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Abstract

We summarize some of the relevant information obtained from the study of the potential
energy surface in the multidimensional con-gurational space sampled by a model supercooled
liquid. Using the energy landscape approach we study both the equilibrium and the aging regimes
of a prototypical binary Lennard–Jones liquid and, in both cases, we evaluate the relevant tem-
peratures which characterize the system. From the theoretical point of view we introduce an
expression for the free energy of the system which we show to be valid both in equilibrium and
quasi-equilibrium aging situations. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

In the last decades there has been a renewed interest in the problems related to the
physics of glasses, the structure and dynamics of which remain one of the most impor-
tant unsolved problems of statistical physics [1]. Two apparently di;erent approaches
have been used to study glasses, namely the dynamical approach of mode-coupling
theory (MCT) [2] and the equilibrium methods of spin-glass theory (SGT) [3]. MCT
deals with structural glasses in the supercooled liquid regime and suggests the existence
of a kinetic anomaly which gives rise to glass transition singularities of various orders.
It is capable of giving many quantitative answers to various aspects of the behavior of
supercooled liquids, with particularly good results when applied to colloidal systems.
SGT works with idealized lattice spin models and has the merit of identifying the
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elementary mechanisms which are at the basis of the glass transition. The two ap-
proaches have been shown to be consistent in some particular case, e.g. the p-spin
model which shares many of the qualitative features of the structural glasses [4]. More
recently, a third approach is becoming widely used, the so-called energy landscape the-
ory, which is particularly suitable for molecular dynamics, and which gives a transpar-
ent interpretation of the time scales which determine the short and long time behavior
of a structural glass. In this paper we will summarize some of the results we have
recently obtained using the energy landscape method.

2. The relevant temperatures in the glass transition

The behavior of a supercooled liquid is best characterised by a set of temperatures
which were introduced in order to describe phenomenologically the features of a glass
transition. The traditional way of de-nining the glass transition temperature Tg is by
considering a typical thermodynamic quantity when lowering the temperature T with
a constant cooling rate �. Take for example the behavior at constant pressure of the
volume V of a simple liquid as a function of T for given �. If the latter is large
enough the liquid is capable of avoiding crystallization at the melting temperature Tm
and becomes supercooled. On further lowering T the smooth variation of V suddenly
slows down signalling the formation of an amorphous solid, the glass, at Tg. Thus,
since Tg depends on the cooling rate, it is clear that this temperature has no deep
fundamental meaning, since it is just related to the time scale of the experiment.
There is a similar way of operationally de-ning Tg through dynamical quantitites like

a characteristic relaxation time or the shear viscosity �. One de-nes Tg as the tempera-
ture where � ≈ 1012 Pa s. Two limiting behaviors are observed, on plotting � as a func-
tion of 1=T , as originally suggested by Angell (for a review see, for example Ref. [5]),
(i) the one followed by the so-called strong glasses, such as silica (SiO2), which

closely follow an Arrhenius-like law;
(ii) the fragile glass behavior, typically shown by OTP (ortho-ter-phenil), where a

Vogel–Fulcher-Tammann (VFT) [6] law is typically observed

�(T ) ∼ exp
[
− E
T − T0

]
(1)

and E and T0 are material-dependent quantities.
A recent interesting observation relates an old attempt to explain the glass transition

in terms of connected spatial regions, due to Adams and Gibbs [7], to the VFT law
through the use of the con-gurational entropy Sc, a quantity we will introduce in
what follows, since it plays a central role in the energy landscape approach. The
previous authors made the hypothesis that the self-di;usion coeHcient, or equivalently
the inverse shear viscosity, should behave as

�−1(T ) ∼ exp
[
− A
TSc

]
; (2)
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where A is approximatively a constant. If one assumes a simple linear dependence on
temperature of the product TSc ∼ T − T0, the VFT law is obtained. The validity of
Eq. (2) is currently under active investigation [8,9]. The so-called entropy crisis is the
phenomenon which gave rise to the necessity of introducing another relevant quantity,
the Kauzmann temperature TK [10]. Experimentally the di;erence JS=Sliquid−Scrystal
between the liquid Sliquid and the crystal Scrystal entropy tends to diminish as we lower
the temperature of a supercooled liquid. A simple extrapolation of the JS vs. T curve
would lead to the vanishing of the entropy di;erence at a -nite temperature TK . Before
this actually happens, the glass transition sets in and the system avoids the entropy
crisis. The Kauzmannn temperature has been often related to the still open question of
the possible existence of an underlying singularity related to a thermodynamic glass
transition. The study of the behavior of a supercooled liquid in the vicinity of TK
would give important information on the transition.
The mode-coupling temperature TMCT was introduced in the context of the corre-

