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Features of the energy landscape sampled by supercooled liquids are numerically analyzed for
several Lennard-Jones-like model systems. The properties of quasisaddles~minima of the square
gradient of potential energyW5u¹Vu2), are shown to have a direct relationship with the dynamical
behavior, confirming that the quasisaddle order extrapolates to zero at the mode-coupling
temperatureTMCT . The same result is obtained either analyzing all the minima ofW or the saddles
~absolute minima ofW!, supporting the conjectured similarity between quasisaddles and saddles, as
far as the temperature dependence of the properties influencing the slow dynamics is concerned. We
find evidence of universality in the shape of the landscape: plots for different systems superimpose
into master curves, once energies and temperatures are scaled byTMCT . This allows to establish a
quantitative relationship betweenTMCT and potential energy barriers for Lennard-Jones-like
systems, and suggests a possible generalization to different model liquids. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1587132#
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I. INTRODUCTION

The investigation of the topological and metric prope
ties of potential energy surface~PES!, often referred to as
‘‘energy landscape,’’ is a useful and powerful tool for stud
ing slow dynamics in condensed matter, especially in th
cases where the lack of order~as for example in supercoole
liquids! inhibits the use of the analytical tools pertaining
the crystalline state.1–6 The PES approach has been succe
fully applied to the study of many different interacting sy
tems ~glasses, proteins, sheared materials, and so on!. The
PES approach started with the introduction of the fruit
concept of inherent structures.7 In the last years, severa
steps toward a more detailed description of the statist
properties of the PES have been performed, most of th
pointing toward a better understanding of the relations
between the landscape properties and the emergent dyn
cal behavior of the analyzed systems.

Among others, two landscape-based approaches h
proven to be particularly stimulating. The first one conce
the detailed analysis of theinherent structures~i.e., the con-
figurations at the minima of potential energy! visited by the
system at different temperatures. This method has allowe
clarify many interesting phenomena, as, for example,
thermodynamic picture of the supercooled liquid regim
based on the configurational entropy,8 the relationship be-
tween fragility and properties of inherent structures,5 the
2120021-9606/2003/119(4)/2120/7/$20.00
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analysis of diffusion processes in terms of visited inher
structures,6,9,10 or the interpretation of the effective
fluctuation-dissipation temperature in the out-of-equilibriu
regime in terms of inherent structures visited during aging11

only to cite a few. The second approach is based on
analysis of the eigenvalues~normal modes! of the Hessian at
the instantaneous configurations during the dynamic ev
tion of the system, from here the nameinstantaneous norma
mode approach~for an introduction and an extended app
cation of this method see the works of Keyes a
co-workers12,13!. This approach allowed to relate the eme
gent diffusive processes to the features of the landsc
opening the way to the interpretation of diffusion in terms
accessible paths in the multidimensional energy surfa
Promising steps were obtained~i! using simultaneously both
the instantaneous normal mode approach and the inhe
structure one, in order to identify the relevant slow diffusi
directions,14,15 and ~ii ! by analyzing the reaction paths i
order to eliminate the nondiffusive unstable modes.16

