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Crossover between equilibrium and shear-controlled dynamics in sheared liquids
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We present a numerical simulation study of a simple monatomic Lennard-Jones liquid under shear flow, as

a function of both temperatureT and shear rateġ. By investigating different observables we find that~i! there

exists a line,Tġ , in the (T-ġ) plane that sharply marks the border between an‘‘equilibrium’’ and a‘‘shear-
controlled’’ region for both the dynamic and the thermodynamic quantities; and~ii ! along this line the struc-

tural relaxation time,ta(Tġ), is proportional toġ21, i.e., to the typical time scale introduced by the shear flow.

Above Tġ , the liquid dynamics is unaffected by the shear flow, while belowTġ both T and ġ control the
particle motion.
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The effects of the shear flow on the properties of sim
liquids have recently been the object of extensive invest
tions @1–7#. Beside its intrinsic theoretical interest~the study
of out-of-equilibrium stationary states!, it has been hypoth-
esized@8,9# that the shear flow acts as an aging-stopp
mechanism, thus suggesting an interesting experime
method to study dynamics in supercooled liquids a
glasses. Indeed, under shear flow, the system is in an ou
equilibrium situation, but reaches a stationary regime: si
larly to equilibrium, the correlation functions depend only
the time difference. This takes place also at those temp
tures for which the nonsheared system would be in anaging
regime ~i.e., the correlation functions depend explicitly o
two times!. In the common phrasing, the application of
shear flow has the effect to rejuvenate the glassy system
the aging phenomenon characteristic of glasses is stop
The fact that some relevant properties of aging systems, s
as the existence of a generalized fluctuation-dissipation r
tion @8,10# and of an effective temperature, still hold in sy
tems under shear flow@9,11#, makes the study of sheare
systems an important topic. This is particularly true in vie
of possible experiments aiming to probe the out-
equilibrium dynamics of glassy systems: in aging, t
waiting-time dependence of correlation functions preve
the acquisition of the data with the desired statistics, wh
under shear correlation functions become time translation
variant.

In this work, we use numerical simulations to study t
effects of the shear flow on the properties of a sim
Lennard-Jones~LJ! model liquid. In particular, we compar
the temperature dependence of some physical quantitie
the driven system~with different shear ratesġ) with those of
the equilibrium system (ġ50). We find the following.

~i! There exists a well defined crossover temperatureTġ ,
whose value depends on the shear rateġ, below which the
properties of the sheared system exhibit a marked differe
from those of the equilibrium system. On the contrary,
T.Tġ the driven system is not influenced by the presence
a shear flow, and both the energy and the structural re
ation time coincide with their equilibrium values.
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~ii ! The sameTġ can be derived from theT dependence of
both potential energy and structural relaxation times, th
indicating the robustness of the ‘‘crossover’’ temperatu
concept.

~iii ! At Tġ , the structural relaxation timeta(Tġ) is pro-

portional toġ21, i.e., to the typical time scale introduced b
the shear, the proportionality coefficient being an observa
dependent quantity. The previous observations lead to a
croscopic interpretation of the shear thinning effect, and s
gest a quantitative experimental test on the temperature
pendence of the nonlinear viscosity in simple liquids.

The investigated system is made ofN5256 particles in-
teracting via a simple Lennard-Jones potential, plus a sm
many-body term@12# introduced to prevent the crystalliza
tion unavoidably occurring in undercooled monatomic s
tems. The particles are confined in a cubic box, at den
r51 ~hereafter all quantities are expressed in reduced
units!, with periodic boundary condition adapted to the pre
ence of a shear flow. The latter is applied to the system al
thex direction with a gradient velocity field along they axis.
The molecular dynamics simulation is performed using
Sllod algorithm@13# ~so named because of its close relatio
ship to the Doll tensor algorithm!, with a Nose-Hoover ther-
mostat for the thermal velocities. Different shear ratesġ

were studied in the rangeġ51021 to ġ51023. A prelimi-
nary simulation performed atġ50 was used to determin
the reference behavior of the equilibrium system. For all
shear rates considered, different physical quantities are
lyzed as a function of temperature: energy, incoherent s
tering functions, relaxation times, etc.

