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Evidence of a Higher-Order Singularity in Dense Short-Ranged Attractive Colloids
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We study a model in which particles interact through a hard-core repulsion complemented by a short-
ranged attractive potential of the kind found in colloidal suspensions. Combining theoretical and
numerical work we locate the line of higher-order glass-transition singularities and its end point —
named A4— on the fluid-glass line. Close to the A4 point, we detect logarithmic decay of density
correlations anda sublinear power-law increase of the mean square displacement, for time intervals up
to 4 orders of magnitude. We establish the presence of the A4 singularity by studying how the range of
the potential affects the time window where anomalous dynamics is observed.
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FIG. 1. Glass transition line for the system S1 calculated
through the vanishing of the diffusion (open symbols) and
calculated with MCT (full line). The MCT ideal glass line
for S2 is given by the dashed line. The star indicates the
location of the A4 singularity (on the S2 ideal glass line) while
a filled square locates the A3 point (on the S1 line). The MCT
curves have been transformed according to the mapping dis-
cussed in the text. The T and � of the simulated point are
indicated by the black dot. The inset shows the power-law fits
the phase diagram of this three-dimensional control-
parameter space (shown in Fig. 1) is organized around a

for the isothermal diffusion coefficient D (data from Ref. [14])
for S1 as a function of ���c (see text).
Recently, a great deal of interest has grown around
dynamical phenomena arising in dense colloidal suspen-
sions when particles interact through a hard-core repul-
sion followed by a rather short-ranged attractive potential
[1–3]. Some of these unusual phenomena, initially pre-
dicted theoretically [4–6], have been observed experi-
mentally [7–10] and in numerical simulations [11–15].
The novelty, as compared to the well-studied hard-
sphere-colloids case, comes from the possibility of gen-
erating structurally arrested states with an additional
physical mechanism, driven by the range of the attractive
interaction. Indeed, in the case of hard sphere, structural
arrest is controlled by the well-known excluded volume
cage effect, where particle motion is hindered by the
presence of neighboring ones. This mechanism generates
a localization length of the order of 10% of the particle
diameter �. In the additional mechanism, the motion of
the particles is restricted by the adhesiveness, i.e., the
formation of nonpermanent bonds due to the attractive
part of the interparticle potential; particles are confined
by bonds and the corresponding localization length is
fixed by the attraction range �. When � � �, the inter-
play of the two localization mechanisms creates liquid
states for packing fractions higher than those possible for
a pure hard-sphere system. This means that the attraction
stabilizes the liquid and leads to a reentry phenomenon,
where this new liquid state can arrest into a glass by
cooling as well as heating. The experimental and numeri-
cal confirmation of this prediction [9–14] suggests that
the mode-coupling theory (MCT) [16], which was the
basis of the cited theoretical work [4–6], can contribute
to explain the slow dynamics in short-ranged attractive
colloids.

These systems are characterized by three control pa-
rameters—the packing fraction �, the ratio � of the
thermal energy kBT to the typical well depth u0, and
the range � of the attractive potential. Within MCT,
0031-9007=03=91(26)=268301(4)$20.00 
critical point ���; ��;���, referred to as a type A4 higher-
order glass-transition singularity in MCT classification.
A4 is the end point of a line of higher-order singularities
(of type A3). From a physical point of view, A4 is char-
acterized for being the only singularity point accessible
from the liquid phase. For � > �� no singular points are
predicted by the theory, while for �< �� the A3 singu-
larity points are buried in the glass phase, and their
presence can be observed only indirectly [7,9,11,14].
Near the A4 singularity, MCT predicts a structural re-
laxation dynamics, which is utterly different from that
known for conventional glass-forming liquids. It is ruled
2003 The American Physical Society 268301-1
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FIG. 2. Mean squared displacement of the A particles, h�r2Ai,
showing subdiffusive behavior within the marked intervals. At
long times, the diffusive behavior h�r2Ai � t is recovered.
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by logarithmic variations of correlators as a function of
time and subdiffusive increase of the mean squared dis-
placement (MSD). Theory makes precise predictions for
the time interval where this unusual dynamics is ex-
pected, as well as for its variation with changes of the
�, �, and � parameters. Indications of logarithmic
dynamics have been reported [7,9,11,14], but neither a
systematic study of the dependence on the control pa-
rameters has been published nor the A4 point has been
located numerically. It is, in fact, difficult to discriminate
between straight lines caused by some inflection points in
the usual logarithmic representation of correlators and the
logarithmic decay laws generated by the higher-order
singularity. In this Letter, we establish the existence of
the location of the A4 point for a well defined model,
amenable of simultaneous numerical and theoretical
treatment. Reported data—with control parameters
explicitly chosen close to the A4 point — exhibit the men-
tioned laws over time intervals up to 4 orders of magni-
tude. More importantly, we show that the decay patterns
vary with changes of the control parameters and wave
vectors as expected [17,18], properly testing the theoreti-
cal predictions.