Recently, a further approach has been introduced17,18and
applied to the study of supercooled liquids.19–25 This ap-
proach is based on the analysis of thesaddlesof the potential
energy surface and has provided new insight in the anal
of the dynamic crossover taking place on lowering the te
perature in supercooled liquids. Indeed it allows to char
terize the dynamic transition temperatureTMCT ~mode-
0 © 2003 American Institute of Physics
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2121J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 Energy landscape in Lennard-Jones liquids
coupling temperature26! as the temperature where the ord
~fractional number of negative eigenvalues of the Hess
matrix! of the saddles vanishes. This finding suggested
following scenario for the dynamics: aboveTMCT the repre-
sentative point in the configuration space lies close to
saddles and the relevant dynamic process is the diffu
among multidimensional saddle points, i.e., the diffus
takes place along paths at almost constant potential en
and the limiting factors to particles diffusion are ‘‘entropic
rather than ‘‘energetic,’’ barriers. On the contrary, belo
TMCT the minimum-to-minimum diffusion processes dom
nate and the ‘‘true’’ barrier jump controls the diffusive d
namics. A clear landscape-based interpretation of the
namic behavior of the system is then provided. It
important to mention here that the term ‘‘saddles’’ is n
mathematically correct, as the way the saddles have b
defined in Refs. 17 and 18 is based on the partition of
configuration space in basins of attraction of the minima
the ‘‘pseudopotential’’27 W5u¹Vu2. It is clear that the abso
lute minima ofW, located atW50, are true saddles of th
energy surface~for simplicity of notation we call ‘‘saddles’’
also the minima and maxima ofV) while the local minima of
W ~those withW.0) correspond to points with~at least! one
inflection direction, and are not saddles in mathemat
sense, rather they are ‘‘shoulders’’ along the inflection dir
tion. As pointed out by Doye and Wales,20 the local minima
of W, and not the absolute ones, are very often encount
during the minimization procedure. However, as it will b
clear soon, the properties of the local and absolute minim
W which are actually important in determining the diffusiv
behavior are exactly the same. For this reason we call
local minima ofW quasisaddles, to emphasize the fact tha
they carry the same information as saddles, even if they
geometrically different in nature~for a more detailed discus
sion see Refs. 28–30!.

Besides the landscape picture of the dynamic proces
the study of saddles has also permitted a quantitative c
acterization of the main features of the PES of liquid s
tems. Indeed, important PES properties, as the mean en
elevation of saddles from underling minima or the Euclide
distances among saddles, can be inferred from the analys
saddle properties. It emerges an high regularity of the P
with few parameters describing the spatial and energetic
cation of saddles.

In this work we apply the saddle-approach to differe
model liquids~Lennard-Jones-like pair potentials!, in order
to better understand the relationship between landscape p
erties and slow dynamics, and in order to evidencing
existence of general features of the PES. The main resu
this work is the existence of master curves both
temperature-dependent properties~saddle order versusT! and
for landscape properties~saddle energy versus order!, once
energies and temperatures are normalized toTMCT . This is a
very strict relationship between dynamics and landscape
tures: differences in the PES for different systems sim
define differentTMCT values, and once scaled by these v
ues, one obtains exactly the same behavior. In other word
appears that the PESs are very similar, the only differen
being the values of few parameters describing them~like the
Downloaded 13 Feb 2004 to 141.108.6.119. Redistribution subject to AIP
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mean elevation barriersDE-mean elevation of saddles of o
der one from underlying minima! that lead to different values
of dynamical quantities (TMCT). The last point is of particu-
lar importance: for all the systems investigated we obt
that the value ofTMCT is about 1/10 of the energy barrie
DE, suggesting a kind of universality in the rearrangem
processes governing the diffusion.

II. MODELS

We numerically investigated four different Lennar
Jones-like model systems, all composed ofN5256 particles
inside a cubic box with periodic boundary conditions. The
are:

~1! the modified monatomic Lennard-Jones~MLJ!,31 at r
51.0 ~hereafter all the quantities will be expressed in
reduced units!
VMLJ~r !54e@~s/r !122~s/r !6#1dV, ~1!

wheredV is a~small! many-body term that inhibits crys
tallization
dV5aSqu~S~q!2S0!@S~q!2S0#2. ~2!

S(q) is the static structure factor, the sum is made o
all q with qmax2D,uqu,qmax1D, where qmax

57.12(r)1/3 andD50.34, and the values of the param
eters area50.8 andS0510.

~2! the modified monatomic soft spheres~MSS!, at r51.0,
VMSS~r !54e~s/r !121dV, ~3!

wheredV is defined in Eq. 2.
~3! the binary mixture Lennard-Jones 80-20~BMLJ!,32 at

densityr51.2,
VBMLJ~r !54eab@~sab /r !122~sab /r !6#, ~4!

where the values of the parameters are those of the K
Andersen mixture (sAA51, sAB50.8, sBB50.88, eAA

51, eAB51.5, eBB50.5);
~4! a variant of the binary mixture Lennard-Jones (BMLJ2),

at r51.2, in which the values ofsAA and sBB were
exchanged.