In Fig. 1 we report the potential energy per particlee as a
function of temperature for selected values of the shear r
The full line indicates the temperature dependence ofe at
equilibrium (ġ50), which, as shown in previous wor
@12,14,15#, can be described quite accurately by t
Rosenfeld-TarazonaT3/5 power law@16#. The open symbols
indicate the caloric data for three selected shear rates:ġ51
31021, 431022, and 631023. At a high temperature, one
can observe a good agreement betweene(T,ġ) and e(T,ġ
50)5eeq.(T). On lowering the temperature, the agreeme
©2002 The American Physical Society05-1
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breaks down at aġ-dependent temperature (Tġ), below
which the caloric curve of the sheared system deviates f
the T3/5 power law. In particular, at lowT, e(T,ġ) is well
described by a linear temperature dependence~indicated, as
an example, by the dashed line forġ5431022). The devia-
tion of the energy of the driven system from the equilibriu
energy is evidenced in the inset of Fig. 1, where the ene
differencee2eeq. is reported as a function of temperatu
for the system withġ5431022. The existence of a linea
behavior ofe(T,ġ) at low T and of an analytic expressio
for this quantity at highT allows for a straightforward iden
tification of a crossover temperatureTġ ~indicated in the in-
set of Fig. 1 with a dashed arrow!.

In Fig. 2 we report theġ dependence of the paramete
describing the caloric curves of the sheared systems:
crossover temperatureTġ and the potential energy value
T50 e0. As shown in Fig. 2~a!, Tġ is an increasing function
of the shear rate. For small shear rate values it approach
plateau whose value is very close to the estimated mo
coupling critical temperatureTMCT (TMCT50.475 for this
potential model@17,18#! indicated by the dashed line in Fig
2~a!. A similar plateauis observed in theġ dependence ofe0
@see Fig. 2~b!#. Here, for small shear rate values,e0 reaches
the valuee0

pl.;26.90. We note that the valuee0
pl. is higher

than the lowest inherent structure energy value obtaine
equilibrium simulatione0

IS527.0 @19#. Similarly to the case
of analytic mean-field spin glass models@9#, the plateau
value can be interpreted as a threshold in the potential en
surface, above which the system is forced by the shear. H
ever, as we are dealing with a non-mean-field system,

FIG. 1. Potential energy per particle,e, as a function of tem-
perature for the equilibrium system~full line! and for driven sys-
tems with different shear rates~symbols: from top to bottom de

creasingġ5131021, 431022, 631023). The full line extends
down to the lowest temperature that we are able to equilibrate in
simulation. The dashed line is the linear fit to the low-temperat

points of theġ5431022 curve. The inset shows the differenc

between the energy curve for the shearġ5431022 and theT3/5 fit
of the equilibrium energyeeq. as a function ofT. The estimated
crossover temperatureTġ is also indicated by an arrow. Here, as
all the figures, all quantities are expressed in reduced LJ units
06150
m

y

he

s a
-

in

gy
w-
e

expect that for values ofġ small enough—well below the
ones that we are able to study—the system cross the thr
old. Similarly, also in Fig. 2~a! the existence of aplateauis
only apparent and mirrors the~apparent! power law diver-
gence of the relaxation times predicted by the MCT. T
evaluation of the crossover temperature for even smalleġ,
i.e., in a region not accessible to the simulation for CPU ti
reason, would have resulted in aTġ smaller thanTMCT as a
consequence of the presence of activated processes in
investigated non-mean-field system.

