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Structural relaxation in a supercooled molecular liquid
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Abstract. – We perform molecular-dynamics simulations of a molecular system in supercooled
states for different values of inertia parameters to provide evidence that the long-time dynamics
depends only on the equilibrium structure. This observation is consistent with the prediction
of the mode-coupling theory for the glass transition and with the hypothesis that the potential
energy-landscape controls the slow dynamics. We also find that the dynamical properties at in-
termediate wave number depend on the spatial correlation of the molecule’s geometrical center.

Dynamics in normal liquid states deals with orbits in phase space. Binary collisions and
vibrations, for which the kinetic energy plays an important role, are elementary ingredients
building the motion on microscopic time and frequency scales. In supercooled states, the
system gets trapped in potential energy-landscape pockets for long times. This produces a
separation of the long-time glassy dynamics —corresponding to the interbasin dynamics, i.e.,
to the motion from one pocket to the other— from the microscopic dynamics.

In recent years the mode-coupling theory (MCT) for the glass transition has been devel-
oped [1]. One of its essential predictions is the independence of the glass-transition singularity,
as well as of the long-time glassy dynamics, from the microscopic dynamics. This means that
the glass-transition singularity and associated slow dynamics are completely determined by
the statistics of the system’s orbits in configuration space rather than in phase space [2]. Such
dynamics, determined solely by the equilibrium structure, is referred to as the structural re-
laxation. This MCT prediction agrees with the hypothesis that the potential energy-landscape
controls the slow dynamics [3]. Indeed, an interesting characterization of the MCT critical
temperature Tc in terms of geometrical properties of the landscape has been proposed [4, 5].

The issue of the independence of the long-time dynamics from underlying microscopic
dynamics has been addressed for a binary mixture of Lennard-Jones particles [6]. In ref. [6],
molecular-dynamics (MD) simulations have been performed based on Newtonian as well as
stochastic dynamics, and the same long-time relaxation was observed. One of the main points
of this letter is to explore whether such a property holds for molecular systems. This is
nontrivial because the dynamics in molecular liquids involves rotational as well as translational
motions, and there exist more than two time scales characterizing microscopic dynamics. Since
these microscopic motions depend on molecule’s inertia parameters, we report in this letter
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MD simulations for systems which differ in these parameters. Let us note that MCT for
molecular systems —both the molecular theory based on the expansion in generalized spherical
harmonics [7] and the site-site theory [8]— predicts the inertia-parameter independence of the
long-time dynamics, and our work also serves as the first test of such a theoretical prediction.

Another motivation of the present study concerns the unusual wave number dependence of
characteristic time in molecular systems. A strong correlation in the wave number dependence
is usually observed between the so-called nonergodicity parameters (which specify the strength
of the so-called α-relaxation), the α-relaxation times, and the static structure factor. This
is found, e.g., in hard-sphere system [9], Lennard-Jones binary mixture [10], water [11] and
silica [12, 13], and is in agreement with the MCT prediction. The result found in a MD
simulation study for a model of orthoterphenyl (OTP) [14] is unusual in that such a correlation
is violated for wave numbers about half the position qmax of the first sharp diffraction peak. It
was suggested in ref. [14] that the unusual feature is caused by the coupling of the rotational
motion to the center-of-mass motion. By changing inertia parameters, it shall be examined
whether it is the coupling to the geometrical center or to the center of mass which matters.

We consider a model for OTP designed by Lewis and Wahnström (LW) [15] and a modified
model which differs only in the mass distribution. The LW molecule is a rigid isosceles triangle.
Each of the three sites represents an entire phenyl ring of mass m ≈ 78 amu, and is described
by a Lennard-Jones sphere. Extensive studies on the dynamics and thermodynamics of the
original model have recently been performed [14, 16]. In the modified model, the mass of the
central site, mc, and that of the two adjacent sites, ms, are chosen so that mc/ms = 16, but
with the total mass being unchanged, mc + 2ms = 3m. The center-of-mass position in the
modified molecule nearly coincides with the position of the central site. The thermal velocity
for the center-of-mass translation is the same for both models. However, the thermal angular
velocities are increased for the modified model relative to the original one. Thus, one expects
a considerable speeding-up of the reorientational motion, and, via the rotation-translation
coupling, a considerable change in the complete microscopic dynamics. We have studied,
performing MD simulations, both the original and modified systems composed of N = 343
molecules at the density ρ = 1.083 g/cm3, with the same procedure described in ref. [16].

