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Abstract
The techniques which allow the numerical evaluation of the statistical properties
of the potential energy landscape for models of simple liquids are reviewed and
critically discussed. Expressions for the liquid free energy and its vibrational
and configurational components are reported. Finally, a possible model for
the statistical properties of the landscape, which appears to describe correctly
fragile liquids in the region where equilibrium simulations are feasible, is
discussed.

1. Introduction

Understanding the dynamic and thermodynamic properties of supercooled liquids is one of
the more challenging tasks of condensed matter physics [1–6]. A significant amount of
experimental [7–10], numerical [11], and theoretical work [12–16] is being currently devoted
to the understanding of the physics of the glass transition and to the associated slowing down
of the dynamics. In recent years the study of the topological structure of the potential energy
landscape (PEL) [17] and the connection between the properties of the PEL and the dynamical
behaviour of glass forming liquids has become an active field of research. Among the
thermodynamic formalisms amenable to use in numerical investigation of the PEL properties,
a central role is played by the inherent structure (IS) formalism introduced by Stillinger and
Weber [17]. Properties of the PEL, such as depth, number, and shape of the basins of the
potential energy surface are calculated and used in the evaluation of the liquid free energy
in the supercooled state [18–21]. In the IS formalism, the system free energy is expressed
as a sum of an entropic contribution, accounting for the number of explored basins, and a
vibrational contribution, expressing the free energy of the system when constrained in one of
the basins [17].
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In this work we review the numerical techniques which allow the evaluation of the
statistical properties of the PEL for atomic and molecular systems [18, 19, 21–24]. The
paper is organized as follows. Section 2 provides a brief introduction to the IS formalism,
introduced by Stillinger and Weber [17]. Within this formalism, an exact expression for the
liquid free energy, based on landscape properties, can be derived. Section 3 reviews the
numerical techniques which allow a precise numerical evaluation of the liquid free energy.
Section 4 describes the numerical techniques required for the evaluation of the IS energies.
Section 5 discusses techniques for evaluating the vibrational component of the free energy.
Section 6 shows how, from the previous information, is possible to evaluate the configurational
entropy. Section 7 discusses a possible modelling of the statistical properties of the landscape,
based on the hypothesis of a Gaussian distribution of the basin’s depth [19, 21, 25], and
compares the predictions of the model with numerical results for a molecular system.

2. The free energy in the IS formalism

In the IS formalism [17], the free energy of a supercooled liquid is expressed in terms of
the statistical properties of the PEL. The potential energy surface is partitioned into so-called
basins, each defined as the set of points such that a steepest descent path ends in the same
local minimum. The configuration at the minimum is called the IS and its energy and pressure
are usually indicated as eI S and PI S . The partition function can be expressed as a sum of the
Boltzmann weight over all the basins, i.e., as a sum over the basin partition functions. As a
result, the Helmholtz liquid free energy F(T, V ) can be written as [17]

F(T, V ) = 〈eI S(T, V )〉 − T Scon f (T, V ) + fvib(T, V ), (1)

where

• 〈eI S〉 is the average energy of the local minima explored at temperature T and volume V ;
• fvib is the vibrational free energy, i.e., the free energy of the system constrained in one

basin, a quantity depending on the shape of the basins explored;
• Scon f is the configurational entropy, which counts the number of basins explored.

The numerical evaluation of F(T, V ), 〈eI S(T, V )〉, and fvib(T, V ) is sufficient for
calculating Scon f and, from it, the number of basins �(eI S) deI S with depth between eI S

and eI S + deI S . Indeed, in the thermodynamic limit, ln �(eI S) can be derived from a plot of
Scon f versus 〈eI S〉 (parametric in T ). This quantity, together with the 〈eI S〉 dependence of fvib ,
provides a precise quantification of the statistical properties of the landscape.

3. Numerical evaluation of F (T, V )

This section describes the numerical techniques used to evaluate the liquid free energy, based
on thermodynamic integration [18, 19, 21, 22, 26]. First, a path in the (T, V ) plane, connecting
the ideal gas state to the desired state point, has to be selected. The selected path must avoid the
liquid–gas first-order line. A convenient choice is a constant-temperature path (with T = T0

higher than the liquid–gas critical temperature) from infinite volume to the desired volume,
followed by a constant-volume path from T0 down to the range of temperature of interest.