Further information on the effect of the shear flow can
obtained by analyzing the temperature dependence of co
lation functions in driven systems. For the different she
rates considered, we have calculated the incoherent sca
ing functionsFq(t),

Fq~ t !5
1

N (
j 51

N

^eiq•[ r j (t)2r j (0)]&, ~1!

wherer j (t) is the position of particlej at time t. The wave
vectorq is that of the first peak of the static structure fact
Sq (qmax57.1) along the ‘‘shear-free’’ direction@q
5(0,0,qmax)#. In Fig. 3 we report theFq for the equilibrium
system~full lines! and, as an example, for the system w
ġ5431022 ~dashed lines!, for three different temperatures
At the higher reported temperature (T51.6), theFq of the
sheared system is undistinguished from the equilibrium o
At the intermediate temperature (T50.80) the full and
dashed lines start to deviate from one another, an effect
become more and more clear on lowering the tempera
(T50.56). It is worth noting that—at the reported value
ġ—the crossover temperature derived from Fig. 1 isTġ

e
e

FIG. 2. The shear rate dependence of the parameters descr
the energy curves of Fig. 1:~a! crossover temperatureTġ ~intersec-
tion between low-energy linear behavior andT3/5 high-temperature
dependence in Fig. 1—the dashed line is the estimated value o
mode-coupling temperatureTMCT;0.475 for this system!, ~b! zero
temperature energy valuee0 ~intersection of energy curves with th
y axis in Fig. 1!.
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50.97, i.e., intermediate between the the first two repor
Fq . From the inspection of Fig. 3, one can conclude that
T smaller thanTġ ~derived frome) there are no effects of th
shear flow on the dynamics.

To put the previous observation on a quantitative grou
we analyze the temperature dependence of relaxation
ta , defined as the time at whichFq reaches (1/e)th of its
nonergodicity factor~the apparent plateau value!. In Fig. 4
the power law fit to the equilibrium (ġ50) relaxation times

FIG. 3. Incoherent scattering functionsFq ~calculated along the
‘‘shear-free’’ directionz and for theq vector corresponding to the
first peak of the static structure factor,qmax57.1) for the equilib-
rium system~full lines! and for the driven systems with shear ra

ġ5431022. The three curves refer to different temperatures: fr
left to right T51.6,0.80,0.56~we note that the crossover temper

ture Tġ as defined from Fig. 1 for the shear rateġ5431022 is
Tġ50.97).

FIG. 4. Relaxation times~from incoherent scattering function
at qmax57.1, see Fig. 3! as a function of temperature for the equ
librium system~the full line is a power law fit of simulation data
and the dashed line is an extrapolation below the last simula

point! and for the driven systems with shear ratesġ15131021

~full diamonds!, ġ25431022 ~full circles!, and ġ35631023

~open circles!. The arrows indicate the crossover temperaturesTġ as

defined in Fig. 1 for the corresponding shear rates:Tġ(ġ1)51.35,

Tġ(ġ2)50.97, andTġ(ġ3)50.61.
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d
r

,
e

is reported as a full line, together with the relaxation tim
for three selected shear rates:ġ15131021 ~full diamonds!,
ġ25431022 ~full circles!, andġ35631023 ~open circles!.
In the same figure are also indicated by dashed lines
crossover temperatures derived from Fig. 1 for the three
lected shear rates. Similarly to the thermodynamic quantit
also the dynamics follow a simple behavior: at a fixedġ
value, forT larger than a certain threshold, the dynamics
the sheared system is undistinguished from the equilibr
one. Below the threshold, the relaxation time flattens and
longer follows the steep increase associated with the slow
down of the dynamics which precedes the glass transition
is important to emphasize that the crossover temperat
defined from thedynamics, is found to be the same as th
derived fromthermodynamicdata.

