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Abstract

We present an overview of recent research applying ideas of statistical mechanics to try to
better understand the statics and especially the dynamic puzzles regarding liquid water. The
take-home message for the static aspects is that what seems to “matter” more than previ-
ously appreciated is local tetrahedral order, so that liquid water has features in common with
SiO2 and P, as well as perhaps Si and C. For the dynamic aspects, what may “matter” is the
number of di.usive directions in the potential energy landscape. c© 2002 Published by Elsevier
Science B.V.
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1. The goal: understanding “what matters”

Many physicists are attracted to physics because of the focus on understanding just
enough of a subject to comprehend the key features that really matter. As soon as
some physicists feel they understand “what matters”, insatiable appetites for novelty
force attention to new puzzles. At the 1968 Kyoto STATPHYS-8 conference, among
the most exciting new developments was the degree to which the principle of scale
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invariance provided increased understanding of “what matters” near a critical point.
The key point was that what matters near a critical point is the correlation length
for statics, and the correlation time for dynamics. An exciting question these days is
“what matters” in understanding the statics and dynamics of liquid water, and important
clues are emerging when one focuses on behavior in the deeply supercooled region,
especially just above—and just below—the “critical” temperature TMCT predicted by
mode coupling theory (MCT).

2. Statics: “what matters” is local tetrahedral geometery

2.1. Introduction

Liquid water is not a typical liquid. However, some progress has occurred in
understanding its highly anomalous equilibrium and dynamical properties [1–4].
Water is a space-Illing hydrogen bond network, as expected from continuum models
of water. However when we focus on the well-bonded molecules, we Ind that water
can be regarded as having certain clustering features—the clusters being not isolated
“icebergs” in a sea of dissociated liquid (as postulated in mixture models dating back to
RKontgen) but rather patches of well-bonded molecules embedded in a highly connected
network or “transient gel” [5–11]. Similar physical reasoning applies if we generalize
the concept of well-bonded molecules to molecules with a smaller than average energy
[12] or to molecules with a more ordered than average “local structure” [13].

2.2. Liquid–liquid phase transition hypothesis

A few years ago, Poole, Sciortino, and Essmann made computer simulations of the
ST2 model of water, with the goal of exploring in detail what might happen in the
low-temperature region [14]. What they discovered in computer water was the apparent
existence of a second critical point C′, below which the liquid phase separates into
two distinct phases—a low-density liquid (LDL) and a high-density liquid (HDL).
Although in experiments we cannot get closer than 5–15◦, C′ nonetheless exerts a

strong eLect in the experimentally accessible region of the phase diagram. If we have a
singularity in our phase diagram at a well-deIned critical point, it is going to have an
eLect on an entire region around it—a “critical region”. The size of this critical region
depends on the material, but it is usually somewhere between 10% and 100% above
the critical temperature and pressure that response functions are signiIcantly aLected
(e.g., an ideal gas has an inverse compressibility given by T , while an interacting
gas has an inverse compressibility that deviates signiIcantly from T by a factor of
two above the critical point). It is not required that the system is exactly at its critical
point for the system to exhibit remarkable behavior, such as the phenomenon of critical
opalescence discovered and correctly explained in 1869 by Andrews [15] in terms of
increased Nuctuations away from (but close to) the critical point. It is for this reason
that critical phenomena are particularly interesting.
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2.3. Experimental work

When liquid water is supercooled below the homogeneous nucleation temperature
TH (−38◦C at P=1 atm), crystal phases nucleate homogeneously, and the liquid freezes
spontaneously to the crystalline phase. Mishima creates 1 cm3 high-pressure ices in a
piston–cylinder apparatus, decompresses the sample at a constant rate of 0:2 GPa=min,
and—because melting is endothermic—observes melting transitions of the ice poly-
morphs using a thermocouple to detect a change in the sample temperature during the
decompression [16,17]. He then determines melting pressures at diLerent temperatures.
The melting curves he obtains agree with previously reported data for stable melting
lines [18,19], and extend our knowledge of the location of metastable melting lines to
much lower temperatures.
The Gibbs potential G of the ice polymorphs is known. Since G is identical in

coexisting phases, locating the melting lines of the ice polymorphs is suPcient to
learn G for water along these lines. By interpolating data for G obtained along these
melting lines, one can Ind the approximate experimental G for a wide range of tem-
peratures and pressures in the no-man’s land below TH [16]). After Inding G as a
function of pressure P and temperature T , one can Ind by diLerentiation the volume
as a function of P and T . Volume as a function of T is just what we want—this
is the equation of state of liquid water. The P–V–T relation found is consistent with
the existence of a line of Irst-order liquid–liquid transitions which continues from the
line of low-density amorphous transition to high-density amorphous transitions and ter-
minates at an apparent critical point C′. The P–V–T relation is also consistent with
other known experimental data [20–25] and also with simulation results [14,26–37].

