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2 SOFT, Istituto Nazionale per la Fisica della Materia, Complex Dynamics in Structured Systems
Centre, Rome, Italy
3 SMC, Istituto Nazionale per la Fisica della Materia, Statistical Mechanics and Complexity
Centre, Rome, Italy

Received 26 March 2004, in final form 28 July 2004
Published 10 September 2004
Online at stacks.iop.org/JPhysCM/16/S3791
doi:10.1088/0953-8984/16/38/002

Abstract
We study thermodynamic and dynamic properties of model colloidal systems
interacting with a hard core repulsion and a short-range attraction, and
provide an overall picture of their phase diagrams which shows a very rich
phenomenology. We focus on the slow dynamic properties of this model,
investigating in detail the glass transition lines (both repulsive and attractive),
the glass–glass transitions and the location of the higher order singularities. We
discuss the relative location of the glass lines and of the metastable liquid–gas
binodal, an issue relevant for the understanding of low density arrested states
of matter.

1. Introduction

Colloidal systems have a wide range of applicability in various fields. For basic science
research, they constitute a very appealing model system for studying particle interactions at
a mesoscopic scale. This is essentially due to the fact that the interparticle forces can be
tailored to a great extent with fairly simple chemical methods. Another important reason is
related to the size of the colloidal particles which is much larger than that of particles in a
molecular fluid, opening up significantly the range of values of physically relevant parameters.
For example, novel phenomena arise when the range of particle–particle interaction becomes
significantly smaller than the size of the particle and when the system is composed of colloidal
particles with significantly different size or mobility. Recently, new interest has arisen in
colloidal systems where, besides the usual short-ranged repulsive interaction, attractive forces
play a significant role [1]. The latter can be achieved in real systems in many different ways,
for example by means of depletion forces, by dissolving polymers in a solution of colloidal
particles, or grafting polymers on the surfaces of colloids. The effect of attractive forces of
very short range on thermodynamics has been studied in the past: a new relevant phenomenon
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appears, i.e. the disappearance of the liquid phase in the phase diagram of the system [2].
This effect can be easily observed in colloidal systems where the size of the particle can be
made much larger than the range of the attractive forces. From the theoretical point of view
the study of short-ranged attractive forces was pioneered by Baxter [3], with his celebrated
attractive hard spheres (AHS) model, for which he provided an exact solution in a special case,
and which is still one of the basic simple models in the physics of colloids. A very accurate
numerical simulation of the AHS model was performed recently and compared with the Baxter
solution [4].

In the last few years new interesting dynamic phenomena have been predicted theoretically
in the case of dense attractive colloids by means of the application of the prescription
of the mode-coupling theory (MCT) for supercooled liquids [5] to short-range attractive
colloids [6, 7]. Most of these phenomena have been related to the existence of higher
order kinetic singularities of the glass transition that were hypothesized from MCT but
never convincingly observed in real systems. Surprisingly, in a relatively short time various
theoretical predictions have been proven to be valid in many different colloidal systems and
with diverse experimental techniques [8–14]. Numerical simulations have also been widely
employed to test the MCT predictions and the details of the theory [15–23]. The formation of
a glass at low volume fractions could have rather important consequences in many different
ways. Just to give some examples, it was speculated that the formation of a gel at low volume
fraction of the dispersed phase might be a manifestation of the structural arrest associated
with the glass transition. Another interesting aspect of such phenomena, the formation of an
amorphous state close to an equilibrium phase transition, might be related to the problem of
protein crystallization.

In the next section we will summarize the predictions of MCT for the general case of
a repulsive potential followed by a short-ranged attractive interaction, while the following
section deals with numerical simulations of square well systems. We will conclude with an
outlook on possible developments in the study of such systems.

2. Predictions of MCT

Pure hard sphere systems can be easily realized using colloidal systems and have been
extensively studied in concentrated samples through accurate dynamic light scattering
experiments [24]. One of the most striking successes of the MCT is the very good description
that it gives of the supercooled glass transition; in particular, the most striking feature of
dynamical light scattering, i.e. the two-step relaxation processes (called β- and α-relaxation
at short and long times respectively), have been carefully studied and identified. Experiments
have also approached very closely the non-ergodicity transition which signals the formation
of a glass phase; the corresponding non-ergodicity parameter fq , i.e. the long-time limit of
the density time–correlation function, has also been measured as a function of the momentum
transfer q .