The existence of a well defined crossover temperatureTġ ,
as evidenced by the above results, suggests the follow
scenario: forT.Tġ the sheared system is not affected by t
shear flow because the structural relaxation process of
equilibrium system acts on a time scale (ta) that is faster
than the one introduced by the shear flow; on lowering
temperatureta increases and—for temperatures close
Tġ—becomes comparable to the time scale introduced by
shear~proportional to the inverse of shear rateġ21 @20#!. For
T,Tġ , the shear starts to modify both the static and
dynamic properties of the system. In the following, we re
to the high-temperature regime (T.Tġ) as ‘‘a dominated’’
~equilibrium region! and the low-temperature regime (T
,Tġ) as ‘‘shear dominated.’’ Below Tġ , in the ‘‘shear-
dominated’’region, the system, still remaining in a stationa
state, ‘‘freezes’’~in the sense that relevant processes gove
ing the relaxations become those induced by the shear
then only weakly temperature dependent!. Dynamic behavior
is much less affected by further decrease of temperature
the relaxation time reaches a finite value forT→0. The pre-
vious scenario implies the existence of a strong relation
tween the equilibrium relaxation time at the crossover te
perature andġ21. In Fig. 5 we compareta(T) plotted as a
function of the temperature and the inverse shear rateġ21

plotted as a function ofTġ . The inverse shear data have be
multiplied by a constant factor 0.07 in order to align the
with the ta(T) data. The temperature dependences of
two quantities are in quite good agreement, suggesting a
rect proportionality between them,

ta~Tġ !}ġ21. ~2!

There is obviously a shear-independent prefactor that
pends on the chosen definition ofta and on the specific
investigated correlation function~for example, the self-
relaxation time scale approximately asq22). It is interesting
to note the existence of a simple linear relationship betw
ta and ġ21 along the lineTġ in the (T-ġ) plane, as com-
pared, for example, to theġ22/3 dependence observed alon
the T-constant line@9#.

Recent important work on the fluctuation-dissipation re
tion ~FDR! in a sheared system@3,9,11# has provided evi-

n
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dence that two different temperatures control the dynam
Dynamics at short times is controlled by the bath tempe
ture, while dynamics at longer times is controlled by an
fective temperature, larger than the bath one. Our anal
predicts that only forT,Tġ a two-temperature scenario i
the FDR should be observed.

Furthermore, our analysis confirms@8# that an interesting
and promising~from a numerical and experimental point
view! implication of the above scenario could be the pos

FIG. 5. Relaxation timesta of the equilibrium system~open
symbols! as a function of temperature~the full line is a power law

fit!, and the inverse shear rateġ21 ~full symbols: multiplied by an
arbitrary factor 0.07) as a function of crossover temperatureTġ , as
defined from Fig. 1.
tt
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bility to reproduce the aging properties of the nondriven s
tem from the investigation of the shear effects on the driv
system. The underling main hypothesis is the similarity b
tween the properties of the nondriven system at a given w
ing time and those of the driven system at a given shear
ġ.

In conclusion, we have numerically studied the shear fl
effects on the thermal and dynamical properties of a sim
model liquid, focusing on the differences between driven a
equilibrium systems, both in the dynamics and thermo
namics. The potential energy and the incoherent scatte
function ~and the associated structural relaxation time! have
been studied as a function of temperature for different sh
rates. We found evidence for the existence, for a given sh
rate, of a crossover lineTġ , separating two regimes: a high
temperature~low shear rate! regime in which the driven sys
tem behaves very similar to the equilibrium one, and a lo
temperature~high shear rate! regime in which the driven
system strongly deviates from the equilibrium one. From
temperature dependence of relaxation times we found fur
evidences thatTġ marks the temperature at which the she
relaxation times start to deviate from the equilibrium time
passing from an ‘‘a-dominated’’to a ‘‘shear-dominated’’re-
gion and approaching a finite value at low temperatu
Along the line defined byTġ in the (T-ġ) plane, we observe
a direct proportionality betweenta and ġ21, allowing a
more clear interpretation of the relationship between sh
and relaxation times.
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