Three normalized density correlators shall be considered:

φXq (t) = FXq (t)/FXq (0) for X = N, Z, and Q. (1)

Here, FXq (t) are defined by FXq (t) = 〈ρX�q (t)∗ρX�q (0)〉/N in terms of the linear combinations

ρN�q =
(
ρ1�q + ρ2�q + ρ3�q

)
/
√

3, ρZ�q =
(
2ρ1�q − ρ2�q − ρ3�q

)
/
√

6, ρQ�q =
(
ρ2�q − ρ3�q

)
/
√

2, (2)

of the site-density fluctuations ρa
�q =

∑N
i=1 exp[i�q ·�r a

i ] (a = 1, 2, or 3) in which �r a
i denotes the

position of site a in the i-th molecule. (We use the convention that a = 1 refers to the central
site and a = 2, 3 to the two adjacent sites.) Assuming equal scattering lengths, the correlator
φNq (t) is directly related to the cross-section as measured in the coherent neutron scattering.
The functional forms of φZq (t) and φQq (t) have been chosen so that their small–wave-number
limits reduce to the 1st-rank reorientational correlators [17]. Dynamical features of φNq (t) for
the original LW OTP have already been discussed in ref. [14].

We show in fig. 1 the correlators φNq (t) at T = 260 K for wave numbers q = 15.2, 19.0 and
30.5 nm−1. (We notice that the first peak in the static structure factor SNq = FNq (0) is located
at qmax = 14.6 nm−1.) Circles and solid lines denote the results for the original and modified
systems, respectively, and the time scale of the latter is rescaled by a factor t̂0 ≈ 0.71, whose
meaning will be discussed below. Except for t � 1 ps, curves for the two systems coincide
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Fig. 1 – The correlators φN
q (t) at T = 260K for wave numbers q = 15.2, 19.0, and 30.5 nm−1. Circles

and solid lines, respectively, refer to the results for the original and modified LW OTP, and the time
scale of the latter is rescaled as t/t̂0 with t̂0 ≈ 0.71.

within the statistical errors, i.e., the long-time dynamics is, up to the scale t̂0, independent
of inertia parameters. Figure 2 shows corresponding results for φZq (t) and φQq (t). While the
short-time dynamics exhibits inertia dependence (see insets of fig. 2), the long-time dynamics
is identical up to the same scale t̂0.

The findings in figs. 1 and 2 verify the following formulation of the glassy dynamics, as
suggested by MCT [1, 2]: the microscopic dynamics determines a time scale t0 so that for
t � t0 any correlator φx(t) can be written as

φx(t) = Fx(t/t0). (3)
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Fig. 2 – The correlators φZ
q (t) for q = 15.2 nm−1 (upper panel) and φQ

q (t) for q = 19.0 nm−1 (lower
panel) at T = 260K. Circles and solid lines, respectively, refer to the results for the original and
modified LW OTP, and the time scale of the latter is rescaled by t̂0 ≈ 0.71. The insets show the
short-time dynamics, without rescaling the time scale for the modified system, on the linear time axis.
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Fig. 3 – The correlators φN
q (t) for q = 10.2 nm−1 at three temperatures T = 230, 260, and 300K.

Circles and solid lines, respectively, refer to the results for the original and modified LW OTP, and
the time scale of the latter is rescaled by t̂0 ≈ 0.71. The inset exhibits the inverse of the α-relaxation
times 1/τN

q as a function of temperature: 1/τN
q for the original LW OTP are marked with open

circles, while those for the modified system (rescaled by t̂0 ≈ 0.71) with filled triangles. The dashed
line denotes the fit based on the prediction of MCT, 1/τN

q ∝ (T −Tc)
γ , with Tc ≈ 234K and γ ≈ 2.76.

