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Crossover between equilibrium and shear-controlled dynamics in sheared liquids
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We present a numerical simulation study of a simple monatomic Lennard-Jones liquid under shear flow, as
a function of both temperatureand shear rate. By investigating different observables we find tkiatthere
exists a line,T;, in the (T-.y) plane that sharply marks the border betweerfequilibrium” and a“shear-
controlled” region for both the dynamic and the thermodynamic quantities;(@ndlong this line the struc-
tural relaxation timer,(T), is proportional toy 1, i.e., to the typical time scale introduced by the shear flow.
Above T, the liquid dynamics is unaffected by the shear flow, while beloyboth T and y control the
particle motion.
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The effects of the shear flow on the properties of simple (i) The sameT;, can be derived from th& dependence of
liquids have recently been the object of extensive investigaboth potential energy and structural relaxation times, thus
tions[1-7]. Beside its intrinsic theoretical interg$he study indicating the robustness of the “crossover” temperature
of out-of-equilibrium stationary statgsit has been hypoth- concept.
esized[8,9] that the shear flow acts as an aging-stopping (iii) At T;,, the structural relaxation time,(T;) is pro-

mechanism, thus suggesting an interesting experimentayortional toy 1, i.e., to the typical time scale introduced by
method to study dynamics in supercooled liquids anche shear, the proportionality coefficient being an observable
glasses. Indeed, under shear flow, the system is in an out-oftependent quantity. The previous observations lead to a mi-
equilibrium situation, but reaches a stationary regime: simicroscopic interpretation of the shear thinning effect, and sug-
larly to equilibrium, the correlation functions depend only ongest a quantitative experimental test on the temperature de-
the time difference. This takes place also at those temperagendence of the nonlinear viscosity in simple liquids.

tures for which the nonsheared system would be iaging The investigated system is made N 256 particles in-
regime (i.e., the correlation functions depend explicitly on teracting via a simple Lennard-Jones potential, plus a small
two time9. In the common phrasing, the application of a many-body tern{12] introduced to prevent the crystalliza-
shear flow has the effect to rejuvenate the glassy system ari@n unavoidably occurring in undercooled monatomic sys-
the aging phenomenon characteristic of glasses is stoppei®ms. The particles are confined in a cubic box, at density
The fact that some relevant properties of aging systems, sudgh=1 (hereafter all quantities are expressed in reduced LJ
as the existence of a generalized fluctuation-dissipation reldtnits), with periodic boundary condition adapted to the pres-
tion [8,10] and of an effective temperature, still hold in sys- €nce of a shear flow. The latter is applied to the system along
tems under shear floyi9,11], makes the study of sheared the x direction with a gradient velocity field along tlyeaxis.

systems an important topic. This is particularly true in view;nedmloleqtjrllar fgnamics sin;ut:ation IS [?gtrforlmed ulsi?g a
of possible experiments aiming to probe the out-of- od algorithm[13] (so named because of its close relation-

equilibrium dynamics of glassy systems: in aging, theshlp to the Doll tensor algorithmwith a Nose-Hoover ther-

waiting-time dependence of correlation functions preventdnostat for the thermal velocities. Different shear rages
the acquisition of the data with the desired statistics, whilewere studied in the rangg=10"" to y=10">. A prelimi-
under shear correlation functions become time translation inaary simulation performed ag=0 was used to determine
variant. the reference behavior of the equilibrium system. For all the
In this work, we use numerical simulations to study theshear rates considered, different physical quantities are ana-
effects of the shear flow on the properties of a simplelyzed as a function of temperature: energy, incoherent scat-
Lennard-Jones¢LJ) model liquid. In particular, we compare tering functions, relaxation times, etc.
the temperature dependence of some physical quantities of In Fig. 1 we report the potential energy per partielas a

the driven systenwith different shear rateg) with those of ~ function of temperature for selected values of the shear rate.
the equilibrium system¥=0). We find the following. The full line indicates the temperature dependence at