The typical behaviour of hard sphere systems is not always present in colloidal systems;
there are many cases where deviations from MCT predictions have been observed [25, 26].
For example, in a solution of polymer coated colloidal particles [25] a typical two-step decay
was observed, but, contrary to the usual situation, the non-ergodicity factor reaches rather
unexpected high values. Moreover, a structural arrest line, different from that of conventional
percolation, is observed and extends inside the metastable binodal line. In a system made
up of microgel particles, a peculiar logarithmic decay in time of the density correlators is
observed [26], completely absent for pure hard sphere systems and not predicted by the
conventional theory.
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The first application of MCT to a case of a repulsive potential followed by an attractive
tail was made with reference to the Baxter model [6, 7], where the range of the attraction �

vanishes while its depth −u0 becomes very large, in such a way that in the limit the quantity
τ = exp[−u0/kBT ]/12ε tends to a constant value. ε = �/(σ + �) is a dimensionless width
parameter, with σ the hard core diameter. Provided that an appropriate momentum cut-off
is introduced [27], peculiar effects set in, leading to new relevant phenomena. We will list
the most important ones in what follows, and study some of them in detail in the following
paragraphs.

For large volume fractions φ and high temperatures T , the system is dominated by the
well-known cage effect since a particle surrounded by the crowd of other particles can only
move if there is a simultaneous motion of the surrounding ones, the ‘cage’. For φ � 0.516,
MCT predicts a structural arrest [28], with an offset compared to the experimentally observed
case of the order of 10–15%, since in the latter case φ = 0.58. This is the glass transition
observed a long time ago in colloidal systems that can be considered as hard sphere systems.
As temperature is lowered, the transition line moves to higher values of φ. The behaviour of the
non-ergodicity factor as a function of q has the typical hard sphere aspect. Quite unexpectedly,
a second structural arrest line appears that extends from low to high volume fractions, meeting
the previously found repulsive glass line and continuing inside the region where the system
forms an amorphous glass. The latter feature produces a line separating two different types of
glass, i.e. it produces a glass–glass transition that we will describe later. This phenomenon is
clearly related to the attractive tail of the potential and gives rise to a glass transition line which
was called the attractive or gel line. Similar behaviour was observed when using an attractive
Yukawa tail in the interparticle potential [7]. The physical interpretation of the formation
of an attractive glass has been related to the fact that the free motion of the particles is not
possible any longer due to the adhesiveness of the potential. When the particles come very
close to one another, they tend to stick together, thus creating an obstacle to the motion even
at low volume fractions. This interpretation can be made more quantitative by considering
the localization length of the glassy systems, which can be derived from a study of the mean
squared displacement of the colloidal particles. In the case of the repulsive glass it is of the
order of 0.1σ while for the attractive glass it is given by the attractive potential range �. One
of the distinguishing features of this new type of glass transition is the overall shape of the
non-ergodicity factor as a function of q . It has a typical complex structure which is quite
different from the repulsive case and with reaches much higher values, as we will discuss
in the next section. These predictions of MCT are quite robust and are observed in various
model systems with different kinds of attractive tails—namely, besides Baxter and Yukawa
potentials, also the case of the simple square well potential [15] and the Asakura–Oosawa
depletion interaction [16, 21]. Finally, we note that different types of closure of the Ornstein–
Zernike equation have been employed in order to derive the structure factor Sq needed as an
input to the MCT equations, without relevant changes in the predictions reported above.

2.1. The repulsive and attractive glass lines for square well systems

We will now give detailed results obtained for a system that we used as prototype for attractive
colloids, i.e. the short-range square well (SW) system, where the potential is given by

V (r) =




∞ r < σ

−u0 σ < r < σ + �

0 r > σ + �

(1)

where ε = �/(σ + �) typically has the value 0.03, but ranges between 0.001 and 0.09 in the
various cases that we studied. We choose kB = 1 and the depth of the potential u0 = 1.
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Figure 1. The phase diagram of the SW system for various widths. R and A indicate repulsive and
attractive liquid–glass curves respectively. The inset details how the glass–glass transition curves
vanish for a well width around 4.11%. Redrawn from [15].
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Figure 2. The non-ergodicity factors of the SW system for φ = 0.54 and T = 1.5 for the repulsive
and T = 1.0 for the attractive case.