In the case of BMLJ and BMLJ2 , the interaction potential is
tapered at long distances betweenr 152.43sAA<r
<2.56sAA5r 2 with the following fifth-order smooth-
ing function T(r )511(r 12r )3(6r 21(3r 1r 1)(r 125r 2)
110r 2

2)/(r 22r 1)5. In this way the potential, the forces an
their derivatives are continuous, the energy can be kept c
stant to better than 1/105 over 100 millions of time steps. The
MLJ and MSS potential have been simply cut and shifted
2.5s.

We performed standard molecular dynamics simulatio
at equilibrium~NVE ensemble!, in a temperature range from
T52 down to the lowest temperature that can be equilibra
in the MD run ~this temperature is strongly model depe
dent!. Along the equilibrium molecular dynamics trajectorie
at a given temperature we analyzed the properties of~i! the
instantaneous configurations;~ii ! the inherent structures
~minima!; and ~iii ! the saddle configurations. About 100
configurations have been analyzed for each temperature
for each system. The inherent structures associated to ins
taneous configurations are obtained by a conjugate-grad
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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minimization procedure on the total potential energy. F
saddles, a similar minimization procedure has been app
to the pseudo-potentialW5u¹Vu2. The tapering of the
BMLJ and BMLJ2 potentials allows the minimization proce
dures of bothV and W to work correctly as they are no
affected by small discontinuities in the derivative ofV and
W. The importance of avoiding discontinuities in order
obtain goodW minimization has been recently underlined
Ref. 23 where the LBFGS algorithm33 was used. However to
obtain good minimizations ofW, even for a ‘‘small’’ system
of 256 particles~i.e., 768 dimensions!, is a stiff problem. We
tested different minimization algorithms~steepest-descen
Gauss-Newton, preconditioned conjugate gradie
Levenberg-Marquardt34! but they eventually stick in som
points of the configuration space, where the algorithm
crease more and more the step size, and the search bec
inefficient and possibly stops. Different algorithms usua
stick in different points. Sometimes the same algorithm w
stuck in a given point can be effective in overcoming t
critical situation if a larger step is used. Therefore, in t
present work, a complex flow chart with various algorithm
was used to obtain good minima~the details of the numerica
algorithms will be presented elsewhere35!. We want to re-
mark that in this way the calls to the functionW are always
less than 3500 (average'1500) and less than 100
(average'200) to the derivative ofW.

For all the analyzed configuration points~instantaneous
minima and saddles! we store the energies per particle~e,
eIS , andes respectively!, and for instantaneous and saddl
we also determine their ordern andns , defined as the frac
tional number of negative eigenvalues of the Hessian,
the absolute number of negative curvatures over 3N ~for in-
herent structures one obviously hasnIS50).

III. SADDLES AND QUASISADDLES

First of all we focus our attention on the differenc
between saddles~absolute minima ofW! and quasisaddle
~local minima ofW!. As an example, Fig. 1 shows, for th

FIG. 1. Histogram of the ratioW/Winst, , i.e., the value at the minima ofW
with respect to the value at instantaneous configurations, atT52 for BMLJ2

~6000 configurations analyzed!. The higher region corresponds to quas
saddles~local minima ofW!, while the lower one to true saddles~absolute
minima!.
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case of BMLJ2 model, the histogram of the value of th
pseudopotentialW at the minima~6000 configurations ana
lyzed atT52). The values ofW at the minima are normal
ized to the values at the corresponding instantaneous
figurations, i.e., to the value ofW before starting the
W-minimization procedure. We observe two very well di
tinct regions: the one with higherW values corresponds to
local minima ofW ~quasisaddles!, the lower one correspond
to absolute minima~true saddles!. The non-zero values ofW
on the low-W peak is due to the finite precision and/
threshold employed in the minimization procedure. A clos
inspection of the eigenvalues of the Hessian shows that
quasisaddles are points with only one extra zero eigenval29

~besides the three connected to the global translations!, cor-
responding to an inflection one-dimensional profile along
corresponding eigenvector. The fact that in the plot the t
regions are well separated, allows to discriminate true
false saddles in a clear way. On the contrary, no clear se
ration has been found between saddles and quasisad
from the analysis of the eigenvalues: due to the finite pre
sion the found eigenvalues relative to the inflection poi
are different from zero of the same amount of the low
frequency eigenvalues of real vibrational~or diffusive!
modes. As it is evident from Fig. 1, true-saddles are very f
and their number are found to decrease on lowering the t
perature~e.g., for BMLJ2 in Fig. 1 about 5% atT52, and for
BMLJ about 2% atT52 and less than 1% atT50.48).