(i) There exists a well defined crossover temperaiuye equilibrium (y=0), which, as shown in previous work

whose value depends on the shear ratéelow which the [12,14,13, can be described quite accurately by the

3/5
properties of the sheared system exhibit a marked diﬁerenCFéosenfeld-Tarazonﬁ power law[16]. The open symbols

from those of the equilibrium system. On the contrary, fori”dicﬁie the czilgric data for_tshree selected shear ratest
T>T; the driven system is not influenced by the presence of<10 ", 4X10°%, and 6<10 °. At a high temperature, one
a shear flow, and both the energy and the structural relaxsan observe a good agreement betwe€h,y) ande(T,y

ation time coincide with their equilibrium values. =0)=6¢q(T). On lowering the temperature, the agreement
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FIG. 1. Potential energy per particle, as a function of tem- 1o 10° '
perature for the equilibrium systeffull line) and for driven sys- T
tems with different shear ratgsymbols: from top to bottom de-
creasingy=1x10"%, 4x10°2, 6x10 3). The full line extends FIG. 2. The shear rate dependence of the parameters describing

down to the lowest temperature that we are able to equilibrate in théhe energy curves of Fig. 1a) crossover temperatufe, (intersec-
simulation. The dashed line is the linear fit to the low-temperaturaion between low-energy linear behavior afitf® high-temperature
points of they=4x10"2 curve. The inset shows the difference dependence in Fig. 1—the dashed line is the estimated value of the
between the energy curve for the shear4x 10 2 and theT35fit ~ mode-coupling temperatufByc~0.475 for this system (b) zero
of the equilibrium energye, as a function ofT. The estimated ~temperature energy vali (intersection of energy curves with the
crossover temperatufg, is also indicated by an arrow. Here, as in ¥ axis in Fig. 2.
all the figures, all quantities are expressed in reduced LJ units. )

expect that for values of small enough—well below the

breaks down at ay-dependent temperatureT {), below ones that we are able to study—the system cross the thresh-

which the caloric curve of the sheared system deviates frorﬁ'dl- Similarly,talsc()j in Fig. mt) the existence of ia)lateda}uis
the T%° power law. In particular, at lowl, e(T,'y) is well only apparent and mirrors th@pparent power law diver-

described by a linear temperature dependdingicated, as gence of the relaxation times predicted by the MCT. The
an example, by the dashed line for-4x 102). The de\'/ia— evaluation of the crossover temperature for even smaller

tion of the energy of the driven system from the equilibrium"e" in a region not accessible to the simulation for CPU time

energy is evidenced in the inset of Fig. 1, where the energy. oo would have resulted infg smaller thanTycy as a
nergy . 9- 4 gXonsequence of the presence of activated processes in the
differencee—eg, is reported as a function of temperature

] , i . investigated non-mean-field system.

for the system withy=4x10"°. The existence of a linear  pyrther information on the effect of the shear flow can be
behavior ofe(T,y) at low T and of an analytic expression obtained by analyzing the temperature dependence of corre-
for this quantity at highT allows for a straightforward iden- lation functions in driven systems. For the different shear
tification of a crossover temperatufe, (indicated in the in-  rates considered, we have calculated the incoherent scatter-

set of Fig. 1 with a dashed arrow ing functionsF (1),

In Fig. 2 we report they dependence of the parameters N
describing the caloric curves of the sheared systems: the = (t)=i S (o150 -0 1)
crossover temperaturg, and the potential energy value at q N =1 '