In the general case of a system of N rigid molecules, the ideal gas free energy is

Fig(T, V , N) = −NkB T

{
1 +

1

2
ln π − ln ν + ln

[
V

√
A3RxRyRz

N
T 3

]}
, (2)
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where A ≡ 2πmkB/h2, Rµ ≡ 8π2kB Iµ/h2 (with µ denoting x , y, or z), Iµ is the inertia
moment of the molecule with respect the axis µ, and ln ν accounts for the molecular symmetry.
In the case of C2v molecules (such as water), ν = 2, due to there being two possible degenerate
angular orientations of the molecule [27].

To perform the thermodynamics integration along the isotherm T0, one needs to select
about 20–30 state points at different volumes (figure 1(a)). Of course, the smallest volume
chosen must coincide with the final volume V0. The largest V -value (V∞) must be chosen
in such a way that the vast majority of the molecular interactions are binary collisions, i.e.,
such that the volume dependence of the pressure is well described by the (first-order) virial
expansion. At large volumes, although the dynamics is very fast, care has to be taken to run
the simulation for long enough to sample a large number of binary collisions.

The free energy at (T0, V0) can be calculated as

F(T0, V0) = Fig(T0, V0) −
∫ V0

∞
dV Pex(T0, V ) +

U(T0, V0)

T0
, (3)

where U(T0, V0) is the potential energy and Pex(T0, V ) is the excess pressure, i.e., the pressure
in excess of the ideal gas pressure. The calculated Pex(T0, V ) curve can be fitted according to
the polynomial in powers of V −1 (figure 1(b)):

Pex(T0, V ) =
n∑

k=1

ak(T0)V −(k+1), (4)

giving

F(T0, V0) = Fig(T0, V0) +
n∑

k=1

ak(T0)V −k
0

k
+

U(T0, V0)

T0
. (5)

To perform the thermodynamic integration along a constant-V0 path, it is necessary to
evaluate the internal energy U(T, V0) as a function of T , from T0 down to the lowest state
where equilibration of the system is feasible (figure 1(c)). The resulting free energy F(T, V0)

can be calculated as

F(T, V0) = F(T0, V0) + 3R ln(T/T0) +
∫ T

T0

dT

T

∂U(T, V0)

∂T
. (6)

The 3R ln(T/T0) term accounts for the ideal gas contribution to the free energy. Again, a fit of
U(T, V0) versus T is required to evaluate the integral in the above expression. One possibility,
which has been often found to be very successful for dense systems (small V0) [22, 26], is to fit
U(T, V0) versus T according to the Tarazona law [28], i.e., U(T, V0) = b0(V0) + b1(V0)T 3/5.
Of course, for the present purposes, any functional form which correctly represents U(T, V0)

can be selected.
In summary, performing thermodynamic integration, an accurate numerical expression

for F(V , T ) can be obtained.

4. The average IS energy 〈eIS〉

This section describes how to calculate the average IS energy 〈eI S(T, V )〉. Recently, it has
been shown that, for cooling at constant volume, on entering the supercooled region, the
system starts to explore basins of lower and lower eI S [32]. The T -dependence of the average
explored basin depth follows a T −1-law [19, 21, 23, 33] for fragile liquids. Note that for
silica, the prototype of a strong liquid, the T −1-law is not observed and 〈eI S(T, V )〉 appears
to approach a constant value on cooling [20].
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Figure 1. (a) Thermodynamic integration paths used to calculate the total free energy at the
thermodynamical points of interest, starting from the ideal—non-interacting—gas state. (b) Excess
pressure at T = T0 as a function of volume. The open circles are the MD results. The dashed
line is the first term of the virial expansion for the excess pressure; the solid curve is a third-order
polynomial fit to the entire set of data. (c) The potential energy (open circles) at the volume V0 over
the entire temperature range considered; the solid curve is the fit of the data. The data are from
our simulation [21] of a system of N = 343 molecules modelled by the Lewis and Wahnström
model for orthoterphenyl [29], whose dynamics [30] and thermodynamics [21, 31] features have
been studied in detail.