In figure 1 we show a region of the phase diagram in the plane (φ, kBT/u0) for a SW
system characterized by the width parameter ε = 0.03–0.09 and u0 = 1, the unit of energy.
The attractive and repulsive lines start to appear when ε ∼ 0.04 and are most clearly visible for
ε = 0.03. The non-ergodicity factors f q for the two types of glass are depicted in figure 2 which
clearly shows that the attractive non-ergodicity factors are always higher than the corresponding
repulsive ones.

When the attractive potential width is small enough, a region of the phase diagram appears
which contains a pocket of liquid states, a result of the adhesive interactions. In other words,
the liquid is stabilized with respect to the formation of a glass and forms a re-entrant region,
starting from which one can get an arrested glassy state both on lowering and on raising the
temperature. In this case the attractive glass line terminates at a point inside the glassy region,
which in the language of MCT is a higher order bifurcation point related to the solutions of
the asymptotic MCT equations. That is, it is an A3 point as opposed to the normal A2 point of
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Figure 3. The phase diagram for the SW model for ε = 0.03. The crosses represent the solid–fluid
phase coexistence and the set of open circles is the glass line. Note the solid–solid coexistence on
the high density side of the phase diagram: its critical point is labelled with a filled circle. The
position of the liquid–solid–solid triple point is also displayed, (φp′ , Tp′ ).

the repulsive glass. The portion of the attractive glass line that is inside the amorphous region
separates two different glass types, and it is a glass–glass transition boundary. A discontinuity
of the non-ergodicity factor fq is present along the line and disappears at the A3 point. The
relevant aspect of the higher order singularity in the framework of MCT is the fact that the
density–time correlation functions have a logarithmic decay over a long time interval. This
corresponds to a limiting behaviour of the typical (two-step) power law behaviour close to the
non-ergodicity plateau when the exponents tend to vanish. This happens when the system is
in a supercooled state but deep in the re-entrant region, where the effect of the nearby higher
order singularity is important. We will return to this point when comparing with the numerical
simulation results.

2.2. The equilibrium phase transition diagram

It is interesting to consider the interplay between the ideal glass line calculated within MCT
and the thermodynamic phase boundary. This has been studied in detail for a Yukawa model
potential in [17] and it has been related to the problem of the protein crystallization [29]. For
the Yukawa model, it has been possible to relate the overall structure of the phase diagram and
the glass transition line to the general one proposed for protein crystallization [30]. Indeed
when the range of the potential becomes short the thermodynamics shows special features
that have been well established in the last decade. The disappearance of the liquid–liquid
phase boundary and the appearance of a isostructural phase coexistence, typical in this class
of potentials, have been established either in experiments or simulations [2].

In figure 3, we present the ideal glass transition line for the square well system with
ε = 0.03 plotted together with the fluid–solid–liquid coexistence line. The latter line has been
calculated with thermodynamic perturbations as was done originally by Gast et al [31]. The
underlying crystal structure is assumed to be fcc. It is interesting to note that the ideal glass
transition line lies within the fluid–solid coexistence line and that its shape is very close to
the shape of the phase boundary lines. At this value of the range of attraction the glass–glass
line extends into the glass region at high packing fraction, separating the hard core from the
attractive glass. On increasing the range, the line shrinks and eventually vanishes. Similarly the
isostructural phase coexistence disappears when the range is above a certain value. Moreover,
the origins of the two crystal structures are related again to attraction and repulsion.
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Figure 4. The static shear moduli on crossing the glass–glass transition line for ε = 0.03
(φ = 0.540) and close to the A3 bifurcation point (φ = 0.544) and at a density where the repulsive
and attractive glasses have become indistinguishable (φ = 0.580). The inset shows an enlarged
view of the glass–glass transition region. Redrawn from [32].

2.3. The shear moduli

Another interesting way of characterizing the glass–glass transition can be obtained using
calculations of the shear viscosity and the elastic shear modulus which are capable of detecting
the difference between a repulsive and an attractive glass. The two quantities can be measured
in real systems and such measurements can provide good insight into the glass transition
phenomenon and its relation with MCT. The complex shear viscosity η∗(φ, T, ω) can be
calculated in terms of the normalized time correlation function of the density fluctuations
φk(t) [33, 34]:

η∗(φ, T, ω) = kBT

60π2

∫ ∞

0
dt eiωt

∫ ∞

0
dk k4

[
d ln Sk

dk
φk(t)

]2

(2)

and is related to the complex shear modulus G∗(φ, T, ω) by

G∗(φ, T, ω) = iωη∗(φ, T, ω). (3)

We note that this formula, since it depends on the square of the correlation function, is
different in structure from that used by Weitz and co-workers, where the stress-relaxation
function is linearly related to the density correlation function [35]. All the quantities in the
equations (2) and (3) can be easily evaluated for the present system by performing the integrals
with standard numerical integration. Before discussing the results, we should stress that the
previous equations are used, within the MCT, in the glassy region where ageing phenomena,
which are very important in real systems, are ignored by the theory. The considerations that
we will develop in the following, concerning ageing from the re-entrant region and the study
of the glass–glass line, apply to this situation too.