Here, the master function Fx(t̃) is independent of the microscopic dynamics, and the scale t0 is
common to all the correlators. The slow dynamics, as described by Fx(t̃), is solely determined
by the potential energy V through the Boltzmann factor e−V/kBT (with kB denoting the
Boltzmann constant), i.e., by the statistics of orbits in configuration space. The microscopic
dynamics, which depends on inertia parameters, merely sets the scale t0 for the exploration
of the potential energy-landscape. Thus, the factor t̂0 used in figs. 1 and 2 can be understood
as the ratio t̂0 = tII0 /tI0 of the t0’s for the original (tI0) and modified (tII0 ) systems. The region
where circles and solid lines coincide is the structural-relaxation part as described by Fx(t̃).
The speeding-up of the rotational motion for the modified system, demonstrated in the insets
of fig. 2, means that the potential energy-landscape can be explored faster. This explains why
t̂0 < 1.

Figure 3 provides another test of eq. (3), where we plot φNq (t) for q = 10.2 nm−1 at three
temperatures close to the MCT critical temperature Tc ≈ 234 K [16]. The same t̂0 ≈ 0.71 has
been used to rescale the correlators for the modified system. Since the microscopic dynamics
can also depend on T , a smooth variation of t̂0 with T is expected: for example, we checked
that, by slightly modifying the value of t̂0, an even better agreement in the long-time dynam-
ics is obtained for T = 300 K. However, the temperature dependence of t̂0 is rather small
close to Tc, as can be seen from fig. 3. We note that, within MCT, t̂0 should be evaluated at
T = Tc [1, 2].

The dynamics in supercooled states exhibits two-step relaxation as shown in figs. 1-3: the
relaxation toward the plateau, followed by the final relaxation from the plateau to zero (the α-
relaxation). The structural-relaxation region, where circles and solid lines coincide in figs. 1-3,
is precisely the one for which MCT is derived and its applicability should be tested. We notice
from figs. 1-3 that the approach toward the plateau, for which MCT predicts an asymptotic
power law decay ∼ t−a (0 < a < 0.5) [1], is almost completely masked by the microscopic
dynamics. This implies that the most faithful tests of MCT should be performed just near
the plateau and in the α-relaxation regime. A similar conclusion was drawn in ref. [18] in a
different context.
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Fig. 4 – (a) The critical nonergodicity parameters fNc
q and the α-relaxation times τN

q for the correlators
φN

q (t). The latter are calculated at T = 260K. Circles and solid lines, respectively, refer to the results
for the original and modified LW OTP, and τN

q for the latter are rescaled by t̂0 ≈ 0.71. (b) The
static structure factors at T = 260K. Solid and dashed lines, respectively, denote the site-site static
structure factor SN

q and the geometrical-center static structure factor SGC
q , which are the same for

both the original and modified LW OTP. For the original system, SGC
q coincides with the center-of-

mass static structure factor SCOM
q . SCOM

q for the modified system is denoted as dotted line.

The inset of fig. 3 shows 1/τNq of the α-relaxation times for the original and modified
systems. In this work, τNq are defined by φNq (τNq ) = 1/e. MCT predicts an asymptotic
formula, 1/τNq ∝ (T − Tc)γ , close to Tc [1]. The inset shows that the asymptotic formula
describes well the result with Tc ≈ 234 K and γ ≈ 2.76 as estimated in ref. [16]. The exponent
γ is uniquely related to the so-called exponent parameter λ [1]. The result indicates that, also
for molecular systems, Tc and λ are independent of inertia parameters, in agreement with the
prediction of MCT. Notice that this conclusion does not depend on the quality of the fit (i.e.,
the choice of the values for Tc and γ) since, after the rescaling by t̂0, the correlators φNq (t) and
hence 1/τNq for the two systems coincide within the statistical errors.