In order to evaluate 〈eI S(T, V )〉, one needs to perform steepest descent potential energy
minimizations for a statistically representative ensemble of equilibrium configurations, to
locate their corresponding IS, i.e., local minima. For efficiency reasons, the search for
the closest local minima is performed using the conjugate gradient algorithm [34]. In this
algorithm, the system evolves along a sequence of straight directions until the minimum
is reached. In each step, the new search direction recalls the directions already explored,
improving the algorithm efficiency. In rigid molecule systems, each step is composed via a
sequence of minimizations of the centre of mass coordinates, followed by a minimization of
the angular coordinates. Rotations around the principal axis of the molecule are often chosen.
The minimization procedure is continued until the energy changes by less than a preselected
precision. Since the change in 〈eI S(T )〉 in supercooled states is often less than one per cent of
its own value, a high precision is required in the minimization procedure.

In figure 2 we show 〈eI S〉 (a) as a function of T and (b) as a function of 1/T for a rigid
molecular model.

5. The vibrational free energy

The vibrational free energy fvib(eI S, T, V ) = Uvib(eI S, T, V ) − T Svib(eI S, T, V ) is the free
energy associated to the exploration of a basin of depth eI S at temperature T and volume V .
fvib(eI S, T, V ) takes into account both the kinetic energy of the system and the local structure
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Figure 2. 〈eI S〉 as a function of T (a) and as a function of 1/T (b). The data are from
simulations [21] of a system N = 343 molecules modelled by the Lewis and Wahnström model
for orthoterphenyl [29].

of the basin with energy eI S . From a formal point of view, it is defined as

fvib(eI S, T, V ) = −kB T ln

(
�x�y�z

λ3N

∑′
∫

Vbasin
exp(−β[V (rN ) − eI S]) drN

�(eI S) deI S

)
, (7)

where
∑′ is the sum over all the basins with energy depth eI S. The integration of the Boltzmann

factor is performed over all points in configuration space associated with the selected basin.
Here �µ ≡ (2π IµkB T )1/2/h, λ ≡ h(2πmkB T )−1/2 is the de Broglie wavelength, and V (rN )

is the potential energy.
The evaluation of the integral requires the exact knowledge of the shape of the PEL in the

basin and, in general, it will give rise to a complex T -dependence of the vibrational energy.
The best that can be done at the present time is to assume that the eI S-dependence in fvib

is captured by the eI S-dependence of the density of states of the basin, evaluated at the IS
configuration [21, 31]. In other words, the vibrational free energy is split into a harmonic
contribution (which depends on the curvature of the potential energy at the minimum) and an
anharmonic contribution,which is often assumed basin independent. In molecular systems, the
Hessian, the matrix of the second derivatives of the potential energy, is calculated numerically,
selecting as molecular coordinates the centre of mass and the angles associated with the
rotations around the three principal molecular inertia axes. Diagonalization is performed
with standard numerical routines.

In the harmonic approximation, the free energy associated with a single oscillator at
frequency ω is kB T ln(βh̄ω). Hence, the basin free energy can be written as

fvib(eI S, T, V ) = kB T

〈6N−3∑
i=1

ln(βh̄ωi (eI S))

〉′
+ Fanh(T, V ), (8)
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with

Uvib(T, V ) = (6N − 3)
kB T

2
+ Uanh(T, V ), (9)

and

Svib(eI S, T, V ) =
〈6N−3∑

i=1

(
1 − ln

[
h̄ωi(eI S)

kB T

])〉′
+ Sanh(T, V ); (10)

here the ωi (eI S) are the frequencies of the 6N − 3 independent harmonic oscillators given by
the square roots of the 6N − 3 non-zero eigenvalues of the Hessian matrix evaluated in the IS.
〈 〉′ is the average over all the basins with the same energy eI S . Note that the above equations
are derived assuming〈6N−3∑

i=1

ln(βh̄ωi (eI S))

〉′
= ln

〈
exp

(6N−3∑
i=1

ln(βh̄ωi(eI S))

)〉′
. (11)

For the molecular systems studied so far, this approximation introduces an error smaller than
1%. The relevant approximation consists in dropping the eI S-dependence in the anharmonic
contribution to the vibrational free energy Fanh (and of course in Uanh(T, V ) and Sanh(T, V )).
In other words, the anharmonicities are assumed to be identical in all basins. Under such an
approximation, Uanh(T, V ) can be calculated from the simulation data as

Uanh(T, V ) = U(T, V ) − 〈eI S(T, V )〉 − (6N − 3)
kB T

2
, (12)

and it can be well fitted by an expansion in powers of T , starting from T 2, as

Uanh(T, V ) =
Nc∑

k=2

ck(V )T k . (13)

Correspondingly, Sanh(T, V ) can be estimated by thermodynamic integration along the
isochore between temperatures 0 and T as

Sanh(T, V ) =
∫ T

0

dT ′

T ′
∂U(T, V )

∂T
=

Nc∑
k=2

kck(V )

k − 1
T k−1. (14)

An alternative method for estimating the anharmonicities of the system is to assume that
all the basins are quasi-harmonic and that the T -dependence of Uanh(T, V ) arises from the
eI S-dependence of the anharmonicity, i.e.