In figure 4 we report the behaviour of the shear modulus G ′ upon crossing the attractive
glass line in the glassy region. In figure 4 the static shear modulus, i.e. the zero-frequency
limit of equation (3), has been represented for three different packing fractions (φ = 0.540,
0.544 and 0.580) as a function of temperature. These three cases correspond to crossing the
glass–glass line, crossing the A3 point and a density where the repulsive and attractive glasses



Dynamical arrest in attractive colloids S3797

have become indistinguishable. In the first case it is clearly possible to distinguish between
the two glasses. For low temperatures there is strong dependence of the elastic viscosity
on temperature; in particular, the system becomes more and more rigid on decreasing the
temperature. When the system crosses the glass–glass transition there is a discontinuity in
the elastic response which clearly indicates that the structure is changed. On increasing the
temperature further the elastic behaviour does not change so much any longer and for large
temperatures the system behaves like a hard sphere suspension. In this case the glass originates
from the cage effect and consequently the particles are forced to move inside a fixed volume
that does not change with temperature. We have noted that the difference in the shear modulus
as the A3 point is approached is described by a power law, and it is also possible to show that in
this regime the differences in mechanical properties of the two systems are due to the different
shapes of the non-ergodicity parameter fq , and hence the long-time residual motions in the
gel, and not to the contribution of the equilibrium structure factor [32].

3. The numerical simulation of the SW system

In order to check the predictions of the MCT we have undertaken an accurate molecular
dynamics (MD) study of the various aspects of the behaviour of a very short-ranged SW
system where many new features of the structural arrest tend to be manifested. The system
that we study is a 50%–50% binary mixture of N = 700 (and in many cases 2000) hard
spheres of unit mass m, with diameters σA and σB and ratio σA/σB = 1.2, interacting via the
interparticle potential given by

Vi j(r) =




∞ ri j < σi j

−u0 σi j < ri j < σi j + �i j

0 ri j > σi j + �i j

(4)

where σi j = (σi + σ j )/2, i, j = A, B and �i j has been chosen in such a way that
εi j = �i j/(di j + �i j) typically has the value 0.03, but ranging between 0.001 and 0.09 in
the various cases that we studied. As for the one-component case, T = 1 corresponds to a
thermal energy equal to the attractive well depth. The diameter of the small species is chosen
as the unit of length, i.e. σB = 1. Density is parametrized in terms of the packing fraction
φ = (ρAd3

A + ρBd3
B)π/6, where ρi = Ni /L3, L being the box size and Ni the number of

particles for each species. Time is measured in units of σB(m/u0)
1/2. A standard event-

driven MD algorithm has been implemented for particles interacting with SW potentials.
Between collisions, particles move along straight lines with constant velocities. When the
distance between the particles becomes equal to the distance where V (r) has a discontinuity,
the velocities of the interacting particles instantaneously change. The algorithm calculates the
shortest collision time in the system and propagates the trajectory from one collision to the next
one. Calculations of the next collision time are optimized by dividing the system into small
subsystems, so only times of collisions between particles in the neighbouring subsystems are
computed. The small asymmetry in the diameters of the two components of the mixture is
sufficient to prevent crystallization at high values of φ.

3.1. The repulsive and attractive glass lines

The glass lines are determined by measuring the mean squared displacement of the colloidal
particles and deriving from it the diffusion coefficient D using the Einstein relation

D = lim
t→∞

〈|r(t) − r(0)|2〉
6t

. (5)
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Figure 5. The phase diagram of the SW system with ε = 0.03 (labelled S1) obtained by numerical
simulation. Also, the case ε = 0.0411 (labelled S2), obtained by using the transformation in
equation (6), is shown. The inset shows the power laws associated with the diffusivity.