An interesting observation arises from the analysis of
behavior of theT-dependence of the number of negative c
vatures in the ‘‘true’’ saddles and in the quasisaddles se
rately. In Fig. 2 the saddle order is shown as a function of
temperature using only the true-~full symbols! and the quasi-
~open symbols! saddles, for the cases of BMLJ~triangles!
and BMLJ2 ~squares! models ~we note that in the BMLJ2
case, due to the appearance of crystallization, the data
available only forT*1). The coincidence between the tw
set of data indicates that, as far as the temperature de
dence of their characteristics~order and energy! is con-
cerned, quasisaddles and true saddles share the same p
ties. Also other properties, as for example the spec
features~i.e., the density of vibrational states!, of quasi-

FIG. 2. Temperature dependence of the fractional order of true saddles~full
symbols! and quasisaddles~open symbols!, for BMLJ ~triangles! and
BMLJ2 ~squares!. Dashed lines are power law fits.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2123J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 Energy landscape in Lennard-Jones liquids
saddles and true-saddles are found indistinguishable.25 This
finding suggests that, no matter if saddles or quasisadd
the minimization ofW leads to points of the PES that a
relevant for a landscape-based interpretation of the slow
namics of the system: the order extrapolates to zero at
mode-coupling temperatureTMCT ~see Table I for the value
of TMCT , estimated from diffusivity data, for the differen
models!, indicating that at this temperature the properties
the landscape probed by the system manifest a kind of
continuity ~the number of open directions, related to t
saddle order, goes to zero and the dynamical proce
change their characteristics!. In other words, the minimiza
tion of W seems to be a good method to get ride of the f
degrees of freedom and to keep information only on the s
degrees relevant for the slowing down of the dynamics t
ing place in supercooled regime.

IV. GENERAL FEATURES OF THE PES

We now turn our attention to the existence of comm
features among the different model systems analyzed.

A. T-dependent properties

As already pointed out in Refs. 17 and 28, the~quasi-!
saddle order,ns , vanishes asT approachesTMCT from
above. At a first sight, it seems that the specific behavio
ns(T) is a model-dependent property~see Fig. 2!. However,
we observe that after the scaling the temperature scale
specific sample dependent quantity, i.e., byTMCT , all the
models behave similarly. In Fig. 3 the saddle orderns is
reported as a function of reduced temperatureT/TMCT . All
the curves for the different systems collapse into a sin
master curve. The latter can be fitted by a power law

ns5n̄S T

TMCT
21D g

, ~5!

with g50.85 andn̄50.025~in the fitting procedure, the val
ues ofTMCT , reported in Table I, are kept fixed to the on
derived by the fit of the power-law behavior of the diffusio
coefficient!. A similar master plot is obtained also for th
relation between the saddle energy and the tempera
These results suggest a universal behavior~at least for the
LJ-like model systems analyzed here!: at a given reduced
temperatureT* 5T/TMCT all the systems visit saddles wit
the same properties~hereafter we will indicate with ‘‘* ’’ the
temperature and the energy scaled byTMCT). One could con-
jecture that this universality is due to the repulsive part of

TABLE I. For the different Lennard-Jones-like models we report the inv
tigated densityr, the mode-coupling temperatureTMCT ~estimated from the
apparent power-law vanishing of the diffusion coefficient!, the mean barrier
valuesDE ~mean elevation of order-one saddles from underlying minim!
and the reduced barrier heightDE* 5DE/TMCT . All the quantities are in LJ
reduced units.