Uanh(T, V ) = D(eI S)T 2, (15)

and

Sanh = −2D(eI S)T 2. (16)

D(eI S) can be calculated from a parametric plot of Uanh(T, V )/T 2 versus eI S .
By incorporating the anharmonic corrections, which in the models of simple fragile liquids

studied so far are not particularly significant [21, 22], a good estimate of the basin free energy
is obtained. We note on passing that for the cases of network forming liquids, anharmonic
corrections are relevant [20, 23] and must be taken into account.

In the assumption of Uanh(T, V ) independent of eI S , all the eI S-dependence in the basin
free energy is carried by the term V(V , eI S) ≡ 〈∑6N−3

i=1 ln ωi (eI S)〉. A parametrization of such
quantity as a function of eI S allows one to simply connect the basin free energy to the basin
depth. Although in all models studied so far [19, 21, 31, 35] a linear relation between basin
depth and ‘basin shape’ V satisfactorily describes their relation, here we use the more general
expression

V = a(V ) + b(V )eI S + c(V )e2
I S, (17)

which best describes the simulation data (figure 3(a)).
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Figure 3. V (a) and Scon f (b) as a function of eI S .

6. The statistical properties of the landscape

In the previous section we have discussed how to relate the basin shape to the basin depth. In
this section, we exploit the formulation of the liquid free energy in the IS formalism to evaluate
the number of PEL basins as a function of the basin depth.

This quantity is of primary interest both for comparing with the recent theoretical
calculations [15, 26] and for examining some of the proposed relations between dynamics
and thermodynamics [16, 36, 37] connecting a purely dynamical quantity such as the diffusion
coefficient to a purely thermodynamical quantity (Scon f ). The number of basins � as a function
of the basin depth eI S has been recently evaluated for a few models [18–24, 38], and from the
analysis of experimental data [39–41]. Scon f (T, V )—the logarithm of the number of basins
explored—can be calculated as the difference of the entropic parts of equations (6) and (10),
i.e., as

Scon f (T, V ) = S(T, V ) − Svib(T, V ) − Sanh(T, V ). (18)

In the thermodynamic limit, when fluctuations are negligible, a parametric plot in T of
Scon f (T, V )/kB versus 〈eI S(T, V )〉 provides an accurate estimate of the number of basins
of depth eI S . This information, together with the information on the eI S-dependence of the
basin shape (or volume) (equation (17)), completely defines the statistical properties of the
landscape, at least in the range of eI S-values sampled by the system in the T -region studied.
The availability of Scon f (eI S) (figure 3(b)) and V(eI S) (figure 3(a)) opens the possibility of a
modelling of the thermodynamic of the system in terms of landscape properties, as discussed
in the next section.
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7. The random energy model: the Gaussian landscape

A modelling of the statistical properties of the landscape is the next conceptual step in
the development of a thermodynamic description of the liquid in the IS formalism. A
possible modelling, which appears to be consistent with the numerical evidence for fragile
liquids, is based on the hypothesis that the number �(eI S) deI S of distinct basins of depth
between eI S and eI S + deI S in a system of N atoms or molecules is described by a Gaussian
distribution [19, 23, 25, 31, 42], i.e.,

�(eI S) deI S = eαN e−(eI S−E0)
2/2σ 2

(2πσ 2)1/2
deI S . (19)

Here the amplitude eαN accounts for the total number of basins, E0 has the role of an energy
scale, and σ 2 measures the width of the distribution. One can understand the origin of such
a distribution by invoking the central limit theorem. Indeed, in the absence of a diverging
correlation length, in the thermodynamic limit, each IS can be decomposed into a sum of
independent subsystems, each of them characterized by its own value of eI S . The system
IS energy, in this case, will be distributed according to equation (19). We note that this
hypothesis will break down in the very low-energy tail,where differences between the Gaussian
distribution and the actual distribution become relevant. As discussed in [25], the system
Gaussian behaviour reflects also some properties of the independent subsystems.