T=0 e,. As shown in Fig. 2a), T, is an increasing function

of the shear rate. For small shear rate values it approachesnerer;(t) is the position of particlg at timet. The wave
plateauwhose value is very close to the estimated modevectorq is that of the first peak of the static structure factor
coupling critical temperatur@ ycr (Tuer=0.475 for this Sy (dmax=7.1) along the “shear-free” direction[q
potential mode[17,18)) indicated by the dashed line in Fig. =(0,00may 1. In Fig. 3 we report thé, for the equilibrium
2(a). A similar plateauis observed in thes dependence o, §ystem(fu|l lines) and, as an example, for the system with
[see Fig. Pb)]. Here, for small shear rate values, reaches y=4X 102 (dashed lines for three different temperatures.
the valuee)~ —6.90. We note that the valua'" is higher At the higher reported temperaturé € 1.6), theF of the
than the lowest inherent structure energy value obtained igheared system is undistinguished from the equilibrium one.
equilibrium simulatioref’= —7.0[19]. Similarly to the case At the intermediate temperatureT £0.80) the full and

of analytic mean-field spin glass modd8], the plateau  dashed lines start to deviate from one another, an effect that
value can be interpreted as a threshold in the potential ener\%ﬁcome more and more clear on lowering the temperature
surface, above which the system is forced by the shear. How-T =0.56). It is worth noting that—at the reported value of
ever, as we are dealing with a non-mean-field system, we—the crossover temperature derived from Fig. 1Tis

061505-2



CROSSOVER BETWEEN EQUILIBRIUM AND SHEAR. . . PHYSICAL REVIEW E 66, 061505 (2002

1.0 T is reported as a full line, together with the relaxation times
— Equilibrium 1 for three selected shear rateg:=1x 10! (full diamonds,
0.8 2 ¥,=4x102 (full circles), andy;=6x 102 (open circles
In the same figure are also indicated by dashed lines the
0.6k 4 crossover temperatures derived from Fig. 1 for the three se-
0’ I | lected shear rates. Similarly to the thermodynamic quantities,
04k i also the dynamics follow a simple behavior: at a fixed
' value, forT larger than a certain threshold, the dynamics of
the sheared system is undistinguished from the equilibrium
0.2 7 one. Below the threshold, the relaxation time flattens and no
longer follows the steep increase associated with the slowing
0.0l . down of the dynamics which precedes the glass transition. It
10 10 10 10 10 is important to emphasize that the crossover temperature,

t defined from thedynamics is found to be the same as that

FIG. 3. Incoherent scattering functiofg (calculated along the derived fromthermodynamidata,

“shear-free” directionz and for theq vector corresponding to the Th? deXISte dn(‘be otfha Web” defined ﬁrossover t(tam{)heraif[r,;lfe .
first peak of the static structure factaey,,,,=7.1) for the equilib- as evi -e.nfce y_ he ah ove (;esu Sy S.UQQeS ?f € dob Ovﬂng
rium system(full lines) and for the driven systems with shear rate scenario: forT>T, the sheared system is not affected by the

y=4x10"2. The three curves refer to different temperatures: fromShear flow because the structural relaxation process of the

left to right T=1.6,0.80,0.56we note that the crossover tempera- equilibrium System acts on a fime scale,] that is faster
. , : : P than the one introduced by the shear flow; on lowering the
ture T, as defined from Fig. 1 for the shear raye=4Xx10"“ is . f I
T--0.97). temperaturer, increases and— or temperatures close to
4 T,—becomes comparable to the time scale introduced by the

=0.97, i.e., intermediate between the the first two reporteghear(proportional to the inverse of shear rate* [20]). For
F4. From the inspection of Fig. 3, one can conclude that forT <T,, the shear starts to modify both the static and the
T smaller thariT, (derived frome) there are no effects of the dynamic properties of the system. In the following, we refer
shear flow on the dynamics. to the high-temperature regim& ¢ T,) as “a dominated