These values are then scaled by a normalization factor D0 = σ
√

T/m in order to take
into account the temperature dependence of the microscopic time. According to MCT, on
approaching structural arrest D tends to vanish following a power law, a behaviour well verified
in the case of our simulation as shown in the inset of figure 5. In this way we can trace the
locus of D/D0 = 0 in the (φ, T ) phase diagram. As already discussed earlier, it is well known
that MCT produces a displacement of the order of 10–15% from the observed experimental
glass transition, so in order to compare theory and numerical simulation we need to apply a
bilinear coordinate transformation

φsim → 1.897φMCT − 0.3922

Tsim → 0.5882TMCT − 0.225
(6)

which allows us to superimpose the MCT result with the simulation data, in the region of T
and φ studied. Figure 5 compares the glass points extrapolated from the diffusivity with the
results of transformation (6). An added result is the possibility of locating the A4 point, as
well as the terminal value of the line of A3 points which according to MCT is at φ = 0.64
and T = 0.41. One of the following subsections will deal with the behaviour of the density
correlators at A4, the only higher order point accessible from the supercooled liquid side.

At this point we should stress that the simulation confirms the MCT predictions only on
the high volume fraction side of the phase diagram for φ > 0.6. As the volume fraction φ

decreases, the attractive glass line temperature slightly decreases and the line is expected to
move almost parallel to the φ axis. Within the SW model, it is important to locate this line in
the phase diagram and to frame its position with respect to the metastable liquid–gas binodal.
Indeed, if the attractive glass line is above the critical liquid–gas point, an arrested state can
be approached from equilibrium. In the other case, where the attractive glass line ends on the
high density side of the binodal, low density arrested states can be generated only via a phase
separation mechanism. For the case of ε = 0.03, the intersection between the attractive glass
line and the binodal was shown to take place at rather high packing fractions [36]. In order to
check the well width dependence of the crossing point, we report in figure 6 preliminary results
concerning a binary SW system, with ε = 0.001, using 2000 colloidal particles and the same
parameters as we employed before. Using these parameters we can, to a first approximation, use
the known location of the binodal line of the Baxter model, which has been recently carefully
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Figure 6. The crossing of the binodal and the glass lines for the case ε = 0.001. The binodal line
being very flat, the crossing of the two lines is shown in the inset. The solid points are binodal
points evaluated from the simulation.

studied over a large range of values of φ [4]. The attractive glass line, calculated again by
extrapolating the vanishing diffusivity, meets the binodal at φ = 0.45 and kBT/u0 = 0.14,
not much below the critical point at kBTc/u0 = 0.151, as estimated, via the second virial
coefficient mapping, from the simulation of the AHS system [4]. It is worth noting at this
point that a quench from the one-phase to the two-phase region, below the temperature of
crossing of the glass and spinodal lines, would produce a separation of the system into two
phases: a ‘gas’-like and an attractive glass one. It is likely that in order to have the binodal
line below the glass one, it is necessary to shrink the range of the attractive interaction even
further. Note that the point where the glass line meets the binodal is only less than 3% away
from the critical point, suggesting that with a much narrower potential well (unphysical with
present day colloidal systems) it might be possible to extend the attractive glass line above the
critical temperature.

3.2. Ageing from the re-entrant region

As we have discussed, an interesting possibility related to the re-entrant shape of the glass
transition line is the possibility of generating states with long relaxation time both by decreasing
and by increasing the strength of the attraction, hence accessing either the repulsive or the
attractive glass regions. This phenomenology suggests the possibility of characterizing short-
ranged attractive systems also by their non-equilibrium dynamics. It is well established in
experiments and simulation [37, 38] that if a system is quenched in the region where the
relaxation time is much longer than the observation time, ageing starts to play an important
role. The system, forced into an out-of-equilibrium situation, does not obey time translation
invariance; consequently the relevant observable will depend strongly on the time elapsed
from the quench out of equilibrium, the so-called waiting time tw. In particular, the two-
time correlation function (such as the mean square displacement or the intermediate scattering
function) will depend not only on the absolute time t but also on the waiting time tw. For
a binary mixture of Lennard-Jones particles, Kob and Barrat showed that quenches below
the mode-coupling glass transition temperature produce a relaxation time that grows with the
waiting time [37]. For the short-ranged attractive SW system we find the unique possibility
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Figure 7. Left panel: total density–density correlation functions for qσB = 2.93 at different
waiting times for Tf = 1.2 and 0.3. From left to right, longer and longer relaxation time,
tw = 3.67 × 10−4, 3.67 × 10−3, 3.67 × 10−2, 3.67 × 10−1, 3.67 × 100 s. The unit of time
σ(m/u0)