Within the assumptions of equation (19)—Gaussian distribution of basin depths—and
of the quadratic dependence of the basin free energy on eI S , both of the harmonic term
(equation (17)) and of the anharmonic contribution (i.e. D(eI S) = d0 + d1eI S + d2e2

I S), an
exact evaluation of the partition function can be carried out. The corresponding Helmholtz
free energy is given by

F(T, V ) = −T Scon f (T, V ) + 〈eI S(T, V )〉 + fvib(E0, T )

+ kB T

(
b(V ) − d1(V )T

kB

)
(〈eI S(T, V )〉 − E0)

+ kB T

(
c(V ) − d2(V )T

kB

)
(〈eI S(T, V )〉2 − E2

0). (20)

Moreover, using the notation B1 = b(V )−d1(V )T /kB and B2 = c(V )−d2(V )T /kB we have

〈eI S(T )〉 = (E0(V ) − (B1(V ) + β)σ 2(V ))

1 + 2B2(V )σ 2(V )
, (21)

and

Scon f (T )/kB = α(V )N − (〈eI S(T, V )〉 − E0(V ))2/2σ 2(V ). (22)

Note that, when we can neglect the anharmonic contributions to F(T, V ) and the quadratic
term of equation (17), from a plot of 〈eI S(T )〉 versus 1/T , one can immediately evaluate two
of the parameters of the Gaussian distribution, σ 2 (from the slope) and E0 (from the intercept).
Similarly, from fitting Scon f (T ) according to equation (22), one can evaluate the last parameter
α (see figure 3).

The fitting parameters α(V ), E0(V ), and σ 2(V ) depend in general on the volume. A study
of the volume dependence of these parameters, associated with the V -dependence of the shape
indicators (a and b in equation (17)) provides a full characterization of the volume dependence
of the landscape properties of a model, and offers the possibility of developing a full equation
of state based on statistical properties of the landscape.

When comparing numerical simulation data and theoretical predictions—equations (21)
and (22)—the range of temperatures must be chosen with great care. Indeed, at high T ,
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the harmonic approximation will overestimate the volume in configuration space associated
with an IS. While in harmonic approximation such a quantity is unbounded, the real basin
volume is not. Indeed, the sum of all basin volumes is equal to the volume of the system in
configuration space. Anharmonic corrections, if properly handled, should compensate for such
overestimation, but at the present time no model has been developed that correctly describes
the high-T limit of the anharmonic component. Numerical studies have shown that the range
of validity of the present estimates of the anharmonic correction does not extend beyond the
temperatures at which the system already shows a clear two-step relaxation behaviour in the
dynamics. Indeed, the presence of a two-step relaxation is a signature of the system spending
a time larger than the microscopic characteristic times around a well defined local minimum.

8. Conclusions

In this paper we have discussed the numerical techniques employed to evaluate the statistical
properties of the PEL for molecular systems. These numerical calculations are limited to
the region of temperatures and volumes where equilibrium configurations can be numerically
generated. Still, very simple arguments can be presented which allow one to generalize the
results and formulate a full thermodynamic description of the supercooled liquid state, just in
terms of the statistical properties of the PEL.

The possibility of partitioning the free energy and its thermodynamic derivatives as a
sum of configurational and vibrational degrees of freedom has been recently exploited to
derive a satisfactory description of the equation of state [31, 43] for supercooled liquids
just in terms of PEL properties. A better understanding of the nature of each contribution
(configurational and vibrational) to quantities such as the total pressure of the system is
achieved. At the same time, the availability of detailed estimates for the landscape properties
strongly suggests a generalization of this approach to out-of-equilibrium conditions. It has
been recently shown [44] that if the system ages exploring the same basins as were visited
in equilibrium, it is possible to give an out-of-equilibrium equation of state expressing P not
only as a function of V and T but also as a function of the (time-dependent) depth of the basin
explored.

The availability of numerical estimates for the statistical properties of the PEL in models of
simple liquids should encourage theoreticians to develop schemes for the analytic evaluation
of these quantities. If this goal were reached, the understanding of the thermodynamics of
supercooled liquids and glasses would be improved significantly.
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