermediate cas
more detailed study, either theoretically or by consider
intermediate or even lower temperatures for smaller pack
fractions, will be helpful for clarifying this issue. On th
other hand, the establishment of the existence of the
glasses along the line appears to be definite by these res
To support this statement, we have plotted in Fig. 15 both
~partial! static structure factorSAA(q) ~rescaled by a factor o
2 for having a better visualization of the figure! and the non-
ergodicity factor, respectively, at the highest,T52.0, and at
the lowest,T50.3, temperatures studied in this work, so
to compare the most extreme cases of repulsive and at
tive glasses. First, we note how the oscillations of the n
ergodicity factors follow these in the structure factor qu
closely in both cases, even though for theT50.3 case it is
actually quite difficult to visualize these@50#. Also, theS(q)
presents the typical features we expected from theore
calculations within MCT and the integral equations. Inde
the repulsive case shows a marked first peak, which is
main responsible for the glass transition, while the attrac
one possesses larger secondary oscillations, which cons

FIG. 14. Nonergodicity parameterf q as a function ofqp/L
along the iso-D/D0 line, D5531026, as obtained by fitting the
correlation functions~see text for details!. It is evident how all the
data collapse onto each other for all temperatures less than
giving a clear indication of a repulsive glass, while for lower te
peraturesf q increase quite dramatically towards typical attracti
glass behavior@5#.
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a signal of the smaller cages already described above. T
this contributes to establish not only the existence of the
glasses, but also, and most importantly, the two disti
mechanisms which drive the glassification in the two cas
i.e., simply packing and localized attraction.

VI. CONCLUSIONS

In this paper, using molecular dynamics, we have stud
the dynamical arrest phenomena of spherical particles in
acting via a square-well potential. The square-well poten
has been studied as one of the simplest canonical mode
solids, liquids, and gases for many years@22–27#. Here we
have extended the models’ applicability to the domain
dynamical arrest and glassy phenomena. Previous pre
tions for dynamical arrest from the mode-coupling theory
the square-well potential are available@4,5#, so direct com-
parisons are feasible.

By using a well-adjusted binary mixture, we have be
able to extent our previous preliminary investigations@21#
much closer to the arrest transition, accessing diffusion c
stants that are three orders of magnitudes smaller than in
previous calculations. Nevertheless, results on the low
valued isodiffusivity curve available for the single
component system are very close to those for the binary m
ture, so we may consider the role of the second compone
be mainly the prevention of crystallization.

In that regime where repulsions dominate, we recover
ideal glass transition with power-law scaling of the diffusio
constant. We also find an attractive branch to the dynam
arrest where theory has predicted the presence of an at
tive glass. Where attractions and repulsions compete
nearly equal terms we find reentrance in the arrest cur
when plotted in units of the microscopic temperature dep
dence of the diffusion constant. However, fixed-density d
fusion constants, plotted without any normalization, exhib
maximum in the diffusion constant as the temperature is
creased. This maximum locates the reentrant liquid wh
mobility is anomalously high. We consider the essential f
tures of reentrance in this regime for the square-well pot

.6,

FIG. 15. Nonergodicity parameterf q and partial static structure
factor Sq at T52.0 andT50.3. The different shape off q reflects
the difference between attractive and repulsive glass~see text for
details!.
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tial now to be confirmed, in agreement with the predictio
of theory @4#.

We have studied also the evolution of the density-den
correlation functions~dynamical structure factors! and, inde-
pendently, the mean-squared distance traveled by particle
the vicinity of the reentrant regime. As expected, where
pulsive interactions dominate, we find the classical arr
scenario in which plateaus develop in both functions as ar
is approached@16#. These plateaus indicate the developm
of an observable characteristic cage time, and are quite t
cal of prediction by MCT for hard-sphere systems. Wh
attraction begins to compete on equal terms, in the vicinity
the reentrant regime, the theory has predicted the existe
of an A3 singularity embedded in the arrested region. It
therefore difficult to access this singularity directly by m
lecular dynamics, but the theory has indicated that there
distinctive signatures of this singularity in the reentrant flu
phase, on approach to arrest. In particular, density correla
from a suitable fixed-temperature cut of the phase diag
have an interesting pattern of behavior in which the logar
mic behavior@15#, due to the embeddedA3 point, first begins
to dominate, and then crosses over to the conventionalA2,
either repulsive or attractive, behavior more commonly o
served for normal MCT arrest. The density correlators in
reentrant regime clearly exhibit this phenomenon, the pat
of evolutions being essentially in agreement with the pred
tions of theory.

We may pause here to comment that we do not regard
complex crossover behavior as a complication, but in fac
a rather delicate and unusual signature of the whole reen
phenomenon, and an interplay betweenA2 andA3 singulari-
ties. That the simulations would reproduce this is strong s
port for the detailed picture offered by theory. The behavi
of the mean-squared displacements are also quite unu
and there is as yet no theoretical prediction for them in t
regime.

Finally, we are able to extract the nonergodicity facto
along the arrest curve, for the lowest iso-~normalized!-
diffusivity constant curve. Again, in line with theoretical pr
dictions, we find strong evidence of a transition from a
y,

.
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pulsive glass to attractive glass behavior, as indicated by
change in the characteristic shapes of the nonergodicity
tors. This is a direct evidence of the repulsive glass to attr
tive glass transition that has been predicted by the the
representing one of the most remarkable phenomena as
ated with the system.

The theory suffers from strong systematic shifts of all t
arrest curves in relation to the simulated ones, a phenome
long known from the example of the hard sphere. Howev
qualitatively, the theoretical predictions of the reentrant
gime, with an associated crossover to logarithmic singular
and glass-to-glass transition has been confirmed by deta
molecular dynamics calculations.

From the experimental point of view, there is accumula
evidence that all the phenomena described here are ro
being relatively independent of the details of the experim
tal system used to study them@17–19,9#. The same is true of
the theoretical studies@1,2,4–7# and simulations@8,21#. The
square-well potential is one of the simplest examples one
study, and it is reassuring that it exhibits the phenomena

Our original prediction that in the dense regime, a coll
dal particulate system with short-ranged potentials could
described using ideas from dynamical arrest and glass th
now seems to be strongly supported. Dense particle gels
thereby identified as an example of a type of glass, or
namically arrested phase. The implications are broader t
the simple example studied, for it indicates that it may
possible to interpret many formerly disparate phenom
such as coagulation, precipitation, aggregation, and gella
within the paradigm of dynamical arrest or glass theory. T
is a fundamental sort of perception in the field of dense s
condensed matter, which may prove to be very fruitful
coming years.
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