Models r TMCT DE DE*

MLJ 1.0 0.475 4.43 9.3
MSS 1.0 0.210 2.06 9.8
BMLJ 1.2 0.435 4.16 9.6
BMLJ2 1.2 0.605 5.93 9.8
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pair potentialr 212 ~common to all the systems!, that domi-
nates over the attractive one at the studied densities. H
ever, the facts that the curves superimpose each other q
well in the whole temperature range and that non-LJ syste
~as, for example, the Morse potential—see the next sect!
show a similar behavior, seems to indicate that the obser
universality is not trivially related to the repulsive part of th
interaction potential. Finally, we want to remark that t
small value ofn̄ indicates that even at temperature twice th
of the MCT critical point, the system is visiting saddles
low order (ns.0.025), so indicating that atT52TMCT the
closest saddle, according to the partitioning defined by
minimization ofW, is far below the top of the landscape.

B. Energy barriers and TMCT

The existence of common and general features of
PES emerges in a clear way from the comparative analys
the energy and of the order of the saddles. In Fig. 4 part A
energy elevationDes5es2eIS of the saddles from the un
derling minima is plotted as a function of the saddle orderns

for the different investigated models. As already observe17

there exists a proportionality between these two quantit
indicating a simple organization of the PES: saddles
equally spaced in energy over the minima. The slopes of
different straight lines in Fig. 4 determine the elementa
energy elevationDE of saddles of ordern from saddles of
ordern21:

DE5
1

3

d~es2eIS!

dns
, ~6!

where the factor 3 is due to the fact that energies are
particles~N! and the fractional order per degrees of freedo
(3N). The values ofDE obtained for the various systems a
reported in Table I. A possible explanation of the linear re
tionship observed in Eq. 6 is that there exist in the syst
several spatially uncorrelated rearranging regions, each e
riencing a mean barrier energyDE. In other words, if the
system as a whole lies on a saddle of orderm, this is due to
the fact that there arem uncorrelated subsystems each o
visiting a saddle of order 1. The analysis of the spec

-

FIG. 3. Saddle orderns as a function of reduced temperatureT/TMCT , for
all the analyzed systems. The dashed line is a power law with exponeg
50.85. For MLJ and MSSr51.0, while for BMLJ and BMLJ2 r51.2.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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atomic motion associated to these saddles, needed to a
or disprove the validity of this hypothesis, is beyond the a
of the present work.

A very interesting and surprising result is obtained
scaling the energy values reported in Fig. 4 part A to
mode-coupling temperatureTMCT (KB51), obtaining again
a single master curve~see Fig. 4 part B!. The landscapes o
different systems seem to share common features, with
one parameter describing the organization of saddles, i.e.
mean elevationDE, that becomes an universal parame
(DE* 5DE/TMCT.9410) once normalized to the mode
coupling temperature~see the last column of Table I!. In
other words, all the models have the common property
the elementary barrier height is about 10 times the crit
temperatureTMCT :

DE.10 TMCT . ~7!

This relation have been numerically proved for the four p
tential models investigated here. The same relation a
holds for another LJ-like model, the binary mixture so
sphere model~BMSS! investigated in Ref. 24~at r51). This
observation gives further support to the universality of Eq
If this is a particular characteristic of Lennard-Jones-l
models or a general feature of a more wide class of sim
liquids is a open and interesting question which remains
be answered.

We can try to give a first answer to this question anal
ing the available data in the literature for other systems.
our knowledge, besides the Lennard-Jones-like system

FIG. 4. ~A! Energy elevation of saddles from underling minimaes2eIS

against saddle orderns ; ~B! Energy elevation rescaled by mode-couplin
temperatureTMCT against saddle orderns . Dashed straight line is a guide t
the eyes.
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saddle-based analysis has been performed only for the M
potential.22 The Morse potential, used in Ref. 22, is defin
as Va(r )5e@12exp(a(12r/re))#