To put the previous observation on a quantitative ground(equilibrium region and the low-temperature regimer (
we analyze the temperature dependence of relaxation time T;) as “‘shear dominated’ Below T;, in the “shear-
7., defined as the time at whidR, reaches (¥)th of its dominated’region, the system, still remaining in a stationary
nonergodicity factor(the apparent plateau valudn Fig. 4  state, “freezes’_’(in the sense that re_levant processes govern-
the power law fit to the equilibriumy=0) relaxation times "9 the relaxations become those induced by the she_ar and

then only weakly temperature dependebtynamic behavior

T R S is much less affected by further decrease of temperature and
i L T 3 the relaxation time reaches a finite value Tor-0. The pre-
" ‘.~ gt IE‘l“'hb““ﬂ“ ) vious scenario implies the existence of a strong relation be-
Yoo Y * 7 =1x10 1 tween the equilibrium relaxation time at the crossover tem-
T T. () L =4x10° | perature andy"*. In Fig. 5 we comparer,(T) plotted as a
10'F TR & "r’- =6x207° 7 function of the temperature and the inverse shear ate
= R : 3 ] plotted as a function of ;. The inverse shear data have been
i " ni T m_ultiplied by a constant factor 0.07 in order to align them
i ¥ i with the 7,(T) data. The temperature dependences of the
i two quantities are in quite good agreement, suggesting a di-
10’k i i rect proportionality between them,
F I I
i ) I
| L | II ?II | : | 1

0 12 14 16 To(Ty)ocy L, )

There is obviously a shear-independent prefactor that de-
FIG. 4. Relaxation timegfrom incoherent scattering functions P€nds on the chosen definition ef, and on the specific

atqma="7.1, see Fig. Bas a function of temperature for the equi- investigated correlation functiorifor example, the self-

librium system(the full line is a power law fit of simulation data relaxation time scale approximately @s?). It is interesting

and the dashed line is an extrapolation below the last simulatiofio note the existence of a simple linear relationship between

point) and for the driven systems with shear ratgs=1x10"* , and y~* along the lineT;, in the (T-y) plane, as com-

(full diamonds, y,=4x102 (full circles), and y;=6x10" >  pared, for example, to thg~ 23 dependence observed along
(open circleg The arrows indicate the crossover temperatlireas  the T-constant lind9].

defined in Fig. 1 for the corresponding shear rategy;) = 1.35, Recent important work on the fluctuation-dissipation rela-
T,(v2)=0.97, andT;(y;)=0.61. tion (FDR) in a sheared systeif8,9,11 has provided evi-
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FIG. 5. Relaxation times, of the equilibrium systen{open
symbolg as a function of temperatuiéhe full line is a power law
fit), and the inverse shear rage * (full symbols: multiplied by an
arbitrary factor 0.07) as a function of crossover temperatyreas
defined from Fig. 1.
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bility to reproduce the aging properties of the nondriven sys-
tem from the investigation of the shear effects on the driven
system. The underling main hypothesis is the similarity be-
tween the properties of the nondriven system at a given wait-
ing time and those of the driven system at a given shear rate

Y.
In conclusion, we have numerically studied the shear flow

effects on the thermal and dynamical properties of a simple
model liquid, focusing on the differences between driven and
equilibrium systems, both in the dynamics and thermody-
namics. The potential energy and the incoherent scattering
function (and the associated structural relaxation jirave
been studied as a function of temperature for different shear
rates. We found evidence for the existence, for a given shear
rate, of a crossover lin€;,, separating two regimes: a high-
temperaturd€low shear ratgregime in which the driven sys-
tem behaves very similar to the equilibrium one, and a low-
temperature(high shear raeregime in which the driven
system strongly deviates from the equilibrium one. From the
temperature dependence of relaxation times we found further
evidences thal’;, marks the temperature at which the shear
relaxation times start to deviate from the equilibrium times,

dence that two different temperatures control the dynamicgassing from an &-dominated”to a“shear-dominated’re-
Dynamics at short times is controlled by the bath temperagion and approaching a finite value at low temperature.
ture_, while dynamics at longer times is controlled by an ef-_A|ong the line defined byr;, in the (T-y) plane, we observe
fective temperature, larger than the bath one. Our analysis girect proportionality betweem, and y~*, allowing a

predicts that only forT<T;, a two-temperature scenario in
the FDR should be observed.

Furthermore, our analysis confirf8] that an interesting
and promising(from a numerical and experimental point of

more clear interpretation of the relationship between shear
and relaxation times.

We acknowledge support from INFM Initiative Parallel
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