We simulate a 50%–50% binary mixture of N � 700
hard spheres of mass m, with diameters �AA and �BB and
ratio �AA=�BB � 1:2. The hard core between particles of
different type �AB � 0:5��AA � �BB�. The hard-core po-
tential is complemented by an attractive square-well po-
tential of depth uo, independent of the particle type [19].
The small asymmetry in the diameters is sufficient to
prevent crystallization at high values of �. We focus on
two specific systems, which we label S1 and S2, differing
in the width of the square well �ij. S1 and S2 have �ij �
0:031�ij and �ij � 0:043�ij, respectively (i � A;B). The
system S1 has been extensively studied in previous simu-
lations [14]. As discussed in the following, S2 is chosen to
coincide with the critical amplitude parameter within the
accuracy of our calculations. Averages over five indepen-
dent realizations have been performed to reduce noise.
Equilibration has been carefully checked.We note that our
results refer to Newtonian dynamics, but are relevant also
to Brownian dynamics in the structural relaxation time
window [20].

To estimate the predicted location of the A4 point for
the binary mixture square-well model (and consequently
select the parameters to be used in the simulations), we
proceed as follows. First, we calculate the glass line
�c�T� for the mixture S1 extrapolating diffusivity D
data [14] according to D� 	���c�T�


��T�, for eight
different T. Second, we calculate the MCT ideal glass-
transition line. The partial structure factors, the only
input needed, are calculated with the Percus-Yevick ap-
proximation, numerically solving the Ornstein-Zernike
equation [21]. Third, we map the theoretical glass line on
the simulation line, following the procedure first used by
Sperl [18]. Indeed, MCT cannot reproduce the numerical
268301-2
values for �c. As shown in Fig. 1, the linear transforma-
tion � ! 1:897�� 0:3922 and T ! 0:5882T � 0:225,
allows one to superimpose the MCT result with the simu-
lation data, in the studied region of T and �. By calculat-
ing the MCT ideal glass-transition line for several values
of �, the theoretical location of the A4 point for the
binary mixture square-well model is obtained. As-
suming that, to a first approximation, the same linear
transformation holds also for the critical value of the
well width, we find that the A4 location maps to ��

ij �
0:043�ij, �� � 0:611, and �� � 0:416. This allows us to
select a state point with parameters close to the critical
ones and perform a simulation (in thermodynamic equi-
librium) close to A4. We choose [22] � � 0:4 and � �
0:6075 and compare, for the same T and �, the dynamics
for ��

ij (system S2) and for the close-by value �ij �
0:031�ij (S1).

Figure 2 shows the MSD for the larger species h�r2Ai for
both systems. We notice the presence of a subdiffusive
regime at intermediate times, i.e., a variation according to
ln�h�r2Ai� � f� a ln�t=�� for about 3 decades for S1,
where a1 � 0:44. The logarithmic regime extends by
more than a decade if the attraction range is increased
to that for system S2. Simultaneously the exponent a
decreases to a2 � 0:28. Figure 3 shows the density-
fluctuation autocorrelation functions �q�t� for a represen-
tative set of wave vectors q. The decay curves in Fig. 3 do
not show the two steps scenario with a plateau character-
istic of conventional glass-forming liquids. Indeed, it is
impossible to fit these curves for large q with the standard
stretched exponential function. Instead, there is a region
of clear logarithmic decay at q�1�BB � 23:5 for S1 and at
q�2�BB � 16:8 for S2. The time intervals over which loga-
rithmic decay is observed are of similar size as those for
the MSD. For q < q�, the �q vs lnt curves are concave,
and for q > q� convex.
268301-2
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FIG. 4. The fitting parameters fq, H�1�
q , and H�2�

q of the
asymptotic logarithmic law, for S1 and S2. The central panel
also shows that a multiplication by 2.43 of H�1�

q for the S2
system gives H�1�

q for S1, confirming the factorization of H�1�
q .