2.4. Theoretical work

The most natural response to the concept of a second critical point in a liquid
is baRement—such a thing just does not make sense. To make the concept more
plausible, we oLer the following remarks. Consider a typical member of the class
of intermolecular potentials that go by the name of core-softened potentials [38–40].
Recently such potentials have been re-visited [27,41–54]; they are attractive to study
because they can be solved analytically in one dimension and are tractable to study
using approximation procedures (and simulations) in higher dimensions. They are also
more realistic than one might imagine at Irst sight, and indeed may reNect “what
matters” in water–water interactions, since the repulsive soft core mimics the eLect of
the small number (4) of nearest neighbors in liquids with a local tetrahedral structure.
Although such a picture may seem to be oversimpliIed, it is consistent with neutron
data [22–25]. Also, simulation results are in good accord with neutron results (see, e.g.,
Ref. [55]), and Sasai relates these two distinct local structures to dynamic properties
[56].
One can characterize (or at least “caricature”) the local structural heterogeneities

that appear in liquid water by simulations. SpeciIcally, Canpolat and collaborators
[57] considered state points of liquid water at diLerent pressures—especially near
its phase boundaries with ice Ih and with ice VI. In the spirit of the “Walrafen
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pentamer”, they develop a model of interacting water pentamers, and Ind two
distinct local energy minima which they identify with two well-deIned conIgurations
of neighboring pentamers. The “Walrafen pentamer” is deIned by four water molecules
located at the corners of a tetrahedron that are hydrogen-bonded to a central molecule—
see, e.g., Refs. [58,59]; the corner molecules are separated from the central molecule
by 2:8 SA, corresponding to the Irst peak in the oxygen–oxygen radial distribution func-
tion. Canpolat and collaborators advance the hypothesis that these conIgurations may be
related to the local “high-density” and “low-density” structural heterogeneities occurring
in liquid water.

2.5. Outlook

Before concluding this brief discussion of statics, we ask “What is the requirement
for a liquid to have such a second critical point?” By the arguments presented above,
some other liquids should display second critical points, namely systems that at low
temperature and low pressure have anticorrelated entropy and speciIc volume Nuctua-
tions. Thus a natural extension to our work is to consider other tetrahedrally coordinated
liquids. Since other tetrahedral liquids have that similar features, we might anticipate
that similar critical points occur on the liquid free energy surface of these liquids. Evi-
dence in favor of this possibility has been reported for SiO2 [60,61], amorphous GaSb
[62,63], C [64,65], and Si [66]. Recently, clear experimental evidence for a liquid–
liquid phase transition has been reported in phosphorus, where the low-density liquid
phase is a molecular liquid of tetrahedral P4 “molecules” [67,68]. With a change in
pressure, the low-pressure, low-density molecular liquid transforms to a high-pressure,
high-density polymeric liquid. During the transformation, two forms of liquid coexist,
showing that phosphorus has a Irst-order liquid–liquid phase transition.

3. Dynamics on the potential energy landscape: “what matters” is the number of
di usive directions

3.1. Introduction

The study of the dynamics in supercooled liquids is receiving great interest [69] due
to novel experimental techniques [70,71], detailed theoretical predictions [72], and by
the opportunity to follow the microscopic dynamics via computer simulation [73,74].
MCT [72] quantitatively predicts the time evolution of correlation functions and the
dependence on temperature T of characteristic correlation times. Unfortunately, the
temperature region in which MCT is able to make such predictions for the long time
dynamics is limited to weakly supercooled states. Parallel with the development of
MCT, theoretical work [75–79] has called attention to thermodynamic approaches to
the glass transition, and to the role of conIgurational entropy in the slowing down of
dynamics [80–82]. These theories, which build on ideas put forward some time ago
[83–85], stress the relevance of the topology of the potential energy landscape (PEL)
explored in supercooled states. Detailed studies of the PEL may provide insights into
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the slow dynamics of liquids, and new ideas for extending the present theories to the
deep supercooling regime.