22e, where e is the well
depth,r e is the interparticle distance, and the parametera is
inversely correlated to the range of the potential. Differen
from soft-spheres and LJ, the Morse potential is finite ar
→0. Unfortunately, equilibrium simulation based on th
Morse potential are difficult, since the undercooled syst
crystallizes easily. Therefore simulations reported in Ref.
have been performed only well aboveTMCT . It was found
that the larger the value ofa is, the further the distance
between the temperature of the lowest noncrystalline sim
lation andTMCT is. In this study, a linear dependence b
tween ns and es have been observed and the values
des /dns normalized toTMCT are in agreement with Eq. 7 fo
the three smallera valuesa54, 5, and 6 (DE* are in the
range 9.3410.536!. For the two highesta values,a59 and
12, the reported values forDE* are quite different~4.6 and
3.5, respectively!. Further studies, for example focussing o
binary mixture systems, are requested to find out if su
discrepancy is due to an approximate determination ofTMCT

for a59 and 12~which was obtained by extrapolatingns(T)
from a temperature region wherens is far away from zero,
ns(T)*0.2). Uncertainties in the estimates ofTMCT at large
a are also consistent with the unexpected nonmonotonic
pendence ofTMCT with a reported in Ref. 22. We conclud
that, for all a values for which the reliability of the data i
unquestionable, the Morse potential landscape shares
same characteristic of those of the LJ-like potentials.

In all the other model systems studied in the literatu
we do not have a direct information on the saddle ene
elevation. However, the existence of a well defined bar
energy scaleDE in the PES is expected to control the ac
vation processes at low temperature, giving rise to
Arrhenius behavior of the transport properties at tempe
tures belowTMCT . The existence of Arrhenius law in LJ-like
systems—that are basically ‘‘fragile,’’ in the Angell classifi
cation scheme2—would be, per se, surprising~however, the
degree of fragility of LJ systems is a matter of debate37!.

The simulations belowTMCT are very difficult to per-
form, due to the extremely long relaxation times in this r
gime and a direct inspection of the expected Arrhenius
havior is not easy to pursuit. Only very recently such a ki
of analysis has been performed for the BMLJ model ar
51.2.38 In that work an Arrhenius behavior was actual
found in the temperature dependence of the diffusion coe
cient belowTMCT : D}exp(2DEArr /T) ~we use the symbo
DEArr for the activation energy in the Arrhenius law of th
diffusivity, to distinguish it from the energy barrierDE de-
termined from the saddles analysis of the PES!, with a value
of DEArr.8.1. The observed Arrhenius behavior is som
what surprising in this ‘‘fragile’’ liquid models, and seems
indicate that close toTMCT activated processes start to b
relevant and dominate the dynamics. However, the value
the activation energyDEArr found in Ref. 38 is not equal to
the elementary barrier energyDE estimated from the saddle
analysis ~see Table I!, but it is about twice that value
DEArr /DE.1.9. Re-analyzing our data for the MLJ mod
~for which we have few thermodynamic points equilibrat
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2125J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 Energy landscape in Lennard-Jones liquids
close to but belowTMCT), we find that the above reporte
ratio is compatible with MLJ data~see Fig. 5!, even if sta-
tistic is poorer than that of BMLJ case and the equilibriu
condition is not fully satisfied by the lowest two temperatu
points. If such observation has general validity, then Arrh
ius behavior should be observed belowTMCT , with an acti-
vation energy value about 2 times the value of the elem
tary saddle energy barrier@so obtaining a value of reduce
barrier energy~normalized toTMCT) DEArr* .18420]. The
origin of this factor two needs to be further clarified. To th
aim, it is important to underline that the ‘‘effective’’ energ
barriers for activated processes as seen by the dynamics~i.e.,
those entering in the Arrhenius law for the diffusivity! can be
higher than the minimum-to-saddle energy difference~as
measured directly by analyzing the PES!. This can be due to
the fact that the true diffusive path in the landscape39 could
pass higher in energy with respect to the saddle point
order, for example, to minimize the minimum-to-minimu
path length~i.e., for entropic reasons!. In this respect, it is
worth to mention that a noncoincidence between the re
ation times determined either through MD simulations
through the direct inspection of the PES has been obse
in the simulation of a model protein during the foldin
process.40 In particular, the results in Ref. 40 indicates th
the effective saddle height is larger than the actual one.