1/2 used in the simulations has been converted to seconds using m = 4.1086 × 10−17 kg,
σA = 2.02 × 10−7 m and u0/kBT = 1/1.2 with T evaluated at ambient temperature, consistent
with the experimental conditions. With this choice, σ(m/u0)

1/2 = 3.67 × 10−5 s. Right panel:
experimental data reproduced from [13] for quenches in the repulsive and the attractive (bottom)
glass.

of forcing the system out of equilibrium by quenching it either at low or at high temperature
starting from an equilibrated point within the re-entrance. We tackled this possibility by means
of numerical simulations [39].

Because the system is out of equilibrium, averages cannot be performed over time but must
instead be done over independent initial configurations. Hence, we prepared 60 independent
configurations, equilibrated at the initial temperature kBTi/u0 = 0.6 and at a density of
φ = 0.608. This state point can still be properly equilibrated in MD and it lies in the re-
entrant region of the glass line. We quenched these independent configurations to the desired
final temperatures, and then followed the evolution over time at constant temperature. The
characteristic time of the thermostat has been chosen to be much smaller than the structural
relaxation time and such that the system may equilibrate within one time unit. Each of the 60
independent configurations has been quenched to kBTf/u0 = 1.2, i.e. in the repulsive glass,
and to kBTf/u0 = 0.3, i.e. in the attractive glass, and run up to tf = 2 × 105. The system is
the usual binary mixture of 700 particles with SW interactions.

In figure 7 (right panel) we present the results for the density–density correlation function.
The averages are performed over the 60 initial configurations and no distinction has been
made between the two species. As for other ageing systems, the structural relaxation time
grows with tw. However, the two quenches present completely different dynamics, which
are characteristic of the different origins of the two underlying glasses. In the left panel of
figure 7, we present experimental data for colloidal particles produced by Pham et al [13]
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for two quenches in the repulsive and attractive glasses. Our results are in good qualitative
agreement with experimental data.

3.3. The higher order singularities A3 and A4

The direct study of the higher order singularity of type A3 is complicated by its being buried in
the glass region. However, it is predicted by MCT that even in the liquid region the singularity
will display its effects. In particular, state points in the phase diagram in the re-entrant region
that are relatively close to A3 will be characterized by a logarithmic behaviour of the density–
time correlation functions, due to the vicinity of this point.

In figure 8 we display density correlators obtained in different ways in order to emphasize
their similarity. Starting from the left we shows three correlators for the usual binary SW system
at φ = 0.58, 0.60 and 0.61 for the case ε = 0.03 in the re-entrant region for T = 0.75. In the
middle panel the same functions as obtained using the MCT calculations are shown. Finally,
in the last panel we report a sample of the measurements performed on a tri-block co-polymer
system (pluronic L64) at various temperatures and fixed concentration of the polymers [8].
All three panels show qualitatively similar behaviours, typical of a supercooled liquid in the
re-entrant region, i.e. a logarithmic decay in time after the initial transient, followed by a power
law behaviour which typically follows the von Schweidler power law in time. From the point of
view of numerical simulation a similar anomalous behaviour is observed in the mean squared
displacements of the colloidal particles which show a sub-diffusive behaviour.

MCT predicts the existence for our model of a higher order singularity of type A4, where
the liquid, the repulsive glass and the attractive glass solutions merge into a single point. This is
realized for a particular point in the control parameter space, namely (φ∗, T ∗,�∗). The theory
also gives detailed predictions for the behaviour of dynamical observables, i.e. logarithmic
decay for the density autocorrelation functions and sub-diffusive behaviour for the mean
squared displacement, approaching the A4 point [40]. To test these predictions, we need
to locate the higher order singularity for our model. In this way, we can approach it from the
liquid side and analyse the control parameter dependence (in particular, the � dependence) of
the dynamical observables, determining whether the A4 point is really there. To realize this,
we adopted the following procedure.

• We solved the long-time limit MCT equations for our particular binary mixture in order
to locate the ideal glass line. As inputs, we used the partial static structure factors
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calculated within the Percus–Yevick approximation for the same mixture, obtained by
numerically solving the Ornstein–Zernike equation on a grid of 20 000 wavevectors, with
mesh 0.314 1593. The binary MCT equations are then solved on a grid of 2000 wavevectors
with the same mesh.