3.2. Instantaneous normal modes and the topology of the PEL

One approach to understanding the role of the PEL is to study the connectivity
between diLerent local conIgurations using the instantaneous normal mode (INM) for-
malism [86]. Analogous to the standard normal mode theory for solids, an INM is
the eigenfunction of the Hessian, which is the matrix of the second derivatives of the
potential energy with respect to all 6N atomic coordinates. In a liquid state, the eigen-
values of the Hessian matrix are not all generally positive; the negative eigenvalues
indicate a downward curvature of the PEL, i.e., indicate unstable directions for the sys-
tem. Previous studies using the INM formalism indicate that the number of directions
with negative curvature is reduced on cooling, motivating theories relating diLusion in
liquids to the INM density of states [87,88]. Low-temperature liquid dynamics involve
the superposition of fast oscillations around quasi-equilibrium positions (intra-basin
motion) and the rearrangement of the system between these positions (inter-basin
motion). The typical oscillation period is much shorter than the typical time needed
by the system to rearrange itself, i.e., the structural relaxation time. INM theories for
diLusion relate the diLusion of the system in conIguration space to activated processes
of inter-basin motion. In this respect, the unstable modes are considered representative
of the barriers crossed when the system changes basins.
One approach [89,90] among many [91,92] for separating the diLusive modes (basin

changes in conIguration space) from the non-diLusive modes (no basin changes) is
classifying the modes according to their potential energy proIle (Fig. 1), and par-
tition those unstable modes into two groups: (i) unstable normal modes due to the
anharmonicities (shoulder modes) and (ii) modes along which the system is cross-
ing a saddle (double-well modes) [91]. In order to distinguish between shoulder and
double-well modes, the potential energy proIle is calculated along straight paths that
follow the direction of the eigenvector. Furthermore, to distinguish the false and true
double wells, we calculate the steepest descent trajectories starting from the opposite
sides of the saddle. A mode represents true double well, and this is called a diLusive
mode if these trajectories end up in two distinct local minima.

3.3. Results

Next we discuss the numerical relationship between D and the number of diLusive
modes fdiL in the vicinity of the fragile-to-strong crossover temperature T×. We review
recent work on two diLerent models of tetrahedral liquids, the SPC=E extended simple
point charge model for water [90,93] and the BKS model of silica [94]. For silica
(Fig. 2), the fragile-to-strong transition temperature T× coincides numerically [94–96]
with the critical temperature TMCT identiIed by MCT. For both models, it appears that
D depends on T and P only through fdiL—the analog of the magnetization M (H; T )
of a ferromagnet depending on magnetic Ield H and temperature T only through the
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Fig. 1. Schematic sketch of the possible shapes of the PEL associated with imaginary eigenvalues. Unstable
modes are Irst separated into shoulder and double-well modes. Furthermore, double-well modes are split
into diLusive and non-diLusive ones. Adapted from Ref. [90].

correlation length �. SpeciIcally, for both models it appears that D follows a general
power-law relation of the form

D=T ∼ (fdiL )� (1)

for roughly two decades in fdiL and three decades in D=T . For the water model, � ≈ 2
while for the silica model it appears that � ≈ 1:3. In the case of silica, the identical
functional form describes the relationship between D and fdiL both above and below
T×, showing that while the T dependence of both D and fdiL is sensitive to the
microscopic mechanisms controlling the dynamics, the fragile-to-strong transition does
not aLect the relation between D and fdiL . The exponent value �= 2 found for water
has recently been theoretically interpreted [97].
In summary, then, two diLerent dynamical mechanisms aLect the slowing down of

the dynamics in supercooled states [90]:

(i) In the weakly supercooled region, the slowing down of the dynamics arises
from the progressive reduction in the number of directions where free explo-
ration of conIguration space is possible. The system is always located close
to a multi-dimensional ridge between diLerent basins, and the time scale of
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Fig. 2. Arrhenius plot of (a) the diLusion constant D for Si atoms in SiO2 and (b) fdiL . The crossover to
the straight line Arrhenius behavior below T× represents the fragile-to-strong crossover for silica. (c) shows
The parametric relation D=T vs fdiL in a log–log scale. The data are smooth through the “mode-coupling”
crossover temperature T×. Adapted from Ref. [94].

the long-time dynamics is set by the time required to probe one of the free
directions. In this range of T , the diLusion is not limited by the presence of
energy barriers that must be overcome by thermally activated processes, but is
controlled by the limited number of directions leading to diLerent basins along
almost constant potential energy paths. Furthermore, the number of free direc-
tions completely determines the value of D, independent of the thermodynamic
parameters T and �.
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(ii) Close to TMCT, the system starts to sample regions of conIguration space that
have no free directions. The change in the dynamics above and below TMCT can
be viewed as a change in the properties of the PEL sampled in equilibrium, from
conIgurations always close to a ridge of progressively lower and lower dimension
to conIgurations far from any ridge [95,96]. Below TMCT, the system must go
close to the ridge and then select the right direction. The search for the ridge below
TMCT, i.e., the search for a rare event, can be probably described as an activated
process, which corresponds to Arrhenius behavior of the diLusion constant.