At the wave vector where H�2�
q � 0 (q�2�BB � 23:5 for S1 and

q�2�BB � 16:8 for S2) correlation functions display a pure
logarithmic decay.
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FIG. 3. A-type particle density correlators for S1 (top panel)
and S2 (bottom panel), showing six different wave vectors
(from top to bottom q�BB � 6:7; 11:7; 16:8; 23:5; 33:5, and
50:3). For correlators indicated by an arrow, a logarithmic
behavior is observed within the selected time window. The
dashed lines show the fits according to Eq. (1). The vertical
dashed lines indicate the fitting interval.
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To show that the above described features are consis-
tent with the ones predicted by MCT, we cite the general
asymptotic decay law for the correlation function of a
generic variable X, near the higher-order singularity [17]

�X�t� � fX � hX	B�1� ln�t=�� � B�2�
X ln2�t=��
: (1)

Here � abbreviates a time scale which diverges if the state
approaches the singularity. The formula is obtained by
asymptotic solution of the MCT equations, using the
parameter differences �� ��, �� � �, �� � � as small
quantities, say, of order  . The coefficient B�1� is of order
���

 
p

, while B�2� is of order  . The amplitude hX is inde-
pendent of  . The first term fX is the sum of the non-
ergodicity parameter of variable X at the singularity and
a correction of order  . Terms of order  3=2 are neglected
[17]. We can interpret lnh�r2Ai also according to Eq. (1).
Hence, the straight line for S1 with slope a1 shown in
Fig. 2 is consistent with the assumption that S1 is close to
the singularity. Changing from S1 to S2, the slope a �
hMSDB

�1� has to decrease and the range of validity of the
leading order description has to expand. This is demon-
strated impressively by the data.

To estimate the possibility of describing the time de-
pendence of �q�t� according to Eq. (1), we fit the density
autocorrelation functions to a quadratic polynomial in
log�t=�� for different q values. Fits are reported in
Fig. 3. The fitting time window extends from about 2:5
decades for the state point S1 to 4 decades for S2. The
fitting parameter fq, shown in Fig. 4, provides an esti-
mate of the nonergodicity parameter at the A4 point. We
find that fq does not depend on the state point. This
268301-3
confirms the preceding conclusion that the studied state
points are very close to the singularity and that the order  
correction in fq cannot be detected.

The fit parameters for the coefficient H�1�
q � hqB�1� are

reported in the middle panel of Fig. 4. The decrease of
H�1�

q upon changing from S1 to S2 is in agreement with the
prediction that B�1� tends to zero with  approaching zero.
As shown in Eq. (1), H�1�

q factorizes into a control-
parameter independent factor hq, depending on q, and a
control-parameter dependent factor B�1�, independent of
q. This implies that the q dependence of H�1�

q should be
the same for S1 and S2. As shown in Fig. 4, this property
is verified by the data. The same property does not apply
to H�2�

q � hqB
�2�
q because of the q dependence of B�2�

q .
Moreover, the fitting results confirm that H�2�

q is smaller
than H�1�

q , as expected being the first of order  and the
second of order

���

 
p

. The wave-vector value where B�2�
q �

0 allows one to identify the characteristic length scale
associated with the pure logarithmic decay (see Fig. 3).
Such length scales are much shorter than the typical first
neighbor shell.

To explicitly test the mentioned factorization, Fig. 5
shows a set of correlators rescaled to �̂�q�t� � 	�q�t� �
fq
=H

�1�
q . MCT predicts that in leading order  all �̂�q�t� vs

ln�t� curves collapse on the logarithmic decay law
� ln�t=��. This is, indeed, shown for a large time interval
that expands upon approaching the singularity, as it is
demonstrated by comparing results for S1 and S2 [23].
268301-3
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FIG. 5. Scaled correlation functions �̂�q�t� (see text) vs
ln�t=�� for the two samples and selected values of q�B around
the characteristic values q� for which H�2�

q is close to zero. The
vertical dashed lines indicate the time interval over which the
scaling is observed. The values of � are 10 and 102 for S1 and
S2, respectively.

P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2003VOLUME 91, NUMBER 26
Results reported in this Letter have an intrinsic value
associated with the observation, in a particularly simple
system—a square-well potential— of a particularly com-
plex dynamics over more than 4 decades in time. They
show that MCT, a theory essentially developed to address
the problem of the excluded volume glass transition is
able —without any modification—to handle the logarith-
mic dynamics and to provide an interpretative scheme in
terms of the A4 point. The numerical results and the
comparison with the theoretical predictions do constitute,
in fact, a stringent verification that the logarithmic dy-
namics in the density autocorrelation functions and the
subdiffusive behavior in the MSD can be fully rational-
ized by MCT. Indeed, data in Figs. 3 and 4 are in agree-
ment with MCT predictions (Figs. 12 and 13 of Ref. [18]).
The simplicity of the model and the complexity of the
dynamics suggest that the short-range attractive colloids
have the potentiality to become a benchmark for the
development of extended theories of the glass transition.
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