• We evaluated the diffusion coefficients from simulations, as the long-time limit of the
mean squared displacement, using Einstein’s relation. This is done in the liquid region for
various temperatures, up to the order of magnitude 10−5 in diffusivity. For each isotherm
we fit our results with the power law D ∼ (φ − φg(T ))γ , extracting the fit parameters
φg(T ) and γ , which are respectively the glass transition packing fraction (at which the
diffusion coefficient would vanish) at temperature T and a characteristic exponent which,
according to MCT predictions, should grow near a higher order singularity.

• We performed the bilinear transformation, already announced in (6), in the control
parameter space (φ, T ), to superimpose MCT results for the ideal glass line with the
extrapolated results from the simulations, following an idea proposed by Sperl [40], as
discussed before.

With this procedure, assuming that the bilinear transformation does not depend on � close
to the A4 point, the A4 point has been located at ε∗ = 0.0411, and marked with a star symbol
in figure 5. On the basis of this mapping, we have performed MD simulations for the 4.11%
case, and studied, for a single state point close to the A4 singularity, marked as a full black
circle in figure 5, the variation of the MSD and density correlation functions with respect to
the 3% case. These functions were analysed and an extremely good agreement with MCT
predictions was found, supporting the mapping procedure, and, most importantly, giving a
clear confirmation of the existence of the A4 singularity [22].

As stated above, the density correlation functions near the A4 singularity are predicted to
decay, to lowest order within MCT [40], as follows:

φq(t) = fq − hq
[
B(1) ln(t/τ) + B(2)

q ln2(t/τ)
]

(7)

where fq is the value of the non-ergodicity parameter of the singularity, τ is a timescale that
grows approaching the singularity and hq B(1), hq B(2)

q are the amplitudes of the logarithmic
terms. Thus, in general, for any wavevector, the shape of the density correlators is not
purely logarithmic, and there are higher order corrections. However, the coefficient of such
a correction depends on the wavevector, through B(2)

q . Thus, one can determine a particular

q∗, which is state point dependent, for which B(2)
q∗ = 0. At this length scale, the decay is

purely logarithmic. A confirmation of this behaviour is found with simulations, and illustrated
in figure 9. Here, we show the density correlation function for the state point φ = 0.6075
and T = 0.4, for S1 and S2. Each correlator refers to the particular q∗ relating to each of the
two state points, respectively q∗

1 = 23.5/σBB for S1 and q∗
2 = 16.8/σBB for S2. This value

is significantly smaller than the nearest-neighbour length, signalling the importance of the
attractive range in the system. A detailed study of the wavevector dependence of the density
correlators had already been performed in [22], showing an overall very good agreement
with MCT predictions. Here, we want to stress that, varying �, we are approaching the A4

singularity from the liquid side, and the range of validity over time of equation (7) grows by
more than one order of magnitude (see the vertical lines in the figure) between the two values
studied numerically. This strongly supports the notion of the existence of an A4 singularity in
these short-ranged attractive colloids.
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Figure 9. The density correlators for the binary SW system in the vicinity of the A4 singularity
for φ = 0.6075 and T = 0.4. The two curves correspond to ε = 0.03 (S1) and 0.0411 (S2). The
vertical lines mark the regions of logarithmic behaviour and show the larger range of the S2 case
compared to the S1 case.

3.4. The glass–glass line

The last MCT prediction that we want to test is the existence of a kinetic glass–glass transition.
This is quite a difficult task, both experimentally and numerically, since there is obviously a
need to access the glassy region, i.e. out-of-equilibrium states. To overcome this problem,
we have adopted the following strategy. We started from an equilibrated configuration in the
re-entrant liquid region, precisely at φ = 0.612 and kBT/u0 = 0.6, and compressed it slowly
to relevant packing fractions for the glass–glass transition. The value of the relative well width
is 3%, i.e. the typical one for having a glass–glass transition in a SW system. Through the
mapping described above,we estimated the glass–glass line to be located between (0.625, 0.37)