sponding theory of the glass transition in supercooled liquids due mainly to GLotze
and collaborators [2]. The theory predicts the possibility of a non-ergodicity transition
of dynamical origin related to the long-time behavior of the density time correlation
function. The MCT characterises also the separation of the time scales in the density
correlator, clearly separating the short time dynamics from the regions of approach to
the ergodicity breaking and the -nal extremly slow relaxation. In real Muids when the
system is close enough to TMCT the so-called hopping mechanisms set in and the liquid
avoids the complete structural arrest. The theory has been tested with great success in a
variety of systems [11], including in particular colloidal systems, where TMCT appears
to be very close to TK . Essentially the behavior of supercooled liquids for moderately
low temperatures is well described by MCT, and the melting temperature Tm and TMCT

delimit this region.
In conclusion the behavior of a supercooled liquid below melting can be characterised

by the following set of temperatures TK ¡Tg ¡TMCT ¡Tm which in some cases are
de-ned only in a limiting sense, but give a good starting point for the de-nition of the
various dynamical regimes of supercooled liquid, as we will show in the next sections.

3. The energy landscape and the inherent structures

The potential energy �({rN}) of a system of N classical particles as a function of
their coordinates is a hypersurface in a (3N + 1)-dimensional space, the energy land-
scape. It was introduced many years ago by Goldstein [12] and extensively used by
Stillinger and Weber [13,14]. Only more recently, with the advent of large computing
facilities, it has become feasible to study numerically the structure of the energy land-
scape and to derive important information on dynamics of supercooled liquids. The
potential energy surface (PES) of supercooled liquids is expected to contain a large
number of local minima, named inherent structures (IS). Each minimum is surrounded
by a basin which is the set of all con-gurations that, using a local minimization of
the potential energy, will end up in that particular IS. The con-guration space can
be uniquely partitioned into a sum of basins, among which one expects to -nd the
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Fig. 1. The IS energy in an equilibrium situation (left) as a function of temperature, and in an aging
computation (right) as a function of time, following a T jump from T = 0:8–0:25.

absolute ordered minimum corresponding to the crystalline state, and the lower disor-
dered state to the corresponding ideal glass state. The PES is obviously independent of
temperature, but the way the energy landscape is sampled by the system depends on
the value of T . In particular at high temperatures the system essentially samples the
numerous shallow local minima, and when T is decreased deeper and deeper minima
are reached, up to the point where the system remains trapped in one of them. At this
point one can distinguish in the dynamics an intra- and an inter-basin motion, accord-
ing to the possibility for the representative point to leave the IS or not, respectively.
As the temperature is lowered the time scales associated with the two motions be-
come well separated, and this trend continues for values of T in the vicinity of TMCT .
Another indication of the dynamical scale separation comes from the typical behav-
ior of the density time correlation function in the MCT region, where the temporal
regimes (called � and � relaxation) are usually clearly distinct. Therefore we expect
that the dynamics of a supercooled liquid can be considered as the combination of a
fast intra-basin stage at short times, corresponding to vibrations in a potential well, and
a slow inter-basin stage for longer times, when the system is attempting a change of
con-guration passing from an IS to another.
We have studied a model system which allows a careful dynamical analysis. The

model is a binary mixture of Lennard Jones particles (BMLJ), which has been exten-
sively studied in the past [15]. The model has been optimized to prevent crystallization.
The BMLJ is a (80 : 20) binary mixture of particles of types A and B. Details of the
interaction potential can be found in Ref. [15]. We have studied the isochore with
number density n = 1:2 and simulation times up to 6 × 107 integration time steps. A
sample of equilibrium con-gurations were used in order to obtain the local energy
minima via a quenching procedure. The critical temperature of MCT for this system
is 0:435 [15].
The results of the equilibrium numerical computation are reported in Fig. 1 (left

panel), where the average IS energy eIS is reported for various T values. As
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expected, the energy remains roughly constant at high T , then rapidly decreases on
lowering T [16].

4. Thermodynamic description of the inherent structures

The decomposition of the system partition function ZN (T ) into a sum of contribution
from the IS with energy eIS is given by [13]

ZN (T ) =
∑
eIS

$(eIS) exp [− �{eIS + fv(eIS ; T )}] ; (3)

where $(eIS) is the density of basin of depth eIS and the vibrational free energy fv is
the vibrational free energy, within a basin, averaged over all basins of depth eIS .

The con-gurational Sc entropy is related to $(eIS), the number of states with energy
eIS , by the relation

Sc = kB ln$(eIS) : (4)

If we introduce the basin free energy fb(eIS ; T ) = eIS(T ) + fv(eIS ; T ) and perform a
minimization in eIS of

F(T ) = fb(eIS ; T )− TSc(eIS) ; (5)

we get in the thermodynamic limit the free energy F . The -rst term takes into account
the basin depth and shape, the second one the number of basins with energy eIS .