Equation (3) is based on the ideal MCT, whose validity is restricted to T > Tc. More
precisely, eq. (3) is valid also below Tc, but according to MCT, Fx(t̃) for T ≤ Tc would
describe the arrest at the plateau [1], and does not properly account for the α-relaxation in
the simulation results, e.g., the T = 230 K result shown in fig. 3. The ideal MCT predicts
the inertia parameter independence of the plateau height, and this can be confirmed from the
figure. However, the T = 230 K result also shows that, even for T < Tc, the α-relaxation
seems to be independent of inertia parameters. This implies the possibility of extending the
formulation (3) to T < Tc including the whole α-relaxation regime. Such a finding might
help in developing theories for T < Tc. Let us note that this is also consistent with the
energy-landscape description whose applicability is not restricted to T > Tc.

Next, we turn our attention to the wave number dependence of the α-relaxation time for
wave numbers around qmax/2. Figure 4(a) exhibits the critical nonergodicity parameters fNcq

and the α-relaxation times τNq of the correlators φNq (t) for the original and modified systems.
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Here, fNcq are the plateau height in the two-step relaxation, and are obtained from the fit
based on the vonSchweidler law with its first correction as in ref. [14]. Figure 4(a) shows that
these quantities for the two systems are the same within the statistical errors. One also sees
a clear correlation in the wave number dependence of fNcq and τNq : there exist corresponding
peaks and minima in these quantities.

The site-site static structure factor SNq = FNq (0) associated with φNq (t) is shown in fig. 4(b).
SNq is the same for both the original and modified systems, since it depends only on the
Boltzmann factor. For q � 15 nm−1, the q-dependence of fNcq and τNq correlates also with that
of SNq . For q < 15 nm−1, on the other hand, such a correlation is not observed, and there is an
unusual peak at q ≈ 9 nm−1 in fNcq and τNq which does not exist in SNq . This is in contrast to
results found, e.g., in hard-sphere system [9], Lennard-Jones binary mixture [10], water [11],
and silica [12,13], for which such a correlation holds for the whole wave number regime.

In ref. [14], it was suggested that the unusual feature around q ≈ 9 nm−1 can be interpreted
as being due to the coupling to the center-of-mass (COM) dynamics. This follows from
the fact that the COM static structure factor, SCOMq = (1/N)

∑
i,j〈e−i�q·(�r COM

i −�r COM
j )〉 with

�rCOMi denoting the COM position, has a peak around q ≈ 9 nm−1 as shown in fig. 4(b).
For the original model, the COM position is identical to the geometrical center (GC) defined
by �rGCi = (1/3)

∑3
a=1 �r

a
i . The latter is a structural property, i.e., independent of inertia

parameters, and the corresponding structure factor SGCq , defined in terms of the GC positions,
is the same for the two systems in contrast to SCOMq (cf. fig. 4(b)). Since fig. 4(a) shows
that the peaks in fNcq and τNq are also a structural property, we find —from the correlation
between fNcq , τNq , and SGCq — that it is more appropriate to interpret the unusual peak around
q ≈ 9 nm−1 as being caused by the coupling to the GC dynamics. Thus, the unusual peak
reflects a property of the potential energy-landscape, a subtle interplay of the translational and
rotational dimensions in configuration space. We notice that such a peak in the nonergodicity
parameters around q ≈ 9 nm−1 can be found in the coherent neutron-scattering result for real
OTP molecules, where no clear peak shows up in the static structure factor [19].

The position q ≈ 9 nm−1 where the unusual peak we discussed occurs is compatible with
the inverse of the van der Waals radius rW = 0.37 nm for OTP molecule [20], i.e., it is
connected to the overall size of the molecule. It is interesting to note that a similar unusual
peak was found in a model for polymer around wave numbers close to the inverse radius
of gyration [21]. In ref. [21], the unusual peak is interpreted in terms of polymer specific
properties. Such an interpretation might not be suitable, if the unusual peak —found in OTP
and polymer— reflects the same physics. Thus, it will be a theoretical challenge to reproduce
and explain such an unusual feature observed in molecular and polymer systems.
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