and (0.64, 0.41) in the (φ, kBT/u0) plane. We focused on the isochore φ = 0.635. Results for
a different isochore and for a different initial state point were also presented [41], and shown
to be qualitatively similar. Thus, the results shown here are independent of these particular
choices. To study the dynamics along the glass–glass transition, we quenched our initial
compressed configurations to various different final temperatures, both in the repulsive and in
the attractive region, and looked at the behaviour of the density autocorrelation functions. If
the transition exists, these should present clear distinct behaviours in the two regions, i.e. the
repulsive one decaying to the typical hard sphere plateau and the attractive one relaxing only
to the much higher plateau set by the attractive well width. However, there is a further issue
to take into account, i.e. the role of the waiting time. To be sure that our results do not show
dependence on ageing, we focused on studying a fairly definite time interval of about 400 MD
units, after a waiting time tw � 4000. This choice ensures that in this limited, though narrow,
time window, there are no ageing effects in the density correlators [20].

Having fully established the procedure, we show in figure 10 the results for the density
correlators. What we observe in the top panel is not a clear separation, as expected from MCT
predictions, between correlators in the attractive and in the repulsive glass, i.e. for temperatures
below and above 0.4. For high temperatures within the repulsive glass region, the system,
already in this small time window, is able to relax to the appropriate plateau, while for low
temperatures in the attractive region, the expected high plateau is much less stable. Its duration
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Figure 10. The density correlators for the binary SW system across the glass–glass line for
φ = 0.635 showing the effect of formation and breaking of bonds between particles.

only increases with decrease of the temperature, signalling that it is strongly connected to the
bond dynamics taking place in the system. In other words, at finite temperatures the system
has a finite probability of overcoming the energy barrier necessary to break a bond (in this
model unambiguously defined by two particles at a distance smaller than the attractive well).
The breaking and reforming of the bonds can be interpreted as the relevant ‘hopping’ processes
for such systems, which have no effect on the repulsive glass for which bonds do not play a
role, but do have a destabilizing effect for attractive glasses.

To support this conjecture, we compare in the bottom panel of figure 10 the dynamics of
the square well system with that in a model where we artificially prevent any bond-breaking
(and reforming) process. This model, consisting of a square well plus an infinitely thin barrier
of height ub (SWB), was introduced in [20, 42] and studied extensively in [43], varying the
height of the barrier and thus the bond lifetime. The same initial configurations are used for
the two models, so at time t = 0 the bonding patterns are identical. By construction, only
decorrelation processes which do not modify the bonding pattern are possible in the SWB
model. Here, we only show the correlators for the small temperature kBT/u0 = 0.2, with
ub = 100u0, where the SWB model does indeed show the expected stable attractive plateau
whose value is consistent with the expected value for the attractive glass. In contrast, correlators
for the SW model have already decayed below the plateau value at short times. These results
suggest that ideal MCT, by neglecting the bond-breakingprocesses, predicts a stability window
for the short-ranged attractive glass larger than that observed in the simulation. This result
is analogous to the behaviour of molecular liquids, in the sense that the attractive glass line
has to be considered not as a sharp transition but as a line of crossover between two regions.
In the first one, the repulsive glass, MCT predictions are very good because here activated
processes do not play any significant role. The second one, the attractive glass, is an activated
dynamics region controlled by the bond dynamics, where ideal MCT applies in a limited time
window. In other words, our results suggest that MCT attractive glasses do not incorporate
activated bond-breaking processes, in the same way that hopping processes are not considered
for molecular glass formers. As a consequence, activated processes pre-empt the possibility
of fully observing the glass–glass transition phenomenon predicted by MCT.
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4. Conclusion and outlook

It has by now become clear that attractive interactions in colloidal systems show a rich
phenomenology and have given rise to many interesting developments. Among the problems
that we already quoted we included possible applications to the case of protein crystallization
and to the formation of gel phases at low volume fractions. From the fundamental point of
view it is worth stressing the possibility of understanding the interplay between percolation
and attractive glass transitions, and the related question of the formation of a gel at low volume
fractions. In this respect, the simultaneous evaluation of thermodynamic and dynamic arrest
lines is a particularly important piece of information. Other possible important research lines
which are beginning to emerge are related to the possibility of devising models where the phase
separation process is suppressed and the low density arrested states can be approached from
equilibrium studies. The work by Puertas et al [21], that of Coniglio and co-workers [44] and
our recent work on charged short-range attractive colloids [45] appear to suggest a particular
mechanism of formation of a gel phase composed of clusters, i.e. a glassy cluster phase. The
relation between the arrest line at low packing fraction and the attractive glass line needs to be
better clarified.
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