Separating fb(eIS ; T ) in its energetic and entropic contribution, the con-gurational
entropy can be calculated as the di;erence between the liquid entropy and the entropy
of the system constrained in an IS [17–19]. In the experimental procedure commonly
adopted to evaluated Sc, the vibrational entropy is identi-ed with the entropy of the
stable crystal since the vibrational properties of a system constrained in a deep basins
are often similar to the properties of the close crystalline structure.
Once the T dependence of the IS is known, the entropy of the liquid can be calculated

via thermodynamic integration starting from the ideal gas binary mixture reference
point, along an isotherm, up to the studied density. To estimate the basin entropy, we
assume that at the lowest studied T , the unknown fb(eIS ; T ) can be approximated by
the harmonic free energy of a disordered system characterized by the eigenfrequencies
spectrum calculated from the IS at the corresponding T . The results are reported in
Fig. 2 both as a function of the IS energy and temperature. The extrapolations, obtained
using the known power-law behavior derived from density functional theory [20], are
also shown. Note that, if the extrapolations are reliable, the con-gurational entropy
vanishes at T=0:297±0:01, which de-nes the Kauzmann temperature TK for the BLJM.

5. Aging

The separation of fast and slow time scales in the dynamics of supercooled liquids
not only inMuences their equilibrium properties, but has also important consequences on
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Fig. 2. The con-guration entropy as a function of the IS energy (left) and temperature (right).

their out-of-equilibrium behavior. In particular, the slow and fast degrees of freedom
tend to reach an equilibrium situation on their respective time scales, to which di;erent
temperatures correspond. On the same BLJM we perform an instantaneous temperature
quench from Ti to Tf, then measure, in the same way as in equilibrium, the behavior of
the IS energy. The result is reported in Fig. 1 (right). We have made the hypothesis that
the free energy expression we used in equilibrium can be extended to aging situations
[21]. F(T ) has a vibrational part unambiguously given by fb(eIS(tw); Tbath), since the
intrabasin degrees of freedom quickly equilibrate with the thermostat at Tbath. Here
tw is the time since the quench. The entropic contribution to the free energy requires
the de-nition of a temperature, which we call internal Tint , higher than the thermostat
temperature [22,23], to reMect the out-of-equilibrium condition and the slow Mow of
heat from the system to the thermostat. Contrary to the equilibriun case, the system
selects the internal temperature but it is constrained to basins of depth eIS(tw). Hence,
the internal temperature Tint(eIS ; Tbath) selected by the system when it is populating
basins of depth eIS is a solution of the minimization equation for the free energy, but
with the value eIS -xed, i.e.,

Tint(eIS ; Tbath) =
(@=@eIS)fb(Tbath; eIS)

(@=@eIS)Sc(eIS)
: (6)

Note that fb is now evaluated at the thermostat temperature Tbath. This expression for
Tint coincides with the expression proposed by Franz and Virasoro [24] in the context
of p-spin systems.
The Tint calculated theoretically according to Eq. (6) has been compared with a

numerical experiment designed to independently calculate the temperature of the con-
-gurational subsystem, i.e., by calculating the ratio between decay of correlation in
thermal equilibrium and response to an external perturbation. Linear response theory
predicts that, in equilibrium, under suitable choice of the perturbation, this ratio is the
temperature. We chose as perturbation (.�k + .�−k), where .�k ≡ ∑N�

i eik·r
�
i =
√
N is the
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Fig. 3. Left: time dependence of the response (.�k , open symbols) and correlation function (S��k , -lled
symbols) for waiting time tw=1024 (circles) and tw=16384 (squares). Right: Corresponding parametric plot
of .�k vs. S��k for the two studied tw . Dashed lines have slope V0=kBTbath (with Tbath=0:25), solid lines have
slope V0=kBTint(eIS (tw =1024)=−7:576; Tbath=0:25) and Vo=kBTint(eIS (tw =16384)=−7:602; Tbath=0:25).
k is 6:7.

Fourier transform of the density of � particles at wavevector k, and study the response
of .�k, related to the dynamical structure factor S��

k (t) ≡ 〈.�k(t).�−k(0)〉0 by

〈.�k(0)〉=− V0

kBT
[S��
k (0)− S��

k (0)] : (7)

This calculation, reported in Ref. [21] has con-rmed that in the time window where
the decay of correlation is controlled by intrabasin dynamics the calculated temperature
is equal to the bath temperature. In the region where the decay of correlation is con-
trolled by the inter-basin motion, the calculated temperature agrees very well with the
theoretical prediction for Tint , as shown in Fig. 3. At short time (intra-basin motion)
〈.k(t)〉 vs. Sk(t) is linear with the expected T−1

bath slope, properly describing the equilib-
rium condition of the vibrational dynamics with the external reservoir. At larger times,
the inter-basin motion sets in and the slopes of 〈.�k(0)〉 vs. S��

k (0) are extremely well
predicted by the values of Tint calculated according Eq. (6). In conclusion, the exten-
sion of the thermodynamics formalism to the case of an out-of-equilibrium supercooled
liquid allows to predict the response of the aging system to an external perturbation
and the way this response depends on the time spent in the low-temperature glassy
state.
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