(iii) The relation between connectivity and number of local minima in the PEL—which
can be calculated in theoretical models as recently done for the random energy
model [98]—may help build on the existing ideas bridging thermodynamics and
dynamics [99].

4. Dynamics below the MCT: “what matters” is cooperative motion

4.1. Introduction

As a supercooled liquid is cooled toward the glassy state, the system is increasingly
found near local potential energy minima, called inherent structure conIgurations [83].
In this description, in the glassy state, the system is localized in one of the potential
energy basins [95,100–102]. While such a picture of liquid dynamics is diPcult to
verify experimentally, computer simulation oLers an excellent opportunity to explore
these ideas. For a pre-deIned liquid potential, a liquid trajectory can be generated via
molecular dynamics simulation and the local potential energy minima can be evaluated
by an energy minimization method [83]. With this procedure, the motion in phase space
is converted into a minimum-to-minimum trajectory, or inherent structure trajectory. A
general picture of the system moving among a set of basins surrounding the multitude
of local minima has evolved. More speciIcally, simulations have shown that both the
depth of the minima sampled by the system, as well as the number of these minima,
decrease on cooling [102,103].
The description of the real motion of the system as an inherent structure trajectory

becomes a powerful way of separating the vibrational contribution, responsible for the
thermal broadening of instantaneous measurements from the slow structural component
[104]. Such an approach becomes even more powerful below TMCT, since most of the
instantaneous conIgurations are far from saddles, making correlation functions calcu-
lated from the inherent structure trajectory fully account for the �-relaxation dynamics
[100].

4.2. Results

Recent results [105] are based on molecular dynamics simulations of the SPC=E
model [106] of water for 216 molecules, at Ixed density �= 1 g=cm3. The numerical
procedure is described in Ref. [107]. The trajectories are analyzed at T = 180 K, and
the mode coupling temperature for this density is TMCT =193:6 K [107], so the system
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Fig. 3. (a) Displacement of each of the 216 molecules during the course of a transition from one inherent
structure to another. (b) Distribution of displacements u of the oxygen atoms between inherent structure
changes, P(u), sampled along a 30 ns trajectory in 20,000 inherent structure changes. The exponential tail
of P(u), with a characteristic length of about 0:02 nm, is mostly due to the highly mobile molecules, while
the power law with exponent 2.5 would correspond to an “elastic” response of the system to these highly
mobile molecules [115]. Adapted from Ref. [105].

is in the deep supercooled liquid state. At this temperature, the diLusion coePcient is
four orders of magnitude smaller than its value at T =300 K and only a few molecules
move signiIcantly (with displacements larger than 0:025 nm) at each simulation time
step.
To aid in understanding the distribution of the displacements during the IS changes,

Fig. 3(a) shows the displacements u of all 216 individual molecules for a typical
inherent structure transition. In fact, there is a relatively small set of molecules with
a large displacement. A snapshot of the eight molecules with the largest displacement
is shown in Fig. 4. Interestingly, this set of molecules forms a cluster of bonded
molecules. Indeed, for all cases studied, the set of molecules which displace most forms
a cluster of bonded molecules. The observed clustering phenomenon characterizes the
IS transitions in water and can be interpreted as the analog of the string-like motion
observed in simple atomistic liquids [100], connected to the presence of dynamical
heterogeneities [108–111]. Similar results were found by Ohmine et al. using the TIP4P
and TIPS2 models for water [112].
To characterize the distribution of individual molecular displacements between diLer-

ent inherent structures more carefully, Fig. 3(b) shows the distribution of displacements
u of the oxygen atoms P(u). Note that P(u) was previously studied by SchrHder et al.
for a binary Lennard–Jones mixture [100].
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Fig. 4. Snapshot of the system in one IS. Only the eight molecules with displacement larger than 0:025 nm
[Fig. 3(a)] are shown here. Hydrogen-bonded molecules are connected by tubes. Note that all 8 molecules are
nearby and form a cluster, which unlike the Lennard–Jones case, are bounded and less string-like. Adapted
from Ref. [105].

Analysis of the changes in hydrogen bond connectivity associated with inherent
structure changes reveals that these transitions are associated with the breaking and
reformation of hydrogen bonds.
Giovambattista et al. [105] further shows that the transitions associated with an

increase in the energy correspond to the breaking of linear bonds and to the simultane-
ous formation of bifurcated bonds [113,114]. Similarly, the transitions associated with
a decrease in the energy correspond to the breaking of bifurcated bonds and to the
simultaneous formation of linear bonds. This result supports the hypothesis that the
linear to bifurcated transition can be considered as an elementary step in the rearrange-
ment of the hydrogen bond network.
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