Having in mind thatDEArr* .2DE* and thatDE* .10
~i.e.,DEArr* .20), we can try to analyze what is observed f
other model potentials existing in the literature where
D(T) has been determined. We found three different mod
for which a low temperature analysis ofD(T) has been per-
formedvia molecular dynamics:~i! The BKS-silica model,41

for which the values ofDEArr* are 16.2 and 18.0, for the
self-diffusion of O and Si, respectively;~ii ! the Lewis and
Wahnstro¨m ortho-terphenyl model,42 for which the tempera-
ture dependence of the molecular center of mass diffus
coefficient at five different densities give values of reduc
barrier energyDEArr* .20428 ~except the lowest densit
that gives a value of about 10!; ~iii ! The SPC/E-water
model,43 for which one findsDEArr* .40. Table II summa-

FIG. 5. Diffusivity D as a function of inverse temperature 1/T for the MLJ
model. Straight line represents the mode coupling like power law fit. Das
line is the Arrhenius law with energy barrierDEArr.1.9DE58.4 (DE is the
energy barrier from saddles—see Table I!, following the corresponding re-
lation obtained for the BMLJ case~Ref. 38!.
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rizes the known results on energy barrier heights estima
from saddles and from Arrhenius low-temperature dep
dence of diffusivity. The values for MLJ, MSS, BMLJ, an
BMLJ2 are from the present work, except theDEArr* for
BMLJ that is obtained from Ref. 38. In future works we w
try to determine the saddle-barriersDE* for non-LJ systems
~the last three systems in the table!, in order to have a bette
understanding of the diversity of the different landscapes
conclusion, besides the case of water, the other systems
to be in agreement with the findings of this work~the values
of the reduced barrier energies are of the same order!, evi-
dencing a quite general universality of the observed re
tions. A deeper understanding of the differences among v
ous model liquids deserves further investigations.

V. CONCLUSIONS

In conclusion, despite complex and disordered in natu
the simple liquid PES seems to exhibit few general and re
lar features, useful both to bring important insight for t
understanding of the relevant diffusion processes tak
place in supercooled liquids and to construct simplified P
models. The main findings of the present work can be su
marized as:

• the coincidence between the temperature dependenc
the quasisaddles and of the true saddles properties;

• the existence of master curves for saddle propert
once energies and temperatures are rescaled by
mode coupling critical temperatureTMCT ;

• the existence of a universal relationship between
mode-coupling temperature and the mean energy ba
heightDE.10TMCT , that seems to extend beyond th
class of the Lennard-Jones-like models analyzed he

Finally, we would like to point out that it already exist
in the literature an hint on the existence of a linear relatio
ship betweenDEArr and the mode coupling critical tempera
ture. Indeed, in a large class of glassy system one experim
tally observes a linear relationship between the gl

d

TABLE II. Reduced energy barrier heights estimated from saddles (DE*
5DE/TMCT) and from low-temperature Arrhenius law of diffusivity
(DEArr* 5DEArr /TMCT) for different model systems. The data of MLJ
MSS, BMLJ, and BMLJ2 are from this work~except theDEArr* for BMLJ,
that is from Ref. 38!.

Models DE* DEArr*

MLJ 9.3 17.7
MSS 9.8 ...
BMLJ 9.6 18.6a

BMLJ2 9.8 ...
BMSSb 9.1 ...
Morsec 9.3410.5 ...
Silica ~BKS!d ... 16418
OTPe ... 20428
Water ~SPC/E!f ... 40

aReference 38.
bReference 24.
cReference 21~obtained fora54, 5, 6!.
dReference 41.
eReference 42.
fReference 43.
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transition temperatureTg and the infinite-frequency shea
modulusG` :44 Tg}G` . If we use the findings of our work
(DEArr* .10, i.e.,DEArr.10TMCT) and we allow ourselves
to confuseTg with TMCT , the following relation emerges
DEArr}G` . This relation is the prescription of the ‘‘shovin
model’’ introduced thirty years ago by Nemilov45 and re-
cently put in a more rigorous form by Dyreet al.46 The va-
lidity of the proportionality betweenDEArr andG` has been
proved for different glasses, and, together with the lin
relationship betweenTg andG` , give further support to the
finding of the present work, i.e., the apparent universality
the ratioDEArr